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Abstract. Different types of steady columnar patterns in an annular con-
tainer with a fixed value of the radius ratio are analyzed for a low Prandtl
number Boussinesq fluid. The stability of these convection patterns as well
as the spatial interaction between them resulting in the formation of mixed
modes are numerically investigated by considering the original nonlinear set
of Navier-Stokes equations. A detailed picture of the nonlinear dynamics be-
fore temporal chaotic patterns set in is presented and understood in terms of
symmetry-breaking bifurcations in an O(2)-symmetric system. Special atten-
tion is paid to the strong spatial 1:2 resonance of the initially unstable modes
with wavenumbers n=2 and n=4, which leads to bistability in the system.

1. Introduction

In the present paper we investigate the process of pattern selection and mode
interaction in the context of two-dimensional thermal convection. We analyze con-
vection in a rotating annulus with gravity radially inwards and outwards heating,
restricting our attention to exactly two-dimensional solutions. These solutions,
which form columns parallel to the axis of rotation, are allowed when stress-free
boundary conditions on the lids of the annulus are considered, and are the preferred
modes at the onset of convection for large enough rotation rates [1].

When the two-dimensional governing equations are considered the symmetry
of the system is O(2) even in the rotating case. Although rotation breaks the
reflection symmetry in vertical planes containing the axis, for the columnar solution
the Coriolis term can be written as a gradient and introduced in the pressure term.
Rotation drops from the equations and they retrieve the reflection invariance.
Thus, columnar convection in a rotating annulus provides a simple fluid dynamics
system with O(2) symmetry, which exhibits a rich variety of stationary and spatio-
temporal patterns [2], [3], [4].

In a previous work [2], we studied the transition route to chaos that the stable
columnar solution with wavenumber n=3 undergoes for a low value of the Prandtl
number, σ=0.025, and a fixed value of the radius ratio, η=0.3. The steady columns
give rise to spatially periodic and non-periodic direction reversing travelling waves,
which become chaotic through a Neimark-Sacker subcritical bifurcation. In order
to complete the analysis, we will now focus on the unstable branches that bifurcate
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from the conduction state. We will see that there is a strong spatial interaction
between the two initially unstable modes with wavenumbers n=2 and n=4 and
that some aspects of the behaviour we find, such as the presence of a mixed mode,
wavenumber gaps and travelling waves, are predicted by the normal form equations
for the 1:2 spatial resonance with O(2) symmetry [5], [6].

2. Formulation of the problem

We consider the problem of nonlinear convection in a cylindrical annulus with
radius ratio η = ri/ro, where ri and ro are the inner and outer radii, rotating
about its axis of symmetry, filled with a Boussinesq fluid of thermal diffusivity κ,
thermal expansion coefficient α and kinematic viscosity ν. The inner and outer
rigid sidewalls are maintained at constant temperatures Ti and To, with Ti > To,
and the gravitational acceleration is taken radially inwards, g = −gêr, and is
assumed to be constant.

There exists a basic conduction state in which heat is radially transferred to-
wards the outer cylinder by thermal conduction and which shares the full symme-
tries of the system. The stability of this state is determined by the Navier-Stokes,
continuity and heat equations. When horizontal stress-free lids are considered, the
linear stability analysis shows that there is always a moderate rotation rate above
which steady exactly two-dimensional columns parallel to the axis of the annulus
are the preferred solutions at the onset of convection [1]. These solutions are char-
acterized by a fixed azimuthal wavenumber, n, which is imposed by the chosen
radius ratio.

In order to obtain the nonlinear steady columnar solutions and to analyze
their stability with respect to axial independent disturbances as any parameter of
interest is varied, we have developed a continuation code [7]. To solve the equations
we have used a technique based on velocity potentials. In this formulation the
velocity field is written as u = f êθ + ∇ × Ψêz, where Ψ=Ψ(r, θ) is a function
which has zero azimuthal average. We are considering an explicit equation for
f = f(r), which is the simplest way of including the possibility of generating a
mean mass flow in the azimuthal direction (average of the azimuthal velocity in
the radial direction). The resulting nonlinear equations in nondimensional form
are
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where Θ denotes the departure of the temperature from its conduction profile and
∇2
− = ∂r(∂r +1/r). Pθ is the projection operator that extracts the zero-azimuthal

mode in a Fourier expansion, J is the jacobian in cylindrical coordinates and Ra
and σ are the Rayleigh and Prandtl numbers. The variables have been expanded in
terms of Chebyshev polynomials and Fourier expansions and no-slip and perfectly
conducting boundary conditions on the lateral walls have been considered.

3. Nonlinear steady columnar solutions: results and discussion

In this section we describe the results for η=0.3, σ=0.025 and increasing Rayleigh
number. We obtain the steady columnar patterns that bifurcate from the conduc-
tion state and analyze their stability.

The results are summarized in figure 1. In the upper part of the figure, the bi-
furcation diagram shows the branches of columnar solutions with basic wavenum-
bers n=3,2,4 (N3, N2 and N4 branches, respectively). In the diagram, we are
plotting an amplitude of the dominant mode in each case. The conduction state
becomes unstable to columns with wavenumber n=3 at Ra1

c=1799 (point 1 in the
bifurcation diagram), in agreement with the linear stability analysis. For slightly
larger Rayleigh numbers, the conduction state is also unstable to modes with
wavenumber n=2 (at Ra2

c=1995) and n=4 (at Ra3
c=2254). The new nonaxisym-

metric solutions break the rotation symmetry, Rθ, of the basic state, but maintain
the reflection symmetry, R1, with respect to appropiate vertical planes θ = θ0

and the invariance under 2π/n-rotations, R2π/n. The group of symmetry of the
new solutions is Dn. Thus, bifurcations from the conduction state are symmetry-
breaking steady-state bifurcations in which multiplicity two eigenvalues cross the
imaginary axis.

Whereas solutions along the N3 and N4 branches are pure modes, in which
only the basic wavenumbers and their harmonics are nonzero, the N2 is a mixed-
mode branch. There is a strong spatial interaction between the n=2 and n=4
modes which produces a change in the structure of the solution along the N2
branch. To illustrate the physical nature of these solutions, the lower part of fig-
ure 1 shows the temperature contour plots at different Rayleigh numbers. As the
Rayleigh number increases, the contribution of the n=4 mode becomes more and
more important, while the n=2 contribution diminishes until vanishing. The initial
two pairs of rolls become a n=4 solution.

A stability analysis of the mixed-mode solutions shows that there are several
bifurcations in the N2 branch. The new branches have been included in figure 2.
Bifurcation points 4 (Ra4

c=2362), 6 (Ra6
c=2509) and 7 (Ra7

c=2712) correspond to
subharmonic steady-state bifurcations. The solutions in these new branches, which
are displayed in the right-hand side of figure 2, still keep the reflection symmetry
between columns, but now there is a contribution of all the wavenumbers. Their
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Figure 1. (top) Bifurcation diagram showing branches of colum-
nar modes with wavenumbers n=3, n=2 and n=4 (N3, N2 and
N4 branches, respectively). They are born at Ra1

c=1799 (1),
Ra2

c=1995 (2) and Ra3
c=2254 (3). (bottom) Temperature contour

plots showing the evolution of the columns on the N2 branch
with increasing Rayleigh number. They correspond to points
e (Ra=2000), f (Ra=2198), g (Ra=2500), h (Ra=2711) and i
(Ra=2875) in the diagram.

group of symmetry is Z2. The bifurcation identified in point 5 (Ra5
c=2478) corre-

sponds to a steady-state instability that keeps the wavenumber of the main solu-
tion, n=2, but in which the mean flow becomes nonzero. According to bifurcation
theory [8], a steady-state bifurcation that breaks the reflection symmetry keeping
the rotational invariance would give rise to travelling waves with zero phase speed
at the bifurcation point. Nevertheless, we have not followed this time-dependent
branch which, in our case, is unstable. Finally, two subsequent bifurcations very
close to each other take place in the neighbourhood of point 8. In the first one
(Ra8

c=2887.5), one of the two positive eigenvalues of the solution is stabilized

through a subharmonic steady-state bifurcation. In the second one (Ra8
′

c =2888.9)
the amplitude of the n=2 mode vanishes. The N2 branch joins the N4 branch, and
columns with wavenumber n=2 cease to exist. This is a bifurcation from the N4
branch, which takes place after a bifurcation in Ra9

c=2851 in which an eigenvalue
with multiplicity two gains stability.
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Figure 2. (left) Detail of the steady-state bifurcations on the N2
and N4 branches, which take place at Ra4

c=2362 (4), Ra5
c=2478

(5), Ra6
c=2509 (6), Ra7

c=2712 (7) and Ra8
c=2888 (8) on the N2

branch and at Ra9
c=2851 (9) and Ra8

c=2888 (8) on theN4 branch.
(right) Temperature contour plots showing the structure of the
solutions in the N21a, N21b and N21c branches corresponding
to points k (Ra=3308), l (Ra=2649) and m (Ra=3040) in the
bifurcation diagram.

All the steady patterns above described except for the n=3 column are un-
stable. However, by extending further the N4 branch, a bifurcation that stabilizes
the n=4 mode by shedding a new unstable n=2 branch takes place at Ra10

c =4779.
As a result, for Rayleigh numbers larger than Ra10

c at least two stable solutions
coexist: steady columns with wavenumber n=4 and direction reversing travelling
waves with wavenumber n=3.

The spatial interaction between the modes with wavenumbers n=2 and n=4
that we have found is an example of an 1:2 resonance, in which modes with
wavenumbers n and 2n in the periodic direction interact nonlinearly. The 1:2
resonance with O(2) symmetry was first studied by Dangelmayr [5] and some as-
pects of the dynamics predicted by the normal form equations are reproduced
here. First, the presence of wavenumber gaps in which no steady solutions with a
given wavenumber exist is a typical feature of this resonance. This is what hap-
pens in the range of Rayleigh numbers 2888 < Ra < 4779, where the n=2 solution
disappears. The existence of travelling waves bifurcating from the n-mode, which
correspond to the bifurcation point at Ra5

c=2478 in our case, is also an identity
sign of this resonance.

Dynamics dominated by the strong spatial 1:2 resonance are expected in sys-
tems without midplane layer symmetry. In the case of annular convection this
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symmetry is broken by curvature, while in two-dimensional Rayleigh-Bénard con-
vection, the same effect can be achieved by considering different boundary condi-
tions at top and bottom or by including non-Boussinesq terms [9]. For instance, the
analysis of a long-wave model for two-dimensional convection in a plane layer shows
that the strong 1:2 resonance is dominant when asymmetric boundary conditions
are considered and a behaviour similar to the one we find in annular convection is
described [10]. In contrast, in Rayleigh-Bénard convection with symmetric bound-
ary conditions the leading order resonant term in the 1:2 interaction is of higher
order than that in the 1:3 interaction [10], [11], [12].
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