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Summary. The stability analysis of the basic conductive state of a rotating binary mixture of two fluids bounded by spherical shells
is studied. The Boussinesq approximation of the mass conservation, Navier-Stokes, energy and concentration equations is used, and
results for a moderate Ekman numberE = 10−3 are presented for positive and negative external compositional gradients. Preliminary
results are compared with those obtained for a pure fluid in the same range of parameters. They show an important influence of the
presence of a mixture on the onset of the convection for solutal Rayleigh numbersRc at least of the order of the thermal Rayleigh
numberRe. On the sphere the leading eigenvectors, which give the patterns of convection, have sectorial structure like those of apure
fluid, although slightly deformed due to the presence of two components.

Introduction

There are a broad range of disciplines in which two-component, or even multicomponent, convection should be taken into
account. If the effects of the mixture are ignored a hole group of important phenomena are lost.
The thermal convection in binary fluid spherical shells is a fundamental problem in Astrophysics, Geophysics and Mag-
netohydrodynamics. For instance, the Earth’s magnetic field is generated in its interior by convection driven by thermal
and compositional buoyancy, and the thermal convection in the major planets and stars is also affected by the composition
of its atmospheres and deep layers.
The onset of convection of a pure fluid subject to radial gravity in rotating spherical shells is well studied (see [1, 2, 3,4, 5]
among many others), but very few is known for a binary mixture. In the first case, the convection breaks the axisymmetry
of the conduction state. Then, the first bifurcation is of Hopf type, giving rise to a wave travelling in the azimuthal
direction. At moderateE the preferred pattern of convection fills the shell up to highlatitudes, keeping the polar regions
almost motionless.
The main aim of this work is to study the influence of an externally enforced compositional gradient on the onset of
convection of a mixture of two components in a rotating fluid spherical shell. Two possible situations are considered. In
the first a stabilizing compositional gradient is imposed. This type of thermosolutal convection predominate, for instance,
in large stars having a heated helium-rich core surrounded by lighter hydrogen. In the second the compositional gradient
is destabilizing. Such situation occurs in the Earth’s corewhere the solidification of dense metallic iron-nickel crystals
on the inner core and the release of light components, such assilicon, drives convection in the outer core more efficiently
than thermal gradients [6, 7].
In the first two sections we introduce the formulation of the problem, and the numerical method used to find the leading
spectra of the linearized equations, respectively. In the next the neutral stability curves as a function ofRc for Prandtl
numberσ = 0.1 and Lewis numberτ = 0, 0.01 are shown. In addition the structure of the preferred patterns of convection
(eigenvectors) is analyzed. Finally, the paper concludes with a brief outline of the results obtained.

The equations

The extension of the Boussinesq approximation for the mass conservation, Navier-Stokes, temperature, and concentration
equations is derived following [8, 9, 10, 11] for a sphericalshell of a binary fluid, rotating about an axis at constant angular
velocity Ω = Ωk, and subject to radial gravityg = −γr. Differential or internal heating, an external compositional
gradient, and the Soret and Dufour effects are included in the formulation of the problem.
The density of the mixture,ρ, is taken constant and equal to its mean valueρ in all the terms of the equations but in the
gravity term, where it is taken linear with the temperatureT and the concentrationC, i. e.,

ρ(T, C) = ρ
(

1 − α(T − T ) + β(C − C)
)

,

T andC being the volume-averaged temperature and concentration of one of the components, respectively.
The physical thermal and the solutal expansion coefficients, defined as

α = −
1

ρ

(

∂ρ

∂T

)

T=T

and β =
1

ρ

(

∂ρ

∂C

)

C=C

,

respectively, are considered constant (independent ofT andC) like the rest of physical parameters defined below.
We takeβ > 0, so the fourth equation is written for the denser component of the mixture. With the above approximation,
the complete system in nondimensional form is

∇ · v = 0, (1)

(∂t + v · ∇)v = −∇π + ∇2
v − 2E−1k × v + (T − C)r, (2)

σ (∂t + v · ∇)T = (QS2τ + 1)∇2T + QSτ∇2C + 3Ri/σ, (3)

σ (∂t + v · ∇)C = τ(∇2C + S∇2T ). (4)
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Notice that the centrifugal force is neglected because in the Earth’s outer core or in the major planetsΩ2/γ ≪ 1, and that
π contains the constant terms coming fromρ(T, C).
To close the problem no-slip boundary conditions for the velocity field (v = 0), perfectly conducting boundaries (constant
T ), and constant concentration of the components in the outer(r = ro) and inner (r = ri) surfaces are enforced.
To study the onset of convection, the stabilitity analysis of the basic state(v = 0, Tc(r), Cc(r)) is undertaken. In this
state the heat transport takes place just by conduction. Theequations are written in terms of the perturbation(u, Θ, Σ) of
the velocity, temperature and concentration fields,(v, T, C) from the basic statev = 0,

Tc(r) = T0 −
Ri

2σ
r2 +

(

Re − δRi

σ

)

η

(1 − η)2
1

r
and Cc(r) = C0 +

RiS

2σ
r2 +

(

δRiS + Rcτ

σ

)

η

(1 − η)2
1

r
, (5)

whereδ = (1 + η)/2(1 − η) is the mean radius, andη = ri/ro the radius ratio of the shell (η < 1).
The nondimensional parameters which appear in the system are the internal Rayleigh (Ri), external Rayleigh (Re), solutal
Rayleigh (Rc), Ekman (E), Prandtl (σ), Lewis (τ ), Separation ratio (S), and Dufour (Q) numbers, defined as

Ri =
qγαd6

3cpκ2ν
, Re =

γα∆Td4

κν
, Rc =

γβ∆Cd4

νD
, E =

ν

Ωd2
,

σ =
ν

κ
, τ =

D

κ
, S =

βKT

αT
, Q =

Tα2

cpβ2

(

∂µ

∂C

)

p,T

,

κ being the thermal diffusivity,ν the kinematic viscosity,cp the specific heat at constant pressure,q the rate of heat due to
internal sources per unit mass,KT the thermal diffusion ratio,D the diffusion coefficient,µ the chemical potential, and
d = ri − ro the depth of the shell. Notice that∆T = Ti − To > 0 and∆C = Ci − Co ≶ 0 depending on the sign of
the externally enforced compositional gradient. High concentrations of the heavy component in the external layers imply
a destabilizing gradient. The equations for a fluid with one component are obtained by puttingC = 0 andτ = 0.
Moreover, to reduce the number of equations and enforce the continuity condition, the velocity field is substituted by two
velocity potentials

u = ∇× (Ψr) + ∇×∇× (Φr) , (6)

and the equations are rewritten with respect to them.

Numerical methods

The equations forX = (Ψ, Φ, Θ, Σ) are discretized by expanding the eigenvectors in sphericalharmonic series up to
degreeL, namely

X(t, r, θ, ϕ) =

L
∑

l=0

l
∑

m=−l

Xm
l (r, t)Y m

l (θ, ϕ), (7)

with Y m
l (θ, ϕ) = Pm

l (cos θ)eimϕ, Pm
l being the normalized associated Legendre functions of degreel and orderm, and

θ denoting the colatitude. In the radial direction, a collocation method on a Gauss-Lobatto mesh is employed.
As in [4], the equations are separated into their azimuthal Fourier coefficients, and the stability of the zero solution of a
system of the form

Ẋm = AmXm, (8)

Am being block tridiagonal, is studied. This implies solving the eigenvalue problemAmXm = λXm. Notice thatAm

is real because we separate the equations for the real and imaginary part of the amplitudes. The neutral stability curves
correspond to the conditionRe(λ) = 0. The negative frequencies, which correspond toIm(λ), give positive drifting
velocitiesc = −ωc/m, i. e., in this case, the waves drift in the prograde direction.
To solve the problem two numerical methods are applied. The first computes the eigenvalues ofAm by evolving the
equation (8) a time intervalt. Its solution with initial conditionX0

m is exp (tAm)X0
m. The eigenvalues,µ, of the linear

mapexp (tAm) are related to the eigenvalues,λ, of Am by µ = exp (tλ). This transformation maps eigenvalues of
maximal real part ofAm to those of largest modulus ofexp (tAm). To find the latter we employ subspace iteration or
Arnoldi algorithms (see [12]).
The integration of (8) is performed by a fixed time-step BDF-extrapolation formulae, with initial conditions obtained
implicitly with the DLSODPK [13] code, or with a semi-implicit variable-size variable-order (VSVO) method [14]. The
scheme of orderk is

(

I −
∆t

γ0
A(1)

m

)

xn+1
m =

k−1
∑

i=0

αi

γ0
xn−i

m +

k−1
∑

i=0

∆tβi

γ0
A(2)

m xn−i
m ,

with Am = A
(1)
m + A

(2)
m , A

(1)
m including the diffusion terms, andA(2)

m the rest.
This method follows the envelope that minimizes the thermalRayleigh number of the neutral stability curves of a given
m, but is more demanding from a computational point of view than the second. On the other hand, the time interval
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Figure 1: (a) The critical thermal Rayleigh number(Rm

e
)c, (b) the critical precession frequencyωm

c
, for each critical mode of azimuthal

wavenumberm = 0, · · · , 11, versusE for a pure fluid ofσ = 0.1. The colour criterion is maintained from a) to b).
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Figure 2: (a) The critical Rayleigh numberRc

e
(plotted with×) and the critical precession frequency−ωc (plotted with *), and (b) the

critical wave numbermc plotted versusRc for E = 10−3 andτ = 0.01.

should be selected to be as short as possible to reduce the cost of the evaluation ofexp (tAm)X0
m, but large enough to

separate the eigenvalues to make their convergence fast.
The second method, based on a double complex shift, was used mainly with τ = 0. It allows to follow the neutral stability
curve corresponding to waves of a selected frequency.
Let defineBm by

Bm = (Am − λsI)−1(Am − λ̄sI)−1 =
[

(Am − αsI)
2
+ β2

sI
]

−1

,

where the shiftλs = αs + iβs. If λ andλ̄ are conjugate eigenvalues ofAm, then[(λ − αs)
2 + β2

s ]−1 and[
(

λ̄ − αs

)2
+

β2
s ]−1 are conjugate eigenvalues ofBm. The shift is changed adaptively to follow the curves.

The eigenvalues ofBm are found by a subspace iteration or Arnoldi method. This algorithm requires the action ofBm on
a vectorX. It is computed by solving the linear system

[

(Am − αsI)
2
+ β2

sI
]

(BmX) = X,

which is block pentadiagonal. An adapted LU decomposition is employed for this purpose. From the eigenvalues ofBm

and the selected shift(αs, βs), the eigenvalues ofAm are computed. The eigenvectors of both operators are the same.
Notice that the shifting method follows the neutral stability curves very efficiently, but it does not switch over them
when mode-crossings are present, so it is very difficult to find the critical parameters automatically without any previous
information.

Results

In this paper the calculations are restricted to differential heating withTi > T0, and positive and negative compositional
gradients.
The parameters have been chosen to have physical meaning, although the Ekman numbers used are far from those observed
in the nature for computational limitations. They areE down to10−3, the estimated Prandtl number for the Earth’s
core [15]σ = 0.1, τ = 0 andτ = 0.01, and the radius ratio of the Earth’s outer core,η = 0.35. With this assumptions
the Dufour effect may be neglected because in liquids it is much smaller than the Soret effect, and we have checked that
the later is also negligible if the solutal convection is enforced through external gradients, as in the present case.
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Figure 3: Contour plots of (a-c) the temperature perturbation Θ, (d-f) the kinetic energy densityu2, for Rc = 5.5 × 108, E = 10−3,
τ = 0.01 andmc = 10.

In the first place, the neutral stability curves of the fluid with τ = 0 are computed for Ekman numbers down toE = 10−3,
to determine the critical thermal Rayleigh numberRc

e, critical precession frequencyωc and critical wave numbermc,
as reference values from which to start the study of the mixture. In fig. 1(a) the critical Rayleigh number of the modes
(eigenvectors) of azimuthal wave numberm = 0, · · · , 11, (Rm

e )c is plotted. Their envelope givesRc
e. At E = 10−3,

Rc
e = 2.088×104, mc = 3, and the corresponding frequency, given in Fig. 1(b) by the lower blue line, isωc = 1.013×102.

In this figure the cusps and jumps mean changes of preferred modes of givenm.
The preliminary results, obtained withτ 6= 0 andE = 10−3, show that the onset of convection gives rises to an azimuthal
drifting wave like with τ = 0. Now, the critical thermal Rayleigh numberRc

e depends strongly on the direction of
the compositional gradient. However, by comparing this values and also those ofωc (see Figs. 2 and 4) with those
corresponding toτ = 0 (see Fig. 1) it is clear that at least a compositional gradient of the order of the temperature
gradient is needed to have important effects due to the solutal convection.
Negative compositional gradients (Ci > Co) are stabilizing, so there is a value ofRc from whichRc

e starts to increase
significantly, indicating that the convection is delayed bythe presence of a second component. In Fig. 2 this effect may
be seen fromRc ≈ 5 × 106, after a slight fall ofRc

e. In contrast|ωc| increases fromRc = 104 indicating that the wave
drifts faster than in a pure fluid.
The well known structure of the modes forτ = 0 changes its shape whenRc andmc increase (see Fig. 2(b)). The modes,
which atRc = 104 fill the domain, become much more confined near the inner surface, and their vertical extend is also
drastically reduced. Its shape atRc = 5.5 × 108 is plotted in Fig.3. The upper row are the contour plots ofΘ on the
spherical surface that cuts the vortex near its maximum, theequatorial projection, and the meridional cut taken through the
maximum, respectively. The contours plots of the concentration resemble very much this contours. The only difference
is an azimuthal phase shift of less thanπ/2. The contour plots of the kinetic energy density,u2, are shown in the second
row and display the same characteristics as those ofΘ.
Positive and sufficiently large compositional gradients (Ci < Co) are destabilizing, then they may advance the convection
with respect to its onset forτ = 0. Notice that with our definition ofRc, this parameter is negative because∆C < 0.
Fig. 4 contains the neutral stability curves forE = 10−3 andm = 1, · · · , 8. In the range ofRc computed there is an
interchange of curves for eachm < 8, whose frequency is shown in fig. 4(b). If the curves cross before the saddle-node
(m = 6, 7), the jump in the frequency is plotted with a continuous line. Otherwise the two frequencies are not connected.
FromRc = −3.1 × 104, Rc

e starts to decrease, and the wave number changes fromm = 3 to m = 6. As can be seen
in Fig. 4(a), at this point the preferredm = 6 mode of convection has already changed and the frequency jumped to
|ωc| = 3.82, so surprisingly the convection becomes almost stationary(see Fig. 4(b)). When|Rc| is increasedRc

e goes on
decreasing and even changes sign. NegativeRc

e values indicate thatTi < To. Then the temperature gradient is stabilizing
because the cold fluid occupies the interior layers. Therefore the compositional gradients can trigger the convection even
in presence of stabilizing temperature gradients. In this case the azimuthal drift of the waves is very slow. For instance, at
Rc = −2 × 105 (right limit of the−Rc axis),|ωc| = 0.28. As |Rc| is increasedmc recovers its startingm = 3 value of
Rc = −104.
The contour plots of the critical mode of convection are shown in Fig. 5 forRc = −105. They fill the shell as in the pure
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Figure 4: (a) The critical thermal Rayleigh number(Rm

e
)c, (b) the critical precession frequencyωm

c
, for each critical mode of azimuthal

wavenumberm = 0, · · · , 5, all of them plotted versus the solutal Rayleigh numberRc for E = 10−3, τ = 0.01. The colour criterion
is maintained from a) to b).
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Figure 5: Contour plots of (a-c) the temperature perturbation Θ, (d-f) the kinetic energy densityu2, for Rc = −105, E = 10−3,
τ = 0.01, andmc = 3.

fluid, and the kinetic energy density is concentrated at highlatitudes near the external boundary. As in the preceding case,
the contour plots of the concentration are like those of the temperature perturbation shifted a few degrees.

Conclusions

By comparing the results obtained with a moderate Ekman numberE = 10−3 with those of a pure fluid we can conclude
that:

• In a mixture of fluids of Prantl numberσ = 0.1 and Lewis numberτ = 0.01 the solutal effects are important if
the enforced compositional gradients are of the order of thetemperature gradients, independently of the sign of the
former.

• If Ci > Co (stabilizing gradient) the onset of thermal convection is delayed, i.e.Rc
e is higher than2.088 × 104

obtained forτ = 0. The precession frequency|ωc| andmc also grow. The pattern of convection consists of vertical
vortices confined near the inner boundary. The largerRc is the shorter they are.

• WhenCi < Co (destabilizing gradient) the compositional gradient reduces the critical value for the onset of con-
vectionRc

e, and it slows down the drift of the waves. The convection can be triggered even in presence of stabilizing
temperature gradients. As|Rc| is increasedmc = 3 is recovered as forτ = 0.

• In non-rotating or slow-rotating fluids thermosolutal convection gives rises to a great variety of patterns of convec-
tion. In fast-rotating fluids it seems that the rotation dominates the dynamics, and the patterns of convection are
sectorial like those well known for a pure fluid, even when theconvection is driven by the composition.
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