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Abstract

Numerical simulations of two-dimensional Boussinesq thermal convection in a long
cylindrical annulus with radial gravity and heating are used to study the influence
of the reflection and rotation symmetries of the system on the sequence of local and
global bifurcations leading to complex time dependent behaviour. From the results
of the linear stability analysis of symmetric periodic orbits, it is shown how, via
gluing bifurcations, some quasi-periodic flows recover, as sets, symmetries lost in pre-
vious bifurcations. It is also shown how the same mechanism gives rise to a tempo-
ral chaotic attractor consisting of random switches between the symmetry-conjugate
quasi-periodic orbits. At higher Rayleigh numbers, a chaotic-drifting behaviour is
found when a circle of invariant tori loses stability. In addition, detailed information
about the Floquet multipliers and eigenfuntions of the periodic orbits involved in this
dynamics is supplied.

PACS numbers: 47.20.ky, 47.52.+j, 47.27.Te
KEYWORDS: Bifurcations, O(2) symmetry, symmetric cycles, invariant tori, thermal
convection

1 Introduction

Despite the free thermal convection is one of the classical problems in the Fluid Mechanics,
it is difficult to find any paper detailing the transition between steady and quasi-periodic
or chaotic stable solutions when they arise after bifurcations of unstable periodic flows. In
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this paper we explain the origin of some stable quasi-periodic and temporal-chaotic flows
found in [Net et al., 2003], for a two-dimensional radial thermal convection problem of a
low Prandtl number fluid in a long cylindrical annulus. In order to identify the sequence
of bifurcations giving rise to these complex flows, we calculate and analyze the spectra of
the unstable branches of periodic orbits from which they bifurcate.

For the range of parameter values studied, the periodic solutions are direction revers-
ing travelling waves [Landsberg & Knobloch, 1991] (DRTWs), also known as pulsating
waves [Proctor & Weiss, 1993]. They arise from a Hopf bifurcation on a circle of steady
states, which breaks their reflection symmetry [Landsberg & Knobloch, 1991]. The so-
lutions vacillate azimuthally, but have no net drift over the whole period of oscillation.
However, it will be seen that subsequent bifurcations of the DRTWs lead to a wide va-
riety of non-drifting and drifting quasi-periodic flows, including three-frequency states.
The transition to turbulence through quasi-periodic states with three frequencies and the
phase locking phenomenon in thermal convection was already detected in early laboratory
experiments (see for instance [Maurer & Libchaber, 1979, 1980]).

The main objective of the paper is to explore in detail the dynamics and symmetries of
the invariant tori, densely filled by modulated direction reversing travelling waves without
net azimuthal drift (MDRTWs), to elucidate the mechanism that gives rise to chaotic
switching between symmetry-conjugate solutions, and the influence of the O(2) symmetry
on the subsequent azimuthally drifting dynamics.

The annular convection at low Prandtl numbers (σ = 0.025 in our calculations) is
the simplest model of equatorial convection in planetary interiors, but the results and
the numerical techniques of analysis presented in the paper are also applicable to other
problems equivariant under the same symmetry group. Such is the case of theynamics
that arises on a thin smetic-A liquid crystal film suspended in a small annulus, with an
electric field applied in the radial direction [Daya et al., 1998], or in two-dimensional
Rayleigh-Bénard convection in a periodic layer with broken mid plane symmetry, among
others.

The bifurcations and patterns that may be observed in nature are independent of the
source of instability (thermal, electrical, centrifugal, etc). They are determined qualita-
tively by mathematical properties, such as the geometry and the symmetries of the model.
The physics of a problem selects through the parameters a particular pattern and the
quantitative values of the variables. An important number of papers in different areas
dealing with gluing bifurcations of periodic orbits have appeared, mainly in Z2 equivari-
ant systems. Numerical examples, in Rayleigh-Bénard convection [Massaguer et al., 1990],
magnetohydrodynamics [Rucklidge & Matthews, 1996], reaction-diffusion processes [Ku-
ramoto & Koga, 1982], and even experimental examples in optothermal devices [Herrero
et al., 1998], or in electrohydrodynamic convection in a liquid crystal [Peacock & Mullin,
2001], among others, show transitions to preturbulent flows through gluing bifurcations of
periodic orbits. It is more difficult to find in the literature an accurate description of this
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dynamics for quasi-periodic solutions. Examples of this behaviour are found for a Kol-
mogorov flow in a system with D4 symmetry [Armbruster et al., 1996], or involving two
and three-tori for a periodically-forced Taylor-Couette system with Z2 symmetry [Lopez
& Marques, 2000]. We show that, in systems with O(2) symmetry, gluing bifurcations of
tori may lead to a figure-of-eight temporal-chaotic attractor, i.e., that pairs of tori belong-
ing to a continuous group orbit can behave as the attractors in systems with Z2 or D4

symmetries, because they remain reflection-invariant after a Neimark-Sacker bifurcation
of symmetric periodic orbits.

The paper is organized as follows. After the introduction and the statement of the
problem in Sec. 2, Sec. 3 is devoted to describe the bifurcation diagram of DRTWs. It seeks
to clarify the origin of the invariant tori (MDRTWs). In Sec. 4 their dynamics is studied.
Sec. 5 deals with the chaotic-drifting dynamics found far from the gluing bifurcations when
the invariant tori lose stability. Finally, the paper concludes in Sec. 6 with a summary and
discussion of the results. We also provide interested researchers with information about
the spectra of the circles of DRTWs involved in this dynamics.

2 Basic equations

We consider an annular section of a cylindrical annulus of gap width d ≡ ro − ri, where
ri and ro are the inner and outer radii, and radius ratio η ≡ ri/ro = 0.3. The inner
and outer side contours are maintained at constant temperatures Ti and To respectively,
with Ti > To, and for the velocity field no-slip lateral boundary conditions u = v = 0 on
r = ri, ro are taken. A constant gravity across the convective layer, g = −ger is imposed.

The Boussinesq approximation of the two-dimensional Navier-Stokes, mass conserva-
tion and energy equations are written, in nondimensional form, by using as units the
gap width, the temperature difference between the side boundaries, and the thermal dif-
fusion time d2/κ, where κ represents the thermal diffusivity. With the velocity field
u = f êθ +∇× (ψêz), the streamfunction formulation of the problem is

(∂t − σ∆̃)f = Pθ

[

∆ψ(
1

r
∂θψ)

]

, (1)

(∂t − σ∆)∆ψ =
σRa

r
∂θΘ+ (1− Pθ)J(ψ,∆ψ) + ∆̃f(

1

r
∂θψ)− f(

1

r
∂θ∆ψ), (2)

(∂t −∆)Θ = −
1

r2 ln η
∂θψ + J(ψ,Θ)− f(

1

r
∂θΘ), (3)

and the boundary conditions are f = ψ = ∂rψ = Θ = 0, on r = ri, ro.
The function f(t, r) is needed to guarantee the possible existence of an azimuthal

mean flow, if the azimuthal average of ψ(t, r, θ) is imposed to be zero by the homogeneous
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boundary conditions. According this formulation, the streamfunction is

Ψ(t, r, θ) = ψ(t, r, θ)−

∫ r

ri

f(t, r) dr,

and Θ = T − Tc means the perturbation of the conductive temperature Tc. Pθ is the
operator that averages in the azimuthal direction, ∆ is the horizontal Laplacian operator
in polar coordinates, J(g, h) = (∂rg∂θh − ∂rh∂θg)/r and ∆̃ = ∂r(∂r + 1/r). The nondi-
mensional parameters that appear in the equations are the Rayleigh and Prandtl numbers
defined by

Ra ≡
α∆Tgd3

κν
, σ ≡

ν

κ
.

For more information about the formulation of the problem see [Pino et al., 2000].
The above system is O(2) equivariant, i.e., equivariant under arbitrary azimuthal ro-

tations Rα, and reflections by any diameter θ = θ0, ζθ0 :

Rα : (f, ψ,Θ)(r, θ)→ (f, ψ,Θ)(r, θ + α)

ζθ0 : (f, ψ,Θ)(r, θ)→ (−f,−ψ,Θ)(r, 2θ0 − θ).

The equations are integrated numerically, mainly by using a fourth order semi-implicit
BDF-extrapolation time-stepping code. The fields (f, ψ,Θ) are expanded in Chebyshev
and Fourier polynomials in r and θ respectively. To study the dependence of the stable and
unstable periodic solutions on the Rayleigh number, two different continuation codes have
been written; one with respect to the physical parameter, and the other with respect to the
arc-length of the curve of solutions [Sánchez et al., 2004]. Notice that for this moderately
large system of equations standard techniques for ODEs do not work. To be sure that the
quasi-periodic and chaotic solutions are not spurious, they have been recalculated using
a time-splitting code, written in terms of the velocity field, (u, v). In this formulation,
a reflection symmetry means (u, v,Θ)(r, θ) → (u,−v,Θ)(r, 2θ0 − θ). The stability of the
orbits is studied by computing their Floquet multipliers (FM) with an Arnoldi method
or, if it is required due to the complexity of the spectrum, a more expensive subspace
iteration method.

As we will describe the solutions in terms of symmetries we introduce now some relevant
definitions. Two sets S (periodic orbits or tori in our case) are said to be τ -conjugate if they
are related by a linear transformation τ . In our geometry, the relationship between the
azimuthal Fourier coefficients, an and bn, of rotation-conjugate (Rα-conjugate) solutions,
when the rotation belongs to the group Z4 generated by Rπ/2, is bn = an exp (injπ/2),
j = 0, 1, 2, 3, and between a pair of reflection-conjugate solutions through a diameter θ = θ0

(ζθ0-conjugate), is bn = ān exp (−2inθ0), where the bar means complex-conjugation. In
this problem the phase θ0 is determined by the initial conditions, since they select the
azimuthal orientation of the patterns. A set S is said to be τ -invariant if τ(S) = S.
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3 Time periodic solutions

In this section we identify the sequence of local bifurcations of symmetric periodic orbits
leading to the MDRTWs of Sec. 4 for Ra > 18440.

The time dependence for the Rπ/2-invariant solutions (from now on, pure n = 4 so-
lutions) comes from a Hopf bifurcation of period T1 = 0.18, at Ra = 6897 [Net et al.,
2003]. The bifurcation breaks the reflection symmetries, ζθk

, of the steady solutions with
respect to the diameters θk = θ0 + kπ/4, with k = 0, 1, 2, 3. However, the periodic orbits
are symmetric, and in addition to the rotational symmetries, Rkπ/2,

(f, ψ,Θ)(t, r, θ) = (f, ψ,Θ)(t, r, θ + kπ/2),

they have the spatio-temporal symmetries

(f, ψ,Θ)(t, r, θ) = (−f,−ψ,Θ)(t+ T/2, r, 2θk − θ).

Their spatial symmetry group is Z4, but it isD4 if the spatio-temporal symmetries are con-
sidered. These orbits have an instantaneous mean azimuthal flow, f(t, r), which vanishes
when it is averaged in a whole temporal period.

The bifurcation diagram of Fig. 1 shows the branches of periodic orbits born from the
pure n = 4 DRTWs for a fixed azimuthal phase. Some of the growing modes remain very
small, therefore a weighted amplitude A =

∑

4

n=0
Wn|Θn(rp)|, of the first five azimuthal

Fourier coefficients, at the time at which the net mass flow

f(t) =
1

ro − ri

∫ ro

ri

f(t, r) dr

vanishes, is plotted. In the definition of A, rp means a fixed radial point, and the weights,
Wn, are selected to clearly distinguish the different branches. The stability of these
solutions is also analyzed. The number of FM outside the unit circle is indicated beside
each branch. In addition, the spectrum of every solution has a marginal real µ = 1
FM because of the rotational invariance of the system. The associated eigenfunction is
(0, ∂θψ, ∂θΘ) (see Fig. 2(a, b)).

At Ra = 10210 the pure n = 4 DRTWs lose stability in a subharmonic pitchfork
bifurcation of periodic orbits. The new branches are Rπ/2-conjugate. The bifurcated
solutions (from now on, pure n = 2 DRTWs) are Rπ-invariant, and maintain two spatio-
temporal symmetries. The change of symmetry can be observed in the snapshots of Fig.
3(a-h) (see figure caption for their meaning). On the pure n = 2 branch the four identical
pairs of vortices of the n = 4 branch become two couples of identical pairs of vortices.

At Ra = 10430, the n = 2 DRTWs lose stability in a second pitchfork bifurcation
that breaks the Rπ-symmetry by the growth of the azimuthal odd wave numbers, but
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keeps a spatio-temporal symmetry. Now, the branches born at the bifurcation point are
Rπ-conjugate (see Fig. 4(a-e)). For these solutions all the pairs of vortices are different.

A second pitchfork bifurcation on the already unstable n = 2 branch of DRTWs takes
places at Ra = 10784.9. The critical eigenfunction is shown in Fig. 5(a, b). On the new
branch of DRTWs, there is a Neimark-Sacker transition at Ra = 10790.6, (marked with
an asterisk in Fig. 1 and Fig. 6(a)) of very small imaginary part. To confirm that the
latter bifurcation cannot generate the dynamics of Sec. 4, we have estimated the second
critical frequency, computed from the critical complex FM µ1,2 = 0.99995± 0.01224i, and
the main frequency f1 = 6.922 of the periodic orbit at the bifurcation point. It gives
f2

c = 0.0135, which is almost two orders of magnitude lesser than the frequency f2 = 0.83
of the stable MDTRWs found at Ra = 18500.

The behaviour of the dominant |µ| < 1 FM near Ra = 10784.9 is sketched in Fig.
6(a-c), because it also provides the mechanism giving rise to the three-torus described in
the next two paragraphs. On the n = 2 branch at Ra = 10783.1 (empty circle (1) of
Fig. 6(a)) two complex-conjugate FM of diminishing frequency become real at µ = 0.994.
By increasing Ra one of them grows, and crosses the unit circle, while the other moves
back (Fig. 6(b)). The complex-conjugate pair crossing the unit circle, comes from the
collision at µ = 0.996 (empty circle (2) of Fig. 6(a)) of the real FM responsible of the
previous bifurcation, which was moving back along this branch, with another real FM,
which was growing (Fig. 6(c)). By slightly moving the radius ratio the pitchfork and the
Neimark-Sacker bifurcations would collapse in a triple +1 bifurcation.

The stable DRTWs, born at Ra = 10430, soon undergo a new bifurcation, marked with
a cross in Fig. 1, at Ra = 11401.0. This is the only real bifurcation that breaks all the
spatio-temporal symmetries. Near the transition, the dominant eigenvalues behave again
in the way described in the above paragraph; i.e., before the bifurcation, the imaginary part
of two complex-conjugate FM vanishes at Ra = 11399.1 with µ = 0.996, and only one of
them becomes unstable. We have observed that its corresponding eigenvector tends to the
azimuthal derivative of the function as it approaches the bifurcation point. In consequence
the Jordan block corresponding to the double +1 FM will be of order two, and azimuthal
drifting dynamics must be expected. The existence of drifting DRTWs is in agreement
with previous results that prove that a real bifurcation from a circle of symmetric orbits
can lead to drifting solutions [Rucklidge & Silver, 1998; Lamb & Melbourne, 1999; Lamb
et al., 2003] (see also references therein).

By increasing the parameter value, instead of a drifting DRTW, the time evolution
codes detect a stable three-frequency regime (T3) consisting of a modulated drifting
DRTW, i.e., they detect the expected rotating wave, but with an additional frequency.
The presence of this complex solution so close to the bifurcation point is due to the prox-
imity to a non-generic triple +1 bifurcation, i.e., the diagram of Fig. 6(a) also represents
the behaviour of the FM near the point marked with the cross. In this case, the first
bifurcation (cross) gives rise to the drift of the DRTW, and the second (now of a torus)
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to its modulation. The drifting DRTW only exists in a very narrow region between two
bifurcations.

The Fourier spectrum of the n = 4 azimuthal Fourier coefficient of one of the orbits
on the T

3 at Ra = 11430 is displayed in Fig. 7(a, b). The very small frequency f2 =
1.91 × 10−4 is the drifting frequency and f3 = 1.41 × 10−2 is the modulation frequency,
which produces a back and forth drift in the azimuthal direction. The highest frequency
f1 = 7.10 corresponds to the azimuthal initial vacillation of the DRTWs. With an annulus
of gap width d = 25 cm, the very low frequency, f2, represents that it would take 35 days
for a vortex to complete a turn around the annulus. When Ra is moved away from the
bifurcation point, f2 increases, although this frequency is locked in some intervals of the
parameter space, and MDRTWs arise. However, its modulation frequency f3 is again
almost two orders of magnitude lesser than 0.83. In addition, the modulated drifting
waves are lost near Ra = 11590.

At Ra = 17497, the n = 2 branch of DRTWs presents a new slightly subcritical
pitchfork bifurcation. The contour plots showing the loss of symmetry of the solutions on
the new Rπ-conjugate branches (labeled n = 1 in Fig. 1) can be seen in Fig. 8(a-e).

Following the n = 1 branch, at Ra = 18682, a pair of complex-conjugate FM crosses
the unit circle generating a branch of unstable quasi-periodic solutions, which, at higher
parameter values, gives rise to the global dynamics presented in Sec. 4. Stable MDRTWs
are found below the bifurcation point down to Ra ≈ 18440, with the time evolution codes.
We have compared the estimate of the second critical frequency f2

c = 0.88, computed,
as before, from the critical FM, µ1,2 = 0.837 ± 0.547i, and the main frequency f1 = 9.60
of the periodic orbit at the bifurcation point, with the frequency f2 = 0.83 of the stable
quasi-periodic orbit at Ra = 18500. Both frequencies are close enough to indicate that
this stable branch of tori is connected with the periodic orbits through the bifurcation at
Ra = 18682, which should be subcritical. To know exactly how the tori stabilize it would
be necessary to calculate unstable tori and their transversal stability.

To understand the global behaviour of Sec. 4 we include in this section the results of
the linear stability analysis of the pure n = 4 DRTWs. They show that there are two other
bifurcation points on this branch. At the first, which takes place at Ra = 14660, a double
real FM crosses the unit circle. It is straightforward to show that, since Rπ/2 commutes
with the differential of the Poincaré map, and the eigenfunction of Fig. 9(a, b) breaks all
the spatial rotation symmetries, by applying Rπ/2 a linearly independent eigenfunction
(Fig. 9(c, d)) is obtained. In consequence, the critical µ = +1 FM is generically forced to
have multiplicity two. These marginal modes keep a spatio-temporal symmetry, therefore
the new periodic orbits are DRTWs without spatial symmetries. The following bifurcation
on the n = 4 curve of solutions takes place at Ra = 15866, when the FM, which becomes
unstable at Ra = 10210, and remains close to the unit circle, moves back. From this point,
and at least up to Ra = 27000, there are not other bifurcations on the n = 4 branch.

It will be shown that only the pure n = 4 and the n = 1 branches are involved in the
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dynamics of the MDRTWs found for Ra > 18440. The leading FM in this range of Ra
can be seen in Tables 1 and 2, respectively.

4 Invariant tori: Symmetry properties and gluing bifurca-

tions

The scheme of Fig. 10 illustrates the sequence of direct and inverse period-doubling (PD),
saddle-node (SN), and gluing (GL) bifurcations leading to temporal chaotic attractors
(CH). It is based on the transients we have observed, and on the invariances of the tori
of Fig. 11(a,b) and Fig. 12. In these projections of the Poincaré sections, odd azimuthal
Fourier coefficients of the components of the velocity field are plotted. Thus, the unstable
pure n = 4 periodic solution is at the origin, and a Rπ-rotation can be directly observed
in the plots.

For Ra > 18440 (SN1), stable branches of tori bifurcated from the Rπ-conjugate n = 1
branches of DRTWs at Ra = 18682 are found. Fig. 11(c) shows the time evolution of the
phase of four Fourier coefficients, an and bn, of a trajectory on each tori of Fig. 11(a) at
Ra = 20000, after a time shift. Since f2 ¿ f1, the figure shows very clearly that the tori
are related by Rπ, i.e., that bn = an exp (inπ).

Fig. 11(d) displays the sum of the phases of same n in Fig. 11(c) versus time. They are
almost constant and equal to −2nθ0, with θ0 = −π/4 determined by the initial conditions.
Then bn = ān exp (inπ/2), and the tori are also ζ

−π/4-conjugate. This is so because they
come from pairs of Rπ-conjugate DRTWs, and each torus is ζπ/4-invariant. The Neimark-
Sacker bifurcation takes place from solutions that do not retain any spatial symmetry,
but are symmetric periodic orbits. In addition, the solutions do not drift along their
group orbit. So, it seems that the bifurcation theory for transitions from isolated S-cycles
[Kuznetsov, 1998] applies, and the emerging tori must be invariant under the reflection
that define the symmetric periodic orbit; for the initial condition of this case ζπ/4.

The ζπ/4-invariance of the tori allow them to be, at the same time, ζ
−π/4-conjugate

and Rπ-conjugate. In effect, if T1 and T2 are two rotation-conjugate tori, Rθ1(T1) = T2,
and, in addition, T1 is reflection-invariant, ζθ2(T1) = T1, then Rθ1ζθ2(T1) = T2. On the
other hand, Rθ1ζθ2 = ζθ3 with θ3 = (θ1 + 2θ2)/2, so they are ζθ3-conjugate, ζθ3(T1) = T2.
This result agree with our calculations. With an initial condition that gives θ2 = π/4 and
θ1 = π, θ3 = −π/4.

To find the symmetries of a torus we have plotted the distance

d = min
t
‖ x(t, rp)− τθx(0, rp) ‖2,

for a very long time sequence of a quasi-periodic orbit on the torus versus the angle of trans-
formation. In the definition of the d, x(t, rp) = (f(t, rp),<ψ1(t, rp),=ψ1(t, rp), ...,=ψ4(t, rp)),
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τθ means either a rotation or a reflection, and rp a fixed radial point. Fig. 13(a,b) displays
this distance d for a tori of Fig. 11(a), and the torus of Fig. 12(e), respectively. Red lines
refer to rotations (from 0 to 2π) and blue lines to reflections (from 0 to π). It is clear
from Fig. 13(a) that d ¿ 1 only for ζπ/4, while in Fig. 13(b) d ¿ 1 for ζπ/4, ζ−π/4 and
Rπ. The distance d depends on the length of the trajectory considered. From now on, we
will call small (big) tori to those that are invariant under a reflection (two reflections and
a π rotation).

The long period T2 of the quasi-periodic orbits and its maximum amplitude increase
with Ra until Ra ≈ 20000, where they seem to saturate. At Ra ≈ 20160 (PD1) the period
T2 doubles (see Fig. 11(b)), and at Ra ≈ 20170, the new tori lose stability in a saddle-
node bifurcation of tori (SN2). The transients show that, along the unstable branch
(SN2 to GL1), the internal loops of the pair of period-doubled small tori approach the
n = 1 periodic orbits from which they bifurcate. Simultaneously the external loops become
homoclinic to the origin with the standard return direction (see [Kuznetsov, 1998]), giving
rise to a stable temporal-chaotic flow in GL1.

The new solutions, which are represented in Fig. 12(a), remain nearly homoclinic to the
n = 4 DRTW forming a figure-of-eight chaotic attractor. When the trajectories approach
the origin, the n 6= 4̇ amplitudes tend to zero (see also Fig. 10 in [Net et al., 2003]).
Then it is clear that the director center of the quasi-periodic dynamics, presented below,
is the n = 4 DRTW. Long time sequences of these solutions and their Fourier spectra
(see Fig. 14(a, b)) reveal that the non-periodic behaviour consists of random switches
between conjugated tori. By increasing the control parameter following the branch CH,
the Poincaré sections vary continuously diminishing its randomness and becoming nearly
periodic, of long period 8T2 (Fig. 12(b,c)). These solutions disappear in another gluing
bifurcation involving hysteresis (point GL2).

In order to understand the connection between the chaotic behaviour and the quasi-
periodic dynamics found beyond GL2, it is easier to examine the sequence of bifurcations
from CB to GL2. By decreasing Ra from CB, the big torus of Fig. 12(j) becomes ho-
moclinic to the n = 4 DRTW near Ra = 21010 (GL4), forming a figure-of-eight Poincaré
section, approximated in Fig. 12(i). The long period of the quasi-periodic solutions has
the monotone dependence on the parameter characteristic of the saddle homoclinic bifur-
cations, tending to infinity at the bifurcation point.

We have seen that the big tori have a triple invariance as sets, i.e., they are ζπ/4, ζ−π/4
and Rπ-invariant. This happens because in the increasing direction of the parameter GL4
is a gluing bifurcation of a pair of ζ

−π/4-conjugate and Rπ-conjugate small tori (Fig. 12(h)),
which are ζπ/4-invariant. In consequence, the resulting big torus has to be invariant under
ζ
−π/4 and Rπ. In addition, Rπζ−π/4 = ζπ/4, so is also ζπ/4-invariant.

By decreasing Ra further, the small tori double their long period in PD2 (Fig. 12(g)).
Subsequently, very close to the period-doubling bifurcation, the new pair of tori of long
period near 2T2, glue in GL3 at Ra ≈ 20885, giving rise to the single big double-lobed
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tori of Fig. 12(f). As in the preceding case, by moving away from the critical parameter,
the long period starts to decrease from infinity in a monotone way to approximately 4T2.
The denser number of points near the origin in the Poincaré sections indicates that, very
close to the gluing bifurcation point, the trajectories of the quasi-periodic solutions spend
long times near the pure n = 4 DRTW, before escaping following its unstable manifold
and turning around the unstable n = 1 DRTWs placed inside the loops.

By decreasing Ra even more, the trajectories separate from the origin, while the in-
ternal loops contract, approaching the internal periodic orbits (Fig. 12(e)). This big torus
remains stable down to Ra ≈ 20211, where it loses stability in a subcritical pitchfork
bifurcation of tori (PF ). The branch going from PF to GL2 is unstable, but the shape
of the Poincaré section of the new solutions can be guessed from the transient of Fig.
12(d). It is obtained by perturbing the big stable torus in the region where symmetric
and asymmetric big tori coexist.

The shape of the asymmetric big tori and the inverse gluing bifurcation GL2 are
sketched in Fig. 15. It is a gluing bifurcation in the non-standard return direction (see
[Kuznetsov, 1998]). The new solution of long period 8T2 is very similar to the chaotic
solution shown in Fig. 12(c), but it must be pointed out that we have been unable to
capture a pure two-lobed torus with four loops on each side. Instead of a new period-
doubled solution, the chaotic attractor is found. The numerical results do not allow to
asses whether this happens because the random switches between reflection-conjugate
orbits start at this gluing connection, or simply because the torus is stable in a narrow
range very near the gluing point. However, the temporal series of solutions of the chaotic
branch, like that of Fig. 14(a), which show that sequences with more than four loops
around the n = 1 DRTWs do not exist, and even some experimental results [von Stamm
et al., 1996], support the first hypothesis.

5 Chaotic-drifting behaviour

Due to the invariance of the system by arbitrary rotations, any of the solutions in Fig.
12 has an uncountable number of other Rα-conjugate solutions that only differ in the
azimuthal orientation of the vortices; so, with arbitrary initial conditions, the solutions
we found are rotated in an arbitrary azimuthal phase.

At Ra = 22330 ± 0.15%, the big tori lose stability, and, from CB, a global chaotic-
drifting behaviour is found. Due to the existence of the group orbit, the trajectories
consist of transient excursions among the Rα-conjugate unstable tori. Finally, in the
range of parameters and initial conditions explored, they evolve to fast excursions among
Rα-conjugate chaotic sets of main azimuthal wave number n = 3 ([Net et al., 2003]).

Fig. 16 and 17 display two solutions at different Rayleigh numbers, starting with the
same initial condition. Near the bifurcation point, the trajectory spends a long time in
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the proximity of the torus before approaching another torus of the same group orbit, and,
finally, the n = 3 branch. In this range of parameters it is easy to check the Rα-conjugation
by computing the amplitude and phase of the bits of the temporal sequences of Fig. 16(a,
b) that correspond to the same torus, as we have done for the stable conjugate tori of Fig.
11. Here the difference between the mean phases would give the angle rotated along the
group orbit of big tori. However, the trajectories are extremely dependent on the initial
conditions.

By increasing Ra further, less time is spent near each torus, but a longer time travelling
among them. Fig. 17 is plotted at Ra = 27000 far from the point CB. It shows that after
a shorter permanence near the initial tori, the solution starts quick excursions, visiting
many tori randomly. By weakly perturbing the initial condition the qualitative dynamics
remains unperturbed. The Rα-conjugate tori can be seen as small tears in Fig. 17(c)
(enlargement of Fig. 17(b)), and as blue spots in the tridimensional phase map of Fig.
17(d). In this plot the XY plane contains the real and imaginary parts of the n = 4
azimuthal Fourier coefficient, so the red circle represents the group orbit of the n = 4
DRTW contained in v(Re(n = 1)) = 0. The chaotic orbits drift following this circle.
The amplitude of the large oscillations of Fig. 17(c) is also independent of the initial
conditions. The period of these oscillations gives an idea of the time it takes the system to
go around the group orbit when the trajectory spends short times near every torus. From
this long period it is possible to estimate a third frequency for the orbit, and consider it
a perturbation of a three-frequency quasi-periodic solution.

It is not possible to know, only by means of direct simulations, if for larger Ra the
system could stabilize in a solution consistent in permanent excursions among the Rα-
conjugate tori. For the highest parameters explored (Ra = 27000) we have found fast
excursions lasting more than 600 thermal time units. For mercury, this means four days
in a small annular domain of gap width d = 5 cm.

6 Discussion and conclusions

Fig. 1 contain some interesting results that deserve to be emphasized. The stability anal-
ysis of the symmetric periodic orbits reveals that the spatial symmetries of the orbits
seems to prevent the existence of bifurcations to travelling solutions. After the loss of all
the spatial symmetries, an extra marginal µ = +1 FM leads to drifting solutions. This
type of bifurcation is generic from a circle of DRTWs (cross in the bifurcation diagram).
From this point, we have found modulated rotating DRTWs because of the proximity to a
non-generic triple +1 bifurcation. In addition, it is important to notice that on the branch
of Z4 spatial symmetric orbits the double +1 bifurcation is also generic. By moving the
radius ratio, between η = 0.3 and η = 0.35, the subharmonic and the double +1 real
bifurcations overlap in a non-generic triple +1 bifurcation (or quadruple if the µ = +1
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FM due to the rotation invariance is taken into account).
The disappearance of the pure n = 2 periodic orbits before the tori appear causes that

only the n = 4 branch of DRTW and the n = 1 branch, from which the tori bifurcate,
contribute to the quasi-periodic dynamics at high Ra values. The periodic orbits are the
fixed points of the return-maps involved in the homoclinic connections.

We have found laminar (GL3, GL4) and chaotic gluing bifurcations (GL1, GL2). The
behaviour of the system at these points is in part determined by the FM of the n = 4 and
n = 1 DRTWs. Table 1 contains the five dominant FM of the spectra of the former. From
Ra = 15866 only a double real FM maintains its modulus µ1,2 ≈ +1.04 almost constant
and bigger than one, the next being also real. This means that the spectrum of one of
the organizing centers of all the gluing bifurcations found is simply of saddle type, with a
two-dimensional unstable manifold. The absence of curvature of the stable and unstable
directions of the chaotic attractor of Fig. 12(a) near the origin confirms that the origin
behaves as a saddle-node.

The spectra of Table 2 corresponds to the n = 1 DRTWs. From the bifurcation point
(Ra = 18682), the spectra have a real and two complex-conjugate FM with |µ| > 1.
Their moduli approach and cross at Ra ≈ 20173, where it is found that the quasi-periodic
dynamics is lost, and the temporal chaotic attractor becomes apparent. In addition, during
the chaotic behaviour (CH) they maintain their moduli almost fixed to |µ1,2,3| ≈ 1.072.
By increasing Ra further, the complex FM increase their moduli, moving away from the
unit circle, while the real one approaches it. In this numerical work, it is impossible
to state whether the three-dimensional unstable manifold of the n = 1 DRTWs with
repelling directions of the same strength is a necessary condition for the existence of
chaotic attractors from GL1 to GL2. In any case, we have supplied detailed information
about the spectra of the DRTWs involved in the gluing bifurcations. It can be useful to
bifurcation theory researchers in order to build reduced models with the same behaviour.

The global dynamics described in Sec. 5 has many common features with that described
in [Armbruster et al., 1996], in the sense that the saddle sets visited during the excursions
are related by the symmetries of the system, and consequently the amplitude of the ex-
cursions is small compared with those of large amplitude bursting dynamics [Moehlis &
Knobloch, 1998]. However, in our case, the system is O(2) equivariant and the group orbit
is continuous. To the present, it is almost impossible to calculate unstable quasi-periodic
solutions by continuation methods, and neither their unstable manifolds in moderately
high-dimensional systems. However, the chaotic-drifting behaviour appears after a change
of stability of the big tori. This change drives the dynamics along the circle of orbits.
The subsequent global dynamics could be reflected in the spectra of the periodic orbits.
We have checked that the |µ| < 1 third and fourth FM of the n = 4 DRTW cross at
Ra ≈ 21750 (see Table 1) and that, from this point, the eigenfunction corresponding to
the dominant stable direction resembles very much the azimuthal derivative. This means
that it has a large component tangent to the circle of periodic orbits. So, it seems that
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when a chaotic orbit moves away from a torus and approaches the n = 4 periodic orbit,
the azimuthal phase changes randomly, and a new torus of the group orbit is visited.
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Sánchez, J., Net, M., Garćıa-Archilla, B. & Simó, C. [2004] “Newton-Krylov continuation
of periodic orbits for Navier-Stokes flows,” J. Comput. Phys. 201(1), 13–33.

von Stamm, J., Gerdts, U., Buzug, T. & Pfister, G. [1996] “Symmetry breaking and period
doubling on a torus in the VLF regime in Taylor-Couette flow,” Phys. Rev. E 54(5),
4938–4957.

14



8 10 12 14 16 18 20
Ra (x 10 -3 )

0.08

0.10

0.12

0.14

A

n=4 

n=2

*

0

0

0

1 2

1

2

3

3-1

1

2
3

2

3

1

1

3-12

3

2

1 3 2

*1

10210

10430
10790.6

11401.0

10784.9 11258

18682

17497 17756

14660 15866

15871

n=1
2

Figure 1: Bifurcation diagram of periodic orbits (DRTWs). An amplitude A (see text)
versus the Rayleigh number is plotted. Solid and dashed lines mean stable and unstable
solutions, respectively. The labels beside the branches indicate the total number of FM
outside the unit circle. When there are complex pairs, the second number indicates how
many FM are real.

Figure 2: Contour plots of (a) the streamfunction Ψ, and (b) the temperature perturbation
Θ of the eigenfunction of the µ = 1 FM due to the invariance of the system by arbitrary
rotations. Pure n = 4 DRTW at Ra = 14660.
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Figure 3: Contour plots of Ψ, T , and Θ. (a, b, c) for the stable pure n = 4 DRTW at
Ra = 10200, and (f, g, h) for the stable subharmonic DRTW at Ra = 10225. (d, e) are,
respectively, those of Ψ, and Θ for the eigenfunction of critical µ = 1 FM at Ra = 10210.
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Figure 4: Contour plots of (a) Ψ, and (b) Θ of the eigenfunction of critical µ = 1 FM at
Ra = 10430. (c, d, e) are, respectively, those of the Ψ, T , and Θ for the new DRTW at
Ra = 10590.

Figure 5: Contour plots of (a) Ψ, and (b) Θ of the eigenfunction of critical µ = 1 FM at
Ra = 10784.9.
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Figure 6: (a) Sketch of the bifurcation diagram near the points Ra = 10784.9 and Ra =
11401.0 of Fig. 2. The close circle (R) and the asterisk (C) indicate real µ = 1 and complex
bifurcations, respectively. The empty circles denote the points of collision of the FM. (b,
c) Behaviour of the FM close to these bifurcations; (b) and (c) correspond to the collisions
at points (1) and (2) of (a), respectively.
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Figure 7: (a) Fourier spectrum of the modulated drifting DRTW found for Ra & 11401.0,
and (b) detail of (a) near the origin showing the low frequencies.
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Figure 8: Contour plots of (a) Ψ, and (b) Θ of the eigenfunction of critical µ = 1 FM at
Ra = 17497. (c, d, e) are, respectively, those of Ψ, T , and Θ for the n = 1 DRTW at
Ra = 17800.

Figure 9: Contour plots of (a, c) Ψ, and (b, d) Θ of the eigenfunctions of the critical
double µ = 1 FM at Ra = 14660.
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Figure 10: Schematic bifurcation diagram illustrating the sequence of bifurcations of tori
leading to chaotic-drifting behaviour. Solid and dashed lines mean stable and unstable
solutions, respectively. The labels PO and QPO indicate periodic and quasi-periodic or-
bits. The points SN , PF , PD and GL mean, respectively, saddle-node, pitchfork, period-
doubling and gluing bifurcations, and CB chaotic-drifting behaviour. Local (PF, PD, SN)
and global (GL,CB) bifurcations are indicated with closed and open circles, respectively.
CH indicates the temporal chaotic solutions.
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Figure 11: (a) Projections of the Poincaré section of two pairs of stable Rπ-conjugate tori
at Rayleigh numbers Ra = 18500 and Ra = 20000. They display the real part of the
azimuthal Fourier coefficients n = 3 of v versus the n = 1 of u, both at a fixed radial
point. (b) The same projection for a pair with double long period at Ra = 20160. (c)
Phases of the n = 1, .., 4 Fourier coefficients of v of two conjugated tori versus time. (d)
Sum of the phases of the Fourier coefficients with same n.
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Figure 13: Distance d versus the angle of transformation, θ, for (a) a small torus at
Ra = 20000, and (b) a big torus at Ra = 20500. Rotations and reflections are plotted in
red and blue lines respectively.
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Figure 15: Sketch of the homoclinic connection on the unstable branch of the big asym-
metric double-lobed tori.
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Figure 16: Time series at a fixed radial point of (a) the real part of the n = 1 Fourier
coefficient of u, and (b) the real part of the n = 4 Fourier coefficient of v. Ra = 22410.
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Figure 17: Time series at a fixed radial point of (a) the real part of the n = 1 Fourier
coefficient of u, and (b) the real part of the n = 4 Fourier coefficient of v. (c) Detail of (b)
displaying the fast excursions among Rα-conjugate tori at Ra = 27000. (d) Tridimensional
phase map showing the group orbit of the n = 4 DRTW (red line), and a chaotic-drifting
orbit (blue line).
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Table 1: Evolution of the first five FM on the n = 4 branch of Fig. 1. The marginal µ = 1
FM due to the invariance of the system by rotation is not tabulated.
Ra µ1 µ2 µ3 µ4 µ5

10100 0.99894 0.94876+0.11459i 0.94876-0.11459i 0.94876+0.11459i 0.94876-0.11459i
10300 1.00084 0.94972+0.11241i 0.94972-0.11241i 0.94972+0.11241i 0.94972-0.11241i
11300 1.00829 0.95315+0.09829i 0.95315-0.09829i 0.95315+0.09829i 0.95315-0.09829i
12300 1.01234 0.95471+0.07854i 0.95471-0.07854i 0.95471+0.07854i 0.95471-0.07854i
13300 1.01300 0.95503+0.05017i 0.95503-0.05017i 0.95503+0.05017i 0.95503-0.05017i
14000 1.01148 0.95492+0.00789i 0.95492-0.00789i 0.95490+0.00780i 0.95490-0.00780i
14300 1.01033 0.98535 0.98535 0.94073 0.92451
14600 1.00891 0.99803 0.99803 0.94102 0.91189
14660 1.00856 1.00000 1.00000 0.94108 0.90980
14700 1.00837 1.00132 1.00132 0.94112 0.90856
15100 1.01216 1.01216 1.00592 0.94149 0.89815
15800 1.02529 1.02529 1.00057 0.94209 0.88669
15900 1.02677 1.02677 0.99970 0.94217 0.88559
16900 1.03730 1.03730 0.98996 0.94291 0.87915
17900 1.04247 1.04247 0.97907 0.94355 0.87796
18900 1.04414 1.04414 0.96831 0.94408 0.87818
20000 1.04352 1.04352 0.95788 0.94457 0.87730
20060 1.04344 1.04344 0.95737 0.94460 0.87718
20150 1.04331 1.04331 0.95661 0.94463 0.87699
20200 1.04323 1.04323 0.95619 0.94465 0.87687
20250 1.04315 1.04315 0.95578 0.94467 0.87675
20850 1.04204 1.04204 0.95116 0.94489 0.87479
20900 1.04194 1.04194 0.95080 0.94491 0.87459
20950 1.04183 1.04183 0.95045 0.94493 0.87438
21000 1.04172 1.04172 0.95010 0.94494 0.87416
21030 1.04166 1.04166 0.94989 0.94495 0.87403
21510 1.04054 1.04054 0.94671 0.94511 0.87180
21750 1.03993 1.03993 0.94523 0.94518 0.87013
21790 1.03982 1.03982 0.94519 0.94499 0.86987
21990 1.03929 1.03929 0.94525 0.94381 0.86854
22300 1.03843 1.03843 0.94533 0.94208 0.86630
22350 1.03829 1.03829 0.94534 0.94181 0.86592
22520 1.03780 1.03780 0.94539 0.94090 0.86459
22920 1.03660 1.03660 0.94548 0.93886 0.86123
23320 1.03534 1.03534 0.94556 0.93693 0.85758
23920 1.03335 1.03335 0.94568 0.93422 0.85163
24500 1.03133 1.03133 0.94577 0.93176 0.84542
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Table 2: Evolution of the first five FM on the n = 1 branch that starts at Ra = 17497
in Fig. 1. The marginal µ = 1 FM due to the invariance of the system by rotation is not
tabulated.
Ra µ1 µ2 µ3 µ4 µ5

17480 1.15244 0.99919 0.94891 0.91565 0.88025+0.21271i
17550 1.14243 0.99467 0.94821 0.87802+0.21433i 0.87802-0.21433i
18240 1.11183 0.98425 0.81693+0.50851i 0.81693-0.50851i 0.94870
18500 1.10439 0.82949+0.53328i 0.82949-0.53328i 0.98211 0.94889
18700 1.09919 0.83767+0.54846i 0.83767-0.54846i 0.98045 0.94902
19260 1.08677 0.85616+0.58034i 0.85616-0.58034i 0.97489 0.94936
19980 1.07522 0.87379+0.60971i 0.87379-0.60971i 0.96626 0.94984
20060 1.07420 0.87547+0.61260i 0.87547-0.61260i 0.96532 0.94989
20160 1.07298 0.87750+0.61613i 0.87750-0.61613i 0.96417 0.94996
20180 0.87790+0.61683i 0.87790-0.61683i 1.07274 0.96394 0.94997
20240 0.87908+0.61891i 0.87908-0.61891i 1.07205 0.96327 0.95002
20400 0.88215+0.62437i 0.88215-0.62437i 1.07029 0.96158 0.95013
20580 0.88548+0.63038i 0.88548-0.63038i 1.06844 0.95982 0.95025
20820 0.88979+0.63817i 0.88979-0.63817i 1.06611 0.95777 0.95042
20980 0.89263+0.64323i 0.89263-0.64323i 1.06460 0.95657 0.95054
21060 0.89404+0.64571i 0.89404-0.64571i 1.06384 0.95602 0.95059
21200 0.89653+0.64998i 0.89653-0.64998i 1.06249 0.95512 0.95069
21700 0.90554+0.66411i 0.90554-0.66411i 1.05703 0.95256 0.95107
22000 0.91100+0.67161i 0.91100-0.67161i 1.05284 0.95162 0.95132
22200 0.91453+0.67618i 0.91453-0.67618i 1.04948 0.95151 0.95143
22300 0.91624+0.67835i 0.91624-0.67835i 1.04758 0.95161 0.95153
22400 0.91788+0.68046i 0.91788-0.68046i 1.04552 0.95179 0.95172
22500 0.91945+0.68251i 0.91945-0.68251i 1.04328 0.95223 0.95184
22700 0.92229+0.68652i 0.92229-0.68652i 1.03816 0.95371 0.95212
23000 0.92560+0.69258i 0.92560-0.69258i 1.02850 0.95752 0.95269
23400 0.92781+0.70161i 0.92781-0.70161i 1.01000 0.96425 0.95416
23600 0.92834+0.70671i 0.92834-0.70671i 0.99692 0.96673 0.95579
23800 0.92936+0.71181i 0.92936-0.71181i 0.97912 0.96724 0.96006
23900 0.93034+0.71413i 0.93034-0.71413i 0.96666 0.96587+0.00701i 0.96587-0.00701i
24100 0.93343+0.71787i 0.93343-0.71787i 0.96449 0.95809+0.01553i 0.95809-0.01553i
24500 0.94257+0.72038i 0.94257-0.72038i 0.96524 0.94352+0.01394i 0.94352-0.01394i
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