
A comparison of high-order time integrators for
highly supercritical thermal convection in
rotating spherical shells

F. Garcia, M. Net and J. Sánchez

Abstract The efficiency of implicit and semi-implicit time integration codes based
on backward differentiation and extrapolation formulas for the solution of the three-
dimensional Boussinesq thermal convection equations in rotating spherical shells
was studied in [6] at weakly supercritical Rayleigh numbersR, moderate (10−3) and
low (10−4) Ekman numbers,E, and Prandtl numberσ = 1. The results presented
here extend the previous study and focus on the effect ofσ and R by analyzing
the efficiency of the methods for obtaining solutions atE = 10−4, σ = 0.1 and
low and high supercriticalR. In the first case (quasiperiodic solutions) the decrease
of one order of magnitude does not change the results significantly. In the second
case (spatio-temporal chaotic solutions) the differencesin the behavior of the semi-
implicit codes due to the different treatment of the Coriolis term disappear because
the integration is dominated by the nonlinear terms. As in [6], high order methods,
either with or without time step and order control, increasethe efficiency of the time
integrators and allow to obtain more accurate solutions.

1 Introduction

Thermal convection in rotating spherical geometries dominates the dynamics of sev-
eral astrophysical and geophysical phenomena such as the generation of the mag-
netic field exhibited by celestial bodies or the cloud patterns and the differential
rotation seen at the surface of the major planets.

There are several experimental and numerical difficulties in the study of thermal
convection in spherical geometry. In the first case, the radial gravity can be repro-
duced by means of either an electrostatic radial field or by the centrifugal force. In
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the second case non-stationary tridimensional waves ariseat the onset of convection
due to the boundary curvature, and thus finding a solution requires very high resolu-
tions. Frequently, as in [12], and [13], a two-dimensional annular geometry is used
to approximate the real problem.

Due to the increase of the computing power, many numerical papers, [8, 18, 4,
17] among others, most of them based on pseudo-spectral methods and second order
time integration, have been published. The most exhaustivetridimensional studies
consist of numerical evolutions of periodic, quasi-periodic, and even turbulent flows,
mainly with stress-free boundary conditions to avoid the formation of Ekman layers.
These boundary conditions are inappropriate for comparison with laboratory studies
and to model systems like the Earth’s outer core, where thin Ekman boundary-layers
exist near the rigid boundaries.

For a deeper understanding of the origin of the laminar flows and their depen-
dence on parameters, pseudoarclength continuation methods [15, 16], and the lin-
ear stability analysis of the time dependent solutions [11,7] have been successfully
applied thanks to the use of high-order time integration methods which provide ac-
curate enough solutions. On the other hand, high-order timeintegration can be also
useful for evolving turbulent flows efficiently.

The performance of several high order implicit-explicit (IMEX) schemes, in-
cluding those based on backward differentiation formulae (BDF), were exhaustively
studied in [2] for the linear advection-diffusion one-dimensional problem. A stabil-
ity analysis of the multistep methods up to fourth order werealso performed. In
that study the diffusive term is taken implicitly and the advection term explicitly.
For the IMEX-BDF schemes, they showed that larger time-steps are allowed for
the second order scheme when diffusion dominates the dynamics. In contrast, the
third and fourth-order schemes can take larger time-steps when the explicit advec-
tion term becomes relevant. In addition, and in contrast to the widely used second
order Crank-Nicolson and Adams-Bashforth scheme (CNAB2),the authors of [2]
argued that IMEX-BDF methods are useful for reducing the aliasing effects when
using pseudo-spectral methods [3], due to the strong damping of the high frequency
modes, which appear when computing the nonlinear terms. Other similar class of
IMEX methods with better stability regions are those based on Runge-Kutta (RK)
schemes [1]. However, when compared with the multistep BDF,RK-based meth-
ods would require one additional nonlinear evaluation for each stage. This is not
affordable in problems for which the evaluation of the nonlinear part is the most
demanding task.

The efficiency of different time integration methods to solve the thermal convec-
tion equations in rotating spherical shells was studied in [6]. The same IMEX-BDF
time integration pseudo-spectral codes, with the nonlinear terms of the equations
taken explicitly in order to avoid solving nonlinear equations at each time step, are
used in this study. The Coriolis term is treated either semi-implicitly or fully implic-
itly, giving rise to the different algorithms analyzed. Theuse of iterative methods
facilitates the implementation of a suitable order and timestepsize control.

Two periodic solutions, of differentE (the rest of parameters are the same) were
integrated in [6] to highlight the influence of the Ekman number. Extending the
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previous study, a periodic and a quasiperiodic solution, computed with differentσ
are integrated to address the Prandtl number influence. In addition, by only varying
the Rayleigh number, the efficiency of the time integration methods is studied when
considering a spatio-temporal chaotic solution.

The rest of the article is organized as follows. In Section 2,the formulation of the
problem and the spatial discretization of the equations areintroduced. In Section 3,
the time discretization schemes are described briefly. In Section 4 the differences
between the constant stepsize methods are shown, and the study of the implicit and
semi-implicit variable stepsize and variable order methods is reported. Finally, the
paper closes in Section 5 with a brief summary of the main conclusions.

2 Mathematical model and spatial discretization

The thermal convection of a spherical fluid shell differentially heated, rotating about
an axis of symmetry with constant angular velocityΩ = Ωk, and subject to radial
gravityg = −γr, whereγ is a constant, andr the position vector, is considered. The
mass, momentum and energy equations are written by using thesame formulation
and non-dimensional units as in [11]. The units are the gap width,d = ro−ri, for the
distance,ν2/γαd4 for the temperature, andd2/ν for the time,ν being the kinematic
viscosity,α the thermal expansion coefficient, andri andro the inner and outer radii,
respectively. The velocity fieldv is expressed in terms of toroidal,Ψ , and poloidal,
Φ, scalar potentialsv = ∇×(Ψr)+∇×∇×(Φr), andΘ = T −Tc is the temperature
perturbation from the conduction statev = 0, Tc(r) = T0 + Rη/σ(1−η)2r, with
r = ||r||2.

With the functionsX = (Ψ ,Φ,Θ) expanded in spherical harmonic series up to
degreeL, the equations written for their complex coefficients are

∂tΨm
l = DlΨm

l + 1
l(l+1)

[

2E−1
(

imΨ m
l − [QΦ]ml

)

− [r ·∇× (w×v)]ml
]

, (1)

∂tDlΦm
l = D2

l Φm
l −Θ m

l + 1
l(l+1)

[

2E−1
(

imDlΦm
l +[QΨ ]ml

)

+[r ·∇×∇× (w×v)]ml
]

, (2)

∂tΘ m
l = σ−1DlΘ m

l + σ−1l(l +1)Rη(1−η)−2r−3Φm
l − [(v ·∇)Θ ]ml , (3)

with boundary conditions

Ψm
l = Φm

l = ∂rΦm
l = Θ m

l = 0, (4)

corresponding to non-slip perfect thermally conducting boundaries, and wherew =
∇×v is the vorticity field.

The spherical harmonic coefficients of the operatorQ = Qu + Ql are

[Qu f ]ml = −l(l +2)cm
l+1D+

l+2 f m
l+1, [Ql f ]ml = −(l −1)(l +1)cm

l D+
1−l f m

l−1, (5)
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with D+
l = ∂r +

l
r
, cm

l =

(

l2−m2

4l2−1

)1/2

, and Dl = ∂ 2
rr +

2
r

∂r −
l(l +1)

r2 .

The governing parameters are the Rayleigh numberR, the Prandtl numberσ , the
Ekman numberE, and the radius ratioη . They are defined by

R =
γα∆T d4

κν
, E =

ν
Ωd2 , σ =

ν
κ

, η =
ri

ro
,

whereκ is the thermal diffusivity, and∆T the difference of temperature between
the inner and outer boundaries.

The coefficients of the nonlinear terms of equations (1-3) are obtained follow-
ing [8]. In the radial direction, a collocation method on a Gauss-Lobatto mesh of
Nr +1 points is employed (Nr −1 being the number of inner points). A large system
of N = (3L2 +6L+1)(Nr −1) ordinary differential equations must be advanced in
time.

3 Time integration methods

The time integration methods used in this paper were described in detail in [6] so
only the main ideas are exposed in the following. In order to simplify the notation,
equations (1-3) are written in the form

L0u̇ = L u +N (u),

whereu = (Ψm
l (ri),Φm

l (ri),Θ m
l (ri)), andL0 andL are linear operators includ-

ing the boundary conditions. The former is invertible, and the latter, for any of the
schemes used, includes the diffusive, the buoyancy, and part of the Coriolis terms to
be specified below. The operatorN , which will be treated explicitly in the IMEX-
BDF formulae, will always contain the nonlinear terms, and the rest of the Coriolis
terms.

The IMEX-BDF formulae mentioned before are related to the BDF [5]. They
obtainun+1 ≈ u(tn+1) on a given time leveltn+1, n = 0,1,2, . . . , from the previous
approximationsun− j, j = 0,1, . . . ,k−1, using the followingk-steps formula

(

I −
∆ tn

γ0(n)
L

−1
0 L

)

un+1 =
∆ tn

γ0(n)
L

−1
0 pn,k−1(tn+1)−

q̇0
n,k(tn+1)

l̇n,k(tn+1)
, (6)

whereq0
n,k(t) = qn,k(t)−un+1ln,k(t), beingqn,k the interpolating polynomial of de-

gree at mostk, such thatqn,k(tn− j) = un− j, for j = −1,0, . . . ,k − 1, andln,k the
polynomial of degree at mostk taking the value 1 attn+1, and 0 attn− j, for
j = 0,1, . . . ,k−1. Moreoverpn,k−1 is the interpolating polynomial of degree at most
k− 1, such thatpn,k−1(tn− j) = N (un− j), for j = 0,1, . . . ,k − 1, I is the identity
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operator, andγ0(n) = l̇n,k(tn+1)∆ tn, being∆ tn = tn+1− tn, n = 0,1,2, . . . , the time
step.

If the time step is constant, the IMEX-BDF formulae (6) reduces to

(

I −
∆ t
γ0

L
−1
0 L

)

un+1 =
k−1

∑
i=0

αi

γ0
un−i +

k−1

∑
i=0

βi∆ t
γ0

L
−1
0 N (un−i), (7)

where the coefficientsαi, β j andγ0 do not depend onn, and are listed, for instance,
in [15]. In this case the matrix of the system to be solved doesnot change withn.
On the other hand, changing the stepsize allows the use of formulas of different
orders (step numbers)k, while maintaining accuracy. Then the integration can be
started withk = 1 (and small∆ t0), when the lack of previously computed values
precludes the use of higher order formulas, and then increase the order (and the step
length) as the integration advances and previous approximationsun− j are available.
For the fixed-step-size codes, the starting valuesu j, j = 1, . . . ,k−1 are obtained by
time integration fromt j−1 to t j with a VSVO (variable step-size variable order) code
with sufficiently small tolerancesεa andεr, which are, respectively, the tolerances
below which the absolute and relative values of the local (time discretization) errors
are required. The local error control of the IMEX VSVO methods is performed as
usual, i.e. following [9]. If a time step is selected giving apoint outside the stability
region, the accumulation of local errors will enforce the method to select smaller
time steps to ensure the stability. Details on the strategy carried out to control the
stepsize and the order of the VSVO codes, such as the estimations of the local error
of thek-order formula, are outlined in [6].

Once the nonlinear terms are evaluated, equations (1-3) decouple for each az-
imuthal wave numberm, thus, at every time step,L + 1 linear systems of the form
HmUm = V m, m = 0, ...,L, have to be solved. The vectorsUm andV m contain,
respectively, the unknowns and the right hand side of the linear system derived from
the IMEX-BDF formulae (6) or (7), with azimuthal wave numberm. The dimen-
sion of the matricesHm is 6(L−m+1)(Nr−1) and its structure depends on which
terms of equations (1-3) are treated implicitly (see the Appendix A of [6] for further
details).

The inclusion of the diagonal parts of the Coriolis term containing imΨm
l and

imΦm
l in L , and ofQ in N , gives block-diagonal matricesHm, with blocks of di-

mension 6(Nr −1). The solution of these linear systems is performed by a direct LU
method. From now on, the time discretization with this treatment of the operators
will be called theQ-explicit method.

By addingQu or Qd (see Eq. 5) toL , the matricesHm become upper or lower
block-triangular matrices, respectively. They can be solved, with the same mem-
ory requirements and number of operations than theQ-explicit method, by using
backward or forward block substitution. In order to implement this possibility in a
symmetric way, the two options are used alternately, that is, one step is performed
with Qu implicit and Qd explicit, and vice-versa in the following step. From now
on, this time discretization will be called theQ-splitting method.
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By settingQ totally implicit the operatorN only includes the nonlinear terms,
and then the matricesHm become block-tridiagonal. From now on this method will
be called theQ-implicit method. A direct block method for solving these linear sys-
tems involves about three times the memory storage requiredfor solving the block-
diagonal systems, and at least three times the computational cost of performing the
LU decomposition. As the solution of the linear systems is not the most demanding
task to advance one time step, we decided to solve it iteratively without storing the
matrices to cope with higher resolutions, and to implement avariable size and order
version, which requires updating the LU factorizations. Iterative methods based on
Krylov techniques, can be used efficiently, if they are preconditioned with the block
diagonal matrix. We have chosen the GMRES method because it is suitable for non-
symmetric linear systems and it has good convergence properties [14]. The initial
approximation for solving the linear system is obtained by extrapolation from the
previous steps. The increase in the cost of solving the linear systems may be offset
by the increase of the time stepsize.

The integration with a constant time step can be unnecessarily expensive be-
cause the step must be short enough to cope with possible fasttransients. To avoid
this situation, a refined procedure is to use a VSVO method [9]. In the derivation
of the VSVO IMEX-BDF formula, the matrices of the linear systems depend on the
current time step. They can be solved efficiently, if a Krylovmethod with a precon-
ditioning matrix depending on a fixed time step∆ t∗ is used. When the convergence
of the iterative linear solver degrades doing more than 10 iterations, the precondi-
tioning matrix can be updated with the current time step instead of restarting. In the
case of the VSVO methods the tolerance for the GMRES residualis asked to be
two orders of magnitude lower than that required for the timeintegration. The rate
of convergence depends on the orderk and the time step. For example, when inte-
grating with low orderk = 2 it converges in about 6-10 iterations, while withk = 5
only 2 iterations are required. All the semi-implicit methods described before have
been implemented with constant time-step size, and with variable time-step size and
order using our own codes (except theQ-splitting VSVO method). From now on,
the VSVO implementations of theQ-explicit andQ-implicit methods will be called
Q-explicit VSVO andQ-implicit VSVO, respectively.

The last option considered is a fully implicit treatment of the nonlinear terms
with a VSVO formulation of the BDF. This leads to the solutionof a nonlinear
system of equations at each step. This solution is obtained by means of a Newton-
Krylov method using GMRES to solve the Newton correction equations with zero
initial seed, see [10] for further details. From now on this method will be called fully
implicit method. We will use the DLSODPK code of the ODEPACK package [10].
The linear systems to be solved in this case depend not only onthe current time step,
but also on the current solution. As before, they can be preconditioned by the block-
diagonal matrices computed with a fixed time step∆ t∗. If during the integration the
current time step is different from∆ t∗ by one order of magnitude the preconditioner
is recomputed with the current time step. As in the semi-implicit VSVO methods,
the tolerance imposed on the residuals depends on the tolerance imposed on the
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time integration. The cost of the nonlinear evaluations performed to approximate
the Jacobian matrix products degrade the performance of thefully implicit methods.

4 Results

To study the effect of the Prandtl numberσ and the Rayleigh numberR on the
efficiency of the time integration schemes presented in the previous section, we in-
tegrate three different cases withη = 0.35 andE = 10−4. The first one (caseS1) was
studied in [6] (there calledC2) and corresponds to a periodic traveling wave of wave
numberm = 7, computed atσ = 1 andR = 800000. In the second case (S2) we inte-
grate a quasiperiodic three frequency wave withm = 6 computed at smaller Prandtl
numberσ = 0.1 andR = 264000. On both casesR is slightly supercritical and the
solutions are quasi-geostrophic and symmetric with respect to the equator. Finally,
a highly supercritical spatio-temporal chaotic solution,computed withσ = 0.1 and
R = 2000000, is considered for the third case (S3). The numerical resolutions em-
ployed for theS1, S2 andS3 cases are,Nr = 48 andL = 63 (N = 577442 equations),
Nr = 32 andL = 54 (N = 281263 equations), andNr = 50 andL = 84 (N = 1083650
equations), respectively.

To make our comparisons the initial transient has been discarded, and all the
test runs are started with the same initial condition obtained after the solution has
smoothed. To obtain it, theQ-implicit VSVO method with very low tolerances was
used. Then the system (1-4) is evolved from the new initial condition to a final time
t f . In theS1 andS2 casest f = 0.1, while in theS3 caset f = 0.01.

To check the efficiency of the different schemes the relationbetween the relative
error, and the run time is studied. The former is defined as

ε(u) =
||u−ur||2
||ur||2

, (8)

whereu is the solution we want to check, andur is an accurate reference solution
obtained with theQ-implicit VSVO method. More precisely,ur is obtained with
tolerancesεa = εr equal to 10−13 in theS1 andS2 cases, and to 10−11 in theS3 case.
The decrease of the relative error (8) is achieved by decreasing the stepsize in the
case of fixed stepsize methods, or by decreasing the tolerances for the local errors
in the case of the VSVO methods.

For the constant time stepsize methods of orders 2 to 5 (except the Q-implicit
method for the sake of simplicity) the relative errorε(u) is plotted against the time
step in Figs. 1(a,c,e). The efficiency curves are shown in Figs. 1(b,d,f). In the latter,
ε(u) is plotted against the run time in seconds for the results of the VSVO codes to-
gether with the constant stepsizeQ-splitting method for comparison purposes. Plots
(a) and (b), (c) and (d), and (e) and (f), are for theS1, S2, andS3 cases, respectively.

As mentioned previously, the study of theS1 case (Figs.1(a) and (b)) was per-
formed in [6] so only a few words are commented here. For a given constant time
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Fig. 1 (a) The relative error,ε(u), plotted versus the time step∆t for constant time step integration,
ordersk from 2 to 5, and theS1 case. (c), (e) Same as (a), for theS2 andS3 cases, respectively. (b)
The relative error,ε(u), plotted versus the run time for theQ-splitting and VSVO methods, and the
S1 case. (d), (f) Same as (c), for theS2 andS3 cases, respectively. The symbols mean:Q-explicit
(+, solid line),Q-splitting (×, dotted line),Q-explicit VSVO (+, solid line),Q-implicit VSVO (∗,
dashed line), and DLSODPK (◦, dash-dotted line).

stepsize, theQ-explicit and theQ-splitting methods of all the orders have almost
the same computational cost, and therefore the higher ordermethods should be
preferred. In addition, theQ-splitting method has shown itself to be more stable,
allowing for larger time steps (see Fig.1(a)), and hence, better efficiency. For the
latter method, Fig. 1(b) shows that at approximatelyε(u) < 10−9, the orderk = 5
is the most efficient but ifε(u) > 10−9 the most efficient order is 4. The fully im-
plicit method using DLSODPK is always more expensive than theQ-implicit VSVO
methods because each iteration of the linear solver, and of the Newton’s method re-
quires an expensive evaluation of the non-linear terms. In all the results shown, it
takes between 1 and 3 Newton iterations, and for each of them 1or 2 GMRES itera-
tions. TheQ-explicit VSVO method is also less expensive than DLSODPK, except
for the higherε(u), for which the cost of the former increases due to a decrease of
the solver performance. The abrupt decrease of efficiency oftheQ-implicit VSVO
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method close toε(u) = 10−3 was related in [6] with the shape of the stability re-
gions of the BDF for constant stepsizes. A similar result wasfound in [2] in the
framework of the one dimensional linear advection-diffusion problem. When the
implicit term dominates (as occurs with theQ-implicit method at weak supercritical
conditions) second order IMEX-BDF schemes allow larger time-steps than those
of third or fourth order. The decrease of efficiency preventsthe Q-implicit VSVO
method from being as efficient as theQ-splitting method in the region of intermedi-
ate errors. However, for the latter, some previous experiments have to be performed
to determine the optimal time step.

The behavior of the methods for integrating theS2 case (Figs.1(c) and (d)) is
similar to that of theS1 case, despite they are less accurate. Although their Prandtl
numbers differ in one order of magnitude, the results seem reasonable because in
both cases the solutions are smooth functions of time and, inall the methods, the
terms of Eqs. (1-3) containing the Prandtl number are treated implicitly. However,
for a given order, the errorε(u) of the fixed step methods is almost two order of
magnitude greater in theS2 case. The same occurs for the VSVO methods. This
differences could be due toS2 being slightly more complicated, in the sense that it
has two additional frequencies. Nevertheless, accurate solutions withε(u) down to
10−11 can be obtained in a reasonable time.

As expected, the accuracy for integrating the spatio-temporal chaotic solution of
the S3 case drastically decreases with respect to the other cases.This decrease is
also due to the larger number of time steps needed by the methods to obtain the
solution at the desiredt f . This is shown in Figs.1(e) and (f) whereε(u) down to
10−5, and 10−9, can be obtained with the fixed step, or the VSVO methods, respec-
tively. Apart from the accuracy, the behavior of the methodsis clearly different to
that exhibited in the previous cases, at weakly supercritical regimes, where the Ek-
man number controls the dynamics. At highly supercriticalR, the Ekman number
plays minor role and the way the Coriolis term is treated becomes less important.
According to this, the results obtained with the fixed time step Q-explicit, and the
Q-splitting methods are nearly the same (Fig.1(e)), and the same occurs for the re-
sults of the VSVOQ-explicit andQ-implicit methods. Since the solution is strongly
nonlinear, the efficiency of the fully implicit VSVO method becomes comparable
to the semi-implicit VSVO methods, and better than the low order fixed step meth-
ods (Fig.1(f)). As commented in [6] this is because the fullyimplicit method allows
significantly larger time steps (nearly 3 times in this case), but which are compu-
tationally expensive. It is worth mentioning that in theS3 case the VSVO methods
obtain solutions up to four orders of magnitude more accurate than the fixed time
methods, while in the previous cases with the VSVO methods the improvement is of
two orders of magnitude. Despite these differences with respect toS1 andS2, in all
cases the largest attainable values of the fixed∆ t correspond to methods with order
higher than two, obtaining therefore more accurate solutions in less time. Again,
this behavior can be related with that observed in [2] for theone dimensional linear
advection-diffusion problem. In the regime where the explicit term starts to dom-
inate (and this occurs in theQ-explicit andQ-splitting methods for the casesS1,
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S2 and in theQ-implicit method for the caseS3), larger∆ t were obtained for the
IMEX-BDF schemes of orders 3 and 4 rather than for order 2.

5 Conclusions

In the time integration study [6] of the thermal convection in fast rotating fluid
spherical shells, the possibility of handling implicitly the Coriolis term, and even
the nonlinear term, thanks to the low memory requirements ofthe iterative Krylov
methods used to solve the linear systems, was shown. That study focused on the
influence of the Ekman number on the efficiency of the methods proposed. The
present study extends the previous one by analyzing the influence of the Prandtl and
the Rayleigh numbers.

The results presented here, computed at lowE = 10−4, show that the behavior
of the methods for integrating a weakly supercritical oscillatory type of solution
(periodicS1 or quasiperiodicS2) is very similar, despite their Prandtl number differ
in one order of magnitude. At this regime, the Ekman number plays a major role, and
a more implicit treatment of the Coriolis term becomes appropriate. In contrast, at
strongly supercritical regime (S3), an implicit treatment of the Coriolis term does not
improve the integration, reflecting that the Ekman number plays a minor role. The
solutions are obtained with less accuracy, reflecting theirspatio-temporal chaotic
character.

In all cases (S1, S2, andS3) shown here (and also in the cases of [6]), the imple-
mentation of high order methods does not reduce the efficiency of the time integra-
tors, and allows to obtain more accurate solutions. In addition, for theQ-splitting or
Q-explicit fixed-step methods the largest time-steps are obtained with order higher
than two, as occurs with the IMEX-BDF schemes applied in [2] to the one dimen-
sional linear advection-diffusion problem when the dominant term of the equation
is handled explicitly.

In practice the most efficient method depends strongly onR (also onE), but more
weakly onσ , at least in the oscillatory regime. It depends also on the errors accepted
for a solution, and on the type of solution. For instance, if one is just interested in
obtaining solutions by direct numerical simulations (DNS), the best choice is to
implement a fourth orderQ-splitting method, and performing some previous exper-
iments to determine the optimal time step. However, if the time integration is part
of a continuation process, and/or one is interested in calculating the stability of the
solutions, low errors must be requested to the time integration. Then theQ-implicit
VSVO method will probably be the most efficient option. Moreover, since the lower
run times correspond to theQ-implicit VSVO method with high tolerances, it might
also be useful to pass long uninteresting transients, wherehaving a control of the
time stepsize might be important.

The results presented in this paper suggest that IMEX methods could also be effi-
ciently used in other type of nonlinear problems with other spatial discretizations if
the stiff part can be included in the implicit term of the scheme, and the cost of solv-
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ing the corresponding linear systems, whatever their structure, becomes comparable
to the evaluation of the explicit part.
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