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highly supercritical thermal convection in
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Abstract The efficiency of implicit and semi-implicit time integrati codes based
on backward differentiation and extrapolation formulagfe solution of the three-
dimensional Boussinesq thermal convection equationstating spherical shells
was studied in [6] at weakly supercritical Rayleigh numiigmioderate (10°%) and
low (10~#) Ekman numbersg, and Prandtl numbes = 1. The results presented
here extend the previous study and focus on the effect ahd R by analyzing
the efficiency of the methods for obtaining solutionsEat= 104, o = 0.1 and
low and high supercriticaR. In the first case (quasiperiodic solutions) the decrease
of one order of magnitude does not change the results signific In the second
case (spatio-temporal chaotic solutions) the differeitése behavior of the semi-
implicit codes due to the different treatment of the Cosdérm disappear because
the integration is dominated by the nonlinear terms. As JnH@gh order methods,
either with or without time step and order control, increduseefficiency of the time
integrators and allow to obtain more accurate solutions.

1 Introduction

Thermal convection in rotating spherical geometries dateis the dynamics of sev-
eral astrophysical and geophysical phenomena such as tieeagien of the mag-
netic field exhibited by celestial bodies or the cloud pateand the differential
rotation seen at the surface of the major planets.

There are several experimental and numerical difficuliigbé study of thermal
convection in spherical geometry. In the first case, theatagliavity can be repro-
duced by means of either an electrostatic radial field or byctntrifugal force. In
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the second case non-stationary tridimensional wavesatrtbe onset of convection
due to the boundary curvature, and thus finding a solutionires|very high resolu-
tions. Frequently, as in [12], and [13], a two-dimensiormatalar geometry is used
to approximate the real problem.

Due to the increase of the computing power, many numeriqagisa [8, 18, 4,
17] among others, most of them based on pseudo-spectrabdsatind second order
time integration, have been published. The most exhaustdienensional studies
consist of numerical evolutions of periodic, quasi-peiipdnd even turbulent flows,
mainly with stress-free boundary conditions to avoid threfation of Ekman layers.
These boundary conditions are inappropriate for compaisth laboratory studies
and to model systems like the Earth’s outer core, where tkindh boundary-layers
exist near the rigid boundaries.

For a deeper understanding of the origin of the laminar flom their depen-
dence on parameters, pseudoarclength continuation nmeetfidyg 16], and the lin-
ear stability analysis of the time dependent solutions T1have been successfully
applied thanks to the use of high-order time integratiorhmés$ which provide ac-
curate enough solutions. On the other hand, high-orderititegration can be also
useful for evolving turbulent flows efficiently.

The performance of several high order implicit-explicit@X) schemes, in-
cluding those based on backward differentiation formui2K), were exhaustively
studied in [2] for the linear advection-diffusion one-dins@nal problem. A stabil-
ity analysis of the multistep methods up to fourth order wals® performed. In
that study the diffusive term is taken implicitly and the adtion term explicitly.
For the IMEX-BDF schemes, they showed that larger timessteae allowed for
the second order scheme when diffusion dominates the dgsami contrast, the
third and fourth-order schemes can take larger time-stém@svhe explicit advec-
tion term becomes relevant. In addition, and in contrashéowidely used second
order Crank-Nicolson and Adams-Bashforth scheme (CNAB® ,authors of [2]
argued that IMEX-BDF methods are useful for reducing thasatig effects when
using pseudo-spectral methods [3], due to the strong dajgbitihe high frequency
modes, which appear when computing the nonlinear termsrQimilar class of
IMEX methods with better stability regions are those basedRange-Kutta (RK)
schemes [1]. However, when compared with the multistep BR¥based meth-
ods would require one additional nonlinear evaluation fachestage. This is not
affordable in problems for which the evaluation of the noeér part is the most
demanding task.

The efficiency of different time integration methods to olre thermal convec-
tion equations in rotating spherical shells was studie@jnThe same IMEX-BDF
time integration pseudo-spectral codes, with the nontiterans of the equations
taken explicitly in order to avoid solving nonlinear eqoats at each time step, are
used in this study. The Coriolis term is treated either siempiicitly or fully implic-
itly, giving rise to the different algorithms analyzed. Thge of iterative methods
facilitates the implementation of a suitable order and titegsize control.

Two periodic solutions, of differeri (the rest of parameters are the same) were
integrated in [6] to highlight the influence of the Ekman nwnlExtending the
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previous study, a periodic and a quasiperiodic solutiommated with differeno
are integrated to address the Prandtl number influencediti@ad by only varying
the Rayleigh number, the efficiency of the time integratictmods is studied when
considering a spatio-temporal chaotic solution.

The rest of the article is organized as follows. In Sectiah@ formulation of the
problem and the spatial discretization of the equationsrewreduced. In Section 3,
the time discretization schemes are described briefly. btiGe4 the differences
between the constant stepsize methods are shown, and dyeostihe implicit and
semi-implicit variable stepsize and variable order methisdeported. Finally, the
paper closes in Section 5 with a brief summary of the main losians.

2 Mathematical model and spatial discretization

The thermal convection of a spherical fluid shell differalyiheated, rotating about
an axis of symmetry with constant angular velodity= Qk, and subject to radial
gravityg = —yr, wherey is a constant, andthe position vector, is considered. The
mass, momentum and energy equations are written by usingathe formulation
and non-dimensional units as in [11]. The units are the gathad = r, —rj, for the
distancey?/yad* for the temperature, ardf /v for the time,v being the kinematic
viscosity,a the thermal expansion coefficient, an@ndr, the inner and outer radii,
respectively. The velocity field is expressed in terms of toroid&, and poloidal,
@, scalar potentiale= O x (Wr)+Ox Ox (@r),and® =T —T; is the temperature
perturbation from the conduction state= 0, Tc(r) = To+Rn/o(1—n)?r, with
r=1r||2.

With the functionsX = (W, ®,0) expanded in spherical harmonic series up to
degred., the equations written for their complex coefficients are

aY™ = ZYM+ ﬁ [2E-L (imy™— [Q@]M) — [r-O x (wx V), (1)
az ol = A" O+ g [ (imA S+ QW)

+[r-Ox Ox (wxv)|, )
40" = o' +o NI+ )Rn(1—n) I 30— [(v-0)O)", (3)

with boundary conditions
Yr=o" =0 0" =" =0, (4)

corresponding to non-slip perfect thermally conductingriaries, and where =
O x v is the vorticity field.
The spherical harmonic coefficients of the oper&et Q'+ Q' are

Q"= —1(1+2)qL,Df L Ty, Q= —(1 - 1)(1 +1)eDy f7y,  (5)
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The governing parameters are the Rayleigh nunihehe Prandtl numbewo, the
Ekman numbeE, and the radius ratiq. They are defined by
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wherek is the thermal diffusivity, and\T the difference of temperature between
the inner and outer boundaries.

The coefficients of the nonlinear terms of equations (1-8)abtained follow-
ing [8]. In the radial direction, a collocation method on auSs:Lobatto mesh of
Nr 4+ 1 points is employed\; — 1 being the number of inner points). A large system
of N = (3L%2+ 6L + 1)(N; — 1) ordinary differential equations must be advanced in
time.

3 Timeintegration methods

The time integration methods used in this paper were destiibdetail in [6] so
only the main ideas are exposed in the following. In ordeiirngpéify the notation,
equations (1-3) are written in the form

Lol = Lu+ .4 (u),

whereu = (H™M(r;), ®™(ri),0"(ri)), and.% and.Z are linear operators includ-
ing the boundary conditions. The former is invertible, alnel latter, for any of the
schemes used, includes the diffusive, the buoyancy, andfptie Coriolis terms to
be specified below. The operatar’, which will be treated explicitly in the IMEX-
BDF formulae, will always contain the nonlinear terms, dmel test of the Coriolis
terms.
The IMEX-BDF formulae mentioned before are related to theFBB]. They

obtainu™?! ~ u(th+1) on a given time levet,, 1, n=0,1,2,..., from the previous

approximations™ !/, j =0,1,...,k— 1, using the following-steps formula
-0
Aty -1 ) n+1 Aty 1 an(thrl)
I — Lot Uttt = - At a(th) - ————,  (6)
(7 % oy 70 Pl =

whereqﬂyk(t) = Qnk(t) — u“+1ln7k(t), beingank the interpolating polynomial of de-
gree at mosk, such thatg x(th—j) = ui, for j = -1,0,....k—1, andl,y the
polynomial of degree at most taking the value 1 at,.1, and O att,_j, for
j=0,1,...,k—1. Moreovem, 1 is the interpolating polynomial of degree at most
k—1, such thapnk_1(t—j) = A (U")), for j = 0,1,...,.k— 1, .7 is the identity
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operator, angp(n) = I'n,k(th)Atn, beingAt, =ty 1 —th, n=0,1,2,..., the time
step.
If the time step is constant, the IMEX-BDF formulae (6) reesito

S G, $ B

<J - %go—lx) uttl = i; o Tt go

where the coefficients;, B; andy, do not depend on, and are listed, for instance,
in [15]. In this case the matrix of the system to be solved dwdschange withn.

On the other hand, changing the stepsize allows the use wiufas of different
orders (step numberg) while maintaining accuracy. Then the integration can be
started withk = 1 (and smallAtp), when the lack of previously computed values
precludes the use of higher order formulas, and then inetbasorder (and the step
length) as the integration advances and previous appraixinsa”I are available.
For the fixed-step-size codes, the starting valie$ = 1,...,k— 1 are obtained by
time integration front;_; tot; with a VSVO (variable step-size variable order) code
with sufficiently small tolerances® ande', which are, respectively, the tolerances
below which the absolute and relative values of the localdtdiscretization) errors
are required. The local error control of the IMEX VSVO methasl performed as
usual, i.e. following [9]. If a time step is selected givinga@int outside the stability
region, the accumulation of local errors will enforce thetimogl to select smaller
time steps to ensure the stability. Details on the strategsied out to control the
stepsize and the order of the VSVO codes, such as the estimaaif the local error
of thek-order formula, are outlined in [6].

Once the nonlinear terms are evaluated, equations (1-3upé for each az-
imuthal wave numbem, thus, at every time step,+ 1 linear systems of the form
H™UM=V™ m=0,...L, have to be solved. The vectdd" andV™ contain,
respectively, the unknowns and the right hand side of thealisystem derived from
the IMEX-BDF formulae (6) or (7), with azimuthal wave number The dimen-
sion of the matricebl™ is 6(L — m+ 1)(N; — 1) and its structure depends on which
terms of equations (1-3) are treated implicitly (see theexupx A of [6] for further
details).

The inclusion of the diagonal parts of the Coriolis term edming im¥™ and
im®™ in ., and ofQ in ./, gives block-diagonal matricés™, with blocks of di-
mension 6N, — 1). The solution of these linear systems is performed by a difdc
method. From now on, the time discretization with this tneextt of the operators
will be called theQ-explicit method.

By addingQ or QY (see Eq. 5) taZ, the matricesH™ become upper or lower
block-triangular matrices, respectively. They can be ed|with the same mem-
ory requirements and number of operations thanQ@hexplicit method, by using
backward or forward block substitution. In order to implerhthis possibility in a
symmetric way, the two options are used alternately, thairie step is performed
with QU implicit and QY explicit, and vice-versa in the following step. From now
on, this time discretization will be called tlgg splitting method.

S, (@)
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By settingQ totally implicit the operator#” only includes the nonlinear terms,
and then the matricds™ become block-tridiagonal. From now on this method will
be called th&-implicit method. A direct block method for solving thesedar sys-
tems involves about three times the memory storage reqidgresblving the block-
diagonal systems, and at least three times the computhtiosizof performing the
LU decomposition. As the solution of the linear systems isthe most demanding
task to advance one time step, we decided to solve it itelgtvithout storing the
matrices to cope with higher resolutions, and to implemesatraable size and order
version, which requires updating the LU factorizationsrdtive methods based on
Krylov techniques, can be used efficiently, if they are pretitoned with the block
diagonal matrix. We have chosen the GMRES method becaussuitable for non-
symmetric linear systems and it has good convergence prepgt4]. The initial
approximation for solving the linear system is obtained kiyapolation from the
previous steps. The increase in the cost of solving thelisgstems may be offset
by the increase of the time stepsize.

The integration with a constant time step can be unnecéssampensive be-
cause the step must be short enough to cope with possiblggastents. To avoid
this situation, a refined procedure is to use a VSVO methodf9jhe derivation
of the VSVO IMEX-BDF formula, the matrices of the linear syists depend on the
current time step. They can be solved efficiently, if a Krytogthod with a precon-
ditioning matrix depending on a fixed time stAp* is used. When the convergence
of the iterative linear solver degrades doing more than d@iions, the precondi-
tioning matrix can be updated with the current time stepeiadtof restarting. In the
case of the VSVO methods the tolerance for the GMRES residuasdked to be
two orders of magnitude lower than that required for the timegration. The rate
of convergence depends on the orllend the time step. For example, when inte-
grating with low ordek = 2 it converges in about 6-10 iterations, while with- 5
only 2 iterations are required. All the semi-implicit metisodescribed before have
been implemented with constant time-step size, and witlabkertime-step size and
order using our own codes (except Qesplitting VSVO method). From now on,
the VSVO implementations of th@-explicit andQ-implicit methods will be called
Q-explicit VSVO andQ-implicit VSVO, respectively.

The last option considered is a fully implicit treatment bétnonlinear terms
with a VSVO formulation of the BDF. This leads to the solutioha nonlinear
system of equations at each step. This solution is obtaigeddans of a Newton-
Krylov method using GMRES to solve the Newton correctionagguns with zero
initial seed, see [10] for further details. From now on thisthod will be called fully
implicit method. We will use the DLSODPK code of the ODEPAC#&cgage [10].
The linear systems to be solved in this case depend not orthearurrent time step,
but also on the current solution. As before, they can be pr¢itioned by the block-
diagonal matrices computed with a fixed time sfep. If during the integration the
current time step is different frodit* by one order of magnitude the preconditioner
is recomputed with the current time step. As in the semi-icitpV SVO methods,
the tolerance imposed on the residuals depends on thertoeimposed on the
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time integration. The cost of the nonlinear evaluationggrered to approximate
the Jacobian matrix products degrade the performance &iltiiémplicit methods.

4 Resaults

To study the effect of the Prandtl numberand the Rayleigh numbdR on the
efficiency of the time integration schemes presented in theipus section, we in-
tegrate three different cases wijh= 0.35 ande = 10~. The first one (cas§;) was
studied in [6] (there calle@;) and corresponds to a periodic traveling wave of wave
numbem= 7, computed atr = 1 andR = 800000. In the second cas®) we inte-
grate a quasiperiodic three frequency wave with 6 computed at smaller Prandtl
numbero = 0.1 andR = 264000. On both casésis slightly supercritical and the
solutions are quasi-geostrophic and symmetric with redpethe equator. Finally,
a highly supercritical spatio-temporal chaotic solutioomputed witho = 0.1 and
R = 2000000, is considered for the third casg)( The numerical resolutions em-
ployed for theS;, S andS; cases ard\; = 48 andL = 63 (N = 577442 equations),
Ny =32 andL =54 (N = 281263 equations), artddd =50 and. = 84 (N = 1083650
equations), respectively.

To make our comparisons the initial transient has been isda and all the
test runs are started with the same initial condition ole@iafter the solution has
smoothed. To obtain it, th@-implicit VSVO method with very low tolerances was
used. Then the system (1-4) is evolved from the new initiatéton to a final time
ts. IntheS, andS, casegs = 0.1, while in theS; casets = 0.01.

To check the efficiency of the different schemes the reldtietmveen the relative
error, and the run time is studied. The former is defined as

Ju—ur[l2
= Tl ©
whereu is the solution we want to check, andis an accurate reference solution
obtained with theQ-implicit VSVO method. More precisely, is obtained with
toleranceg? = ¢" equal to 10123 in theS; andS; cases, and to 181 in theS; case.
The decrease of the relative error (8) is achieved by deioigése stepsize in the
case of fixed stepsize methods, or by decreasing the toksdacthe local errors
in the case of the VSVO methods.

For the constant time stepsize methods of orders 2 to 5 (exice®@-implicit
method for the sake of simplicity) the relative erggu) is plotted against the time
step in Figs. 1(a,c,e). The efficiency curves are shown is.Hifh,d,f). In the latter,
£(u) is plotted against the run time in seconds for the resultt@MSVO codes to-
gether with the constant stepsi@esplitting method for comparison purposes. Plots
(a) and (b), (c) and (d), and (e) and (f), are for 81€S,, andS; cases, respectively.

As mentioned previously, the study of ti$g case (Figs.1(a) and (b)) was per-
formed in [6] so only a few words are commented here. For angbanstant time
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Fig. 1 (a) The relative erroi(u), plotted versus the time stey for constant time step integration,
ordersk from 2 to 5, and thé&; case. (c), (e) Same as (a), for tBeandS; cases, respectively. (b)
The relative errorg(u), plotted versus the run time for tiigsplitting and VSVO methods, and the
S case. (d), (f) Same as (c), for tise and Ss cases, respectively. The symbols me@rexplicit
(+, solid line), Q-splitting (x, dotted line) Q-explicit VSVO (+, solid line), Q-implicit VSVO (x,
dashed line), and DLSODPK (dash-dotted line).

stepsize, th&-explicit and theQ-splitting methods of all the orders have almost
the same computational cost, and therefore the higher oné¢hods should be
preferred. In addition, th&-splitting method has shown itself to be more stable,
allowing for larger time steps (see Fig.1(a)), and henctgebefficiency. For the
latter method, Fig. 1(b) shows that at approximatgly) < 10~°, the orderk = 5

is the most efficient but iE(u) > 10~° the most efficient order is 4. The fully im-
plicit method using DLSODPK is always more expensive thatdimplicit VSVO
methods because each iteration of the linear solver, aritedfiéwton’s method re-
quires an expensive evaluation of the non-linear termsll lthe results shown, it
takes between 1 and 3 Newton iterations, and for each of them2 GMRES itera-
tions. TheQ-explicit VSVO method is also less expensive than DLSODP&eet

for the highere(u), for which the cost of the former increases due to a decrefase o
the solver performance. The abrupt decrease of efficientlyed®-implicit VSVO
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method close t&(u) = 102 was related in [6] with the shape of the stability re-
gions of the BDF for constant stepsizes. A similar result ¥easd in [2] in the
framework of the one dimensional linear advection-diffusproblem. When the
implicit term dominates (as occurs with tleimplicit method at weak supercritical
conditions) second order IMEX-BDF schemes allow largeretisteps than those
of third or fourth order. The decrease of efficiency preven&Q-implicit VSVO
method from being as efficient as tQesplitting method in the region of intermedi-
ate errors. However, for the latter, some previous expeatrigieave to be performed
to determine the optimal time step.

The behavior of the methods for integrating tBecase (Figs.1(c) and (d)) is
similar to that of the5; case, despite they are less accurate. Although their Frandt
numbers differ in one order of magnitude, the results seesomable because in
both cases the solutions are smooth functions of time anal] the methods, the
terms of Egs. (1-3) containing the Prandtl number are tceiamtplicitly. However,
for a given order, the errag(u) of the fixed step methods is almost two order of
magnitude greater in th§, case. The same occurs for the VSVO methods. This
differences could be due ® being slightly more complicated, in the sense that it
has two additional frequencies. Nevertheless, accuriéiaus with €(u) down to
10711 can be obtained in a reasonable time.

As expected, the accuracy for integrating the spatio-teaiphaotic solution of
the S3 case drastically decreases with respect to the other cBlsissdecrease is
also due to the larger number of time steps needed by the neetboobtain the
solution at the desirett. This is shown in Figs.1(e) and (f) wheegu) down to
107°, and 10, can be obtained with the fixed step, or the VSVO methodsemsp
tively. Apart from the accuracy, the behavior of the methisdslearly different to
that exhibited in the previous cases, at weakly superatitegimes, where the Ek-
man number controls the dynamics. At highly supercritRalhe Ekman number
plays minor role and the way the Coriolis term is treated bez®less important.
According to this, the results obtained with the fixed timeps®-explicit, and the
Q-splitting methods are nearly the same (Fig.1(e)), and angesoccurs for the re-
sults of the VSVOQ-explicit andQ-implicit methods. Since the solution is strongly
nonlinear, the efficiency of the fully implicit VSVO methoegtomes comparable
to the semi-implicit VSVO methods, and better than the lodeoffixed step meth-
ods (Fig.1(f)). As commented in [6] this is because the futiplicit method allows
significantly larger time steps (nearly 3 times in this cabe} which are compu-
tationally expensive. It is worth mentioning that in tGgcase the VSVO methods
obtain solutions up to four orders of magnitude more aceuttzn the fixed time
methods, while in the previous cases with the VSVO methoglstiprovementis of
two orders of magnitude. Despite these differences withaeistoS; andS,, in all
cases the largest attainable values of the fikedorrespond to methods with order
higher than two, obtaining therefore more accurate saigtio less time. Again,
this behavior can be related with that observed in [2] fordhe dimensional linear
advection-diffusion problem. In the regime where the eoipterm starts to dom-
inate (and this occurs in th@-explicit and Q-splitting methods for the cases,
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S and in theQ-implicit method for the cas&s), largerAt were obtained for the
IMEX-BDF schemes of orders 3 and 4 rather than for order 2.

5 Conclusions

In the time integration study [6] of the thermal convectionfast rotating fluid
spherical shells, the possibility of handling implicitlget Coriolis term, and even
the nonlinear term, thanks to the low memory requirementh®fterative Krylov
methods used to solve the linear systems, was shown. Ttdyt &iaused on the
influence of the Ekman number on the efficiency of the methadpgsed. The
present study extends the previous one by analyzing themgkiof the Prandtl and
the Rayleigh numbers.

The results presented here, computed atBow 104, show that the behavior
of the methods for integrating a weakly supercritical datilry type of solution
(periodicS; or quasiperiodi&) is very similar, despite their Prandtl number differ
in one order of magnitude. At this regime, the Ekman numbayrgpa major role, and
a more implicit treatment of the Coriolis term becomes appate. In contrast, at
strongly supercritical regimesg), an implicit treatment of the Coriolis term does not
improve the integration, reflecting that the Ekman numbay$la minor role. The
solutions are obtained with less accuracy, reflecting theatio-temporal chaotic
character.

In all cases &, S, andS3) shown here (and also in the cases of [6]), the imple-
mentation of high order methods does not reduce the effigiehthe time integra-
tors, and allows to obtain more accurate solutions. In &difor theQ-splitting or
Q-explicit fixed-step methods the largest time-steps arainet with order higher
than two, as occurs with the IMEX-BDF schemes applied in §2fhte one dimen-
sional linear advection-diffusion problem when the domirtarm of the equation
is handled explicitly.

In practice the most efficient method depends stronglR ¢adso onE), but more
weakly ong, at least in the oscillatory regime. It depends also on thereaccepted
for a solution, and on the type of solution. For instanceni¢ @ just interested in
obtaining solutions by direct numerical simulations (DN best choice is to
implement a fourth orde®-splitting method, and performing some previous exper-
iments to determine the optimal time step. However, if theetintegration is part
of a continuation process, and/or one is interested in tztlog the stability of the
solutions, low errors must be requested to the time integrat hen theQ-implicit
VSVO method will probably be the most efficient option. Moveq since the lower
run times correspond to ttig-implicit VSVO method with high tolerances, it might
also be useful to pass long uninteresting transients, wiharig a control of the
time stepsize might be important.

The results presented in this paper suggest that IMEX metbaald also be effi-
ciently used in other type of nonlinear problems with ottpgatml discretizations if
the stiff part can be included in the implicit term of the seteg and the cost of solv-
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ing the corresponding linear systems, whatever their gtrachecomes comparable
to the evaluation of the explicit part.
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