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Abstract

The application of the multiple shooting method to the continuation of periodic
orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear
systems which appear in the application of Newton’s method is presented. It is based
on the knowledge of invariant subspaces of the Jacobians at nearby solutions. The
possibility of speeding up the process by using parallelism is studied for the thermal
convection of a binary mixture of fluids in a rectangular domain, with positive results.
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1 Introduction

Continuation methods have become a basic tool in the numerical analysis of nonlinear
dynamical systems depending on parameters, since their introduction in the 1960s in
several different fields. Designed in principle for the computation of fixed points, they
are now also used for the study of other invariant manifolds, for instance periodic orbits
or connecting manifolds, and for the computation of loci of bifurcations (saddle-node,
Hopf, etc.) by using extended systems. Different implementations of these tools are
described in several textbooks and lecture notes [Rheinboldt, 1986; Keller, 1987; Simó,
1990; Allgower & Georg, 1990; Seydel, 1994; Kuznetsov, 1998; Govaerts, 2000; Doedel,
2007], and related continuation and bifurcation software packages, such as AUTO [Doedel,
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1986], PITCON [Rheinboldt & Burkardt, 1983], DsTool [Guckenheimer et al., 1995], CON-
TENT [Kuznetsov & Levitin, 1996], Multifario [Henderson, 2002] (multi-parameter con-
tinuation), MatCont [Dhooge et al., 2003], are available.

In a continuation process, most of the computing time is spent in numerical linear
algebra calculations. Mainly in solving linear systems of equations at Newton’s iterations,
and in the computation of eigenvalues and eigenvectors in the study of the stability of
the solutions and in the search of new branches of solutions at bifurcation points. Direct
methods are employed for low-dimensional systems. The extension to high-dimensional
problems, most of them coming from the discretization of partial differential equations,
is not trivial. The main obstacle is, precisely, the implementation of the numerical linear
algebra. In many cases the matrices are not directly available but only their actions. In
theses case matrix-free methods are required. Methods requiring the transpose of a linear
operator might be useless, because it is possible that neither the matrix of the operator
nor the action by its transposed be available, unless also the adjoint operator can be
discretized [Sánchez et al., 2006]. An example is provided by the computation of periodic
orbits. The Jacobian of the Poincaré map is a full matrix. It might be impossible to store
it if the dimension of the system is large, but its action can be computed by integrating a
system of twice the original dimension of the system.

The development of modern linear algebra techniques during the 1980s and 1990s, in
many cases based on Krylov or Arnoldi methods [Saad, 1992; 1996], has allowed the study
of large-scale systems; many of them dealing with the computation of steady states in
fluid dynamics or reaction-diffusion problems. Inexact Newton-Krylov methods [Dembo
et al., 1982] are used to find the fixed points, and subspace iteration or Arnoldi methods
to study their stability (see [Edwards et al., 1994; Böhmer et al., 2000; Lopez et al., 2001]
among many others). One of the main difficulties is to achieve a fast convergence of the
linear solvers; in many cases the Generalized Minimal Residual Method, GMRES [Saad
& Schultz, 1986]. To accelerate them, some kind of preconditioning is frequently used.
In the case of discretizations by finite differences, finite volumes, or finite elements, the
use of incomplete LU decompositions usually provides efficient preconditioners, because
of the sparsity of the matrices involved (see [Saad, 1994; Molemaker & Dijkstra, 2000;
Sánchez et al., 2002] to mention only a few). For spectral discretizations of incompressible
fluid problems, the use of the Stokes operator as preconditioner is suggested in [Edwards
et al., 1994]. When a pseudo-spectral method is employed, the preconditioners based on
discretizations by finite differences or finite elements, on the same mesh, are a very efficient
possibility as it is shown in [Canuto et al., 2007]. To summarize, it can be stated that
the continuation of steady solutions and its bifurcation loci of large-scale systems has now
become a known tool among the scientific computing community. As far as we know,
the only available software package is LOCA [Salinger et al., 2002], which allows tracking
steady solutions, pitchfork and Hopf bifurcations, and a more specific phase transition
tracking.
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The continuation of periodic orbits in large-scale dissipative systems has only been
tackled recently by Newton-Picard algorithms [Lust et al., 1998], implemented in the
package PDECONT, limited memory Broyden methods [van Noorden et al., 2004], and
Newton-Krylov methods [Sánchez et al., 2004]. In this case the matrices are always dense,
independently of the discretization method used for the governing partial differential equa-
tions. As far as we know, there has been no attempt to develop specific preconditioners
for this kind of computations.

A new numerical algorithm for the continuation of periodic orbits of high-dimensional
dissipative dynamical systems, using multiple shooting and parallelism, is presented in
this article. The equations of the multiple shooting are solved by Newton-Krylov meth-
ods, but it will be seen that a direct application, with each partial shoot computed in a
different processor does not provide an important speedup. To achieve a linear speedup
some kind of preconditioning for the linear systems must be used. We show how a pre-
conditioner can be constructed from the information on the stability of nearby periodic
orbits. This information is available from the continuation and bifurcation analysis, since
the stability is computed frequently. Therefore the preconditioner can be obtained at a
low extra cost. The codes can be designed so that its computation does not interfere with
that of the periodic orbits. Two implementations are suggested, although other ways are
possible. We focus on the problem of accelerating the computation of the periodic orbits.
The parallelization of the computation of the stability and the preconditioner, which is
straightforward, is not considered here.

The idea of using the information on the stability to accelerate the convergence of
variants of the Picard iteration was described in [Shroff & Keller, 1993], for the case of
fixed points, and in [Lust et al., 1998] for the computation of periodic orbits. We employ
this information for preconditioning the linear systems in the Newton’s iterations. The
preconditioner described here was used in [Erhel et al., 1996] to accelerate the convergence
of the restarted version of GMRES [Saad & Schultz, 1986] (GMRES(M)), in order to
make its convergence closer to that of the full version. The approximations to the partial
Schur decompositions were obtained after each cycle of the restarted GMRES. Our case
is different since this information is obtained from the calculation of the stability of a
previous periodic solution, which is useful by itself. Moreover, the number of iterations is
so small that, in almost all cases, the GMRES solver ends before restarting.

More recently, similar ideas based on invariant subspaces have been applied. In [Parks
et al., 2006], sequences of linear systems are considered, with small differences from one
to the next. They use the information of the Krylov subspace generated during the
solution of a linear system to preconditioning the next. The authors refer to this process
as Krylov subspace recycling. In [Carpentieri et al., 2007], an initial preconditioner, used
as the smoother in the framework of an algebraic multigrid solver, is improved by using
information on invariant subspaces of the preconditioned system.

The test problem shows that linear speedups are attainable very efficiently for a mod-
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erate number of intermediate sections, m. We explain why the method is efficient if
m is not too large. The message passing library MPI [Message Passing Forum, 1994]
has been used, having in mind distributed memory machines, although codes using this
method could also be run very efficiently on the emerging computer architectures, based
on shared-memory multi-core processors, using MPI or OpenMP [Chapman et al., 2007],
provided the memory access does not become a serious bottleneck.

The layout of the paper is as follows, Sec. 2 describes the multiple shooting algorithm,
in Sec. 3 we recall some results on the cyclic matrices of the linear systems which appear
in this study, and on their spectra. In Sec. 4 the preconditioner, and different ways of
obtaining it are described. Section 5 describes the test problem employed to show the
benefits of preconditioning, and what happens if no preconditioner is used. The results
for the preconditioned computations are described in Sec. 6. Finally, the paper closes, in
Sec. 7, with further comments, a summary of the results, and a brief description of some
possible extensions.

2 Multiple Shooting

Consider a system of autonomous differential equations

ẋ = f(x, λ), (1)

(x, λ) ∈ U×I ⊂ R
n+1, depending on a single parameter λ, with I an open interval. Suppose

that (1) has periodic orbits for λ ∈ I, and that Πi, i = 1, · · · ,m, are m hyperplanes, which
intersect transversally an initial periodic orbit x0(t). Let x0

i ∈ Πi be the intersections, Ui an
open neighborhood of x0

i in Πi, Pi : Ui × I ⊂ Πi × I → Πi+1 (with Πm+1 = Π1) the partial
Poincaré maps from Ui to Πi+1 (see Fig. 1), and P : U1×I ⊂ Π1×I → Π1 the full Poincaré
map. It is clear that P (x1, λ) = (Pm ◦ Pm−1 ◦ · · · ◦ P1)(x1, λ) in a neighborhood of x0

1,
and that DxP (x1, λ) = DxPm(xm, λ)DxPm−1(xm−1, λ) · · ·DxP1(x1, λ), if xi+1 = Pi(xi, λ),
i = 1, · · · ,m−1. We also define X = (x1, · · · , xm) ∈ R

mn, and the maps P, and G = I−P
from U1 × · · · × Um × I to Π1 × · · · × Πm, as

P(X,λ) = (Pm(xm, λ), P1(x1, λ), · · · , Pm−1(xm−1, λ)),

and

G(X,λ) = X − P(X,λ) = (x1 − Pm(xm, λ), x2 − P1(x1, λ), · · · , xm − Pm−1(xm−1, λ)).

The points x1, · · · , xm are on a periodic orbit if

G(X,λ) = 0. (2)
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It must be noticed that each xi in Eq. (2) is parameterized by n−1 coordinates because it
lies on the known hyperplane Πi, and the same holds for the Pi(xi, λ). Instead of working
with the maps Pi defined from Πi to Πi+1, we work with P̄i defined from a reference
hyperplane Π̄i to another, Π̄i+1 as depicted in Fig. 2. The maps P̄i(xi, λ) are defined as
P̄i(xi, λ) = Ri+1(Pi(R

−1
i (x̄i), λ)), Ri and Ri+1 being the orthogonal projectors from Πi

and Πi+1 onto Π̄i and Π̄i+1, respectively. The hyperplanes Π̄i have equations xki
= 0, ki

being the index of the largest component of the vector orthogonal to Πi. The action of
the Jacobian of P̄i can be trivially computed from that of Pi by applying the chain rule
to the definition of P̄i.

If λ is fixed, Eq. (2) completely determines the intersections of the periodic orbit with
the hyperplanes. The period of the orbit is obtained as a byproduct; if xi are the solutions
of (2), and Ti is the integration time from xi to Pi(xi, λ), then the period of the orbit is
T =

∑m
i=1 Ti. If, as in the example in Sect. 5, the time integrator is a multistep one, Ti and

Pi(xi, λ) can be computed by interpolation once the hyperplane Πi+1 has been crossed.
In the context of a continuation method, (2) is complemented by an equation of the

form
U⊤(X −X0) + uλ(λ− λ0) = 0, (3)

(X0, λ0) being a prediction of a new point on the curve of solutions, parametrized, for in-
stance, by an approximation to its arclength (pseudo-arclength continuation), and (U, uλ) =
(u1, · · · , um, uλ) is taken such that Eq. (3) defines a hyperplane, which intersects transver-
sally the curve of solutions (for instance, a prediction of the tangent to the curve). Then
the system (2-3) determines locally a unique new solution pair (X,λ). This is the system
which defines the multiple shooting method in a continuation context. A particular case
of interest corresponds to the selection U = 0 and uλ = 1; it fixes the parameter, and
gives rise to parameter continuation, which can be used away from turning points.

To solve the system (2-3) by a Newton-Krylov method, the action by its Jacobian

(

I −DXP −DλP
U⊤ uλ

)

=























I . . . . . . 0 −Am −bm
−A1

. . . 0 −b1
0

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −Am−1 I −bm−1

u⊤1 . . . u⊤m−2 u⊤m−1 u⊤m uλ























, (4)

with Ai = DxPi(xi, λ) and bi = DλPi(xi, λ), is required. For instance, the action of
I −DXP(X,λ) on a vector V = (v1, · · · , vm) is

(v1 −DxPm(xm, λ)vm, v2 −DxP1(x1, λ)v1, · · · , vm −DxPm−1(xm−1, λ)vm−1).
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The computation of P(X,λ) involves the time integration of (1) with m initial conditions,
x(0) = xi, which can be done in parallel. The calculation of DP(X,λ)(V, µ) is also fully
parallelizable, and involves the time integration of the system of first variational equations

v̇ = Dxf(x, λ)v +Dλf(x, λ)µ, (5)

with initial conditions v(0) = vi, together with the original system (1), with x(0) = xi.
In the case of parameter continuation the linear systems to be solved have matrices of

the form
(

I −DXP 0
0 1

)

, (6)

because we fix λ to the predicted value, the term Dλf(x, λ)µ is not included in the inte-
gration of (5), and we do not allow increments in λ during Newton’s method.

For low-dimensional systems, and not very unstable periodic orbits, it is common to
solve the systems with matrix I −DXP by a condensation process [Ascher et al., 1995].
It requires to form the product DP (x1, λ) = DPm(xm, λ)DPm−1(xm−1, λ) · · ·DP1(x1, λ),
which is computed with each matrix DPi(xi, λ) being calculated on a different processor.
Then Newton’s method can be applied to obtain x1. For large-scale problems the only tools
available are the computation of the vectors P(X,λ) and DP(X,λ)(V, µ). The matrices
DPi(xi, λ) are never computed explicitly, and it can be even impossible to store them.
Therefore, as far as we know, there is no way to extend the method to high-dimensional
systems.

When using multiple shooting in parallel, the CPU times spent in the integration
of equations (1) or (5), from each Poincaré section to the next, must be essentially the
same to avoid regions at which the code behaves as serial. This synchronization can be
accomplished by a careful selection of the sections, which can be changed adaptively during
the continuation process. In our test problem, we use a fixed time step integrator, except
for a very few initial steps. Then the CPU time it takes to compute any integration is
proportional to the integration time interval. Therefore the hyperplanes have been selected
to be normal to an initial periodic orbit, and at equally spaced times. Changing them
involves the integration of a periodic orbit during its period. If it is possible, the first
hyperplane can be kept fixed to have consistent outputs.

3 Block Cyclic Matrices

In this section some results for block cyclic matrices are recalled. They state the relation-
ship between the eigenpairs of DxP (x1, λ) and those of DXG(X,λ), and provide a way
to obtain an invariant subspace of DXG(X,λ) if an invariant subspace of DxP (x1, λ) is
known. These results will be used in the next sections.
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Consider the matrices

A =



















0 . . . . . . 0 Am

A1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 Am−1 0



















,

and A = AmAm−1 · · ·A1, with A ∈ R
mn×mn, and Ai ∈ R

n×n. The matrix A is said to have
a block cyclic structure. The next results establish the relation between the eigenpairs of
A and A, and a way to obtain an orthonormal basis of an invariant subspace of A from a
partial periodic Schur decomposition of A. Their proofs are straightforward.

Proposition 1 If A and A are defined as above then

a) if (µ, V ) is an eigenpair of A, with µ ∈ C, and V = (v1, · · · , vm)⊤ with vi ∈ C
n

(i = 1, · · · ,m), then (µm, v1) is an eigenpair of A.

b) if (λ, u1) is an eigenpair of A, with λ ∈ C and u1 ∈ C
n, and if µm = λ, then (µ, V ),

with V = (µm−1u1, µ
m−2u2, · · · , µum−1, um)⊤, and ui+1 = Aiui (i = 1, · · · ,m− 1),

is an eigenpair of A.

This result states that the eigenvalues of A are on circles centered at the origin, and then,
those of I − A on circles centered at +1.

Proposition 2 Consider now a partial periodic Schur decomposition of A = AmAm−1 · · ·A1.
Let Q1, · · · , Qm ∈ R

n×k be matrices such that Q⊤
i Qi = Ik (Ik ∈ R

k×k being the identity
matrix of dimension k < n), R1, · · · , Rm−1, Rm ∈ R

k×k, the first m− 1 being upper trian-
gular, and Rm upper block triangular, with diagonal 1× 1 and 2× 2 blocks corresponding,
respectively, to real and pairs of complex conjugate eigenvalues, verifying

AiQi = Qi+1Ri, i = 1, · · · ,m− 1, (7)

AmQm = Q1Rm. (8)

Then it follows that
AQ = QR, (9)

with

Q =



















Q1 . . . . . . . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . . . . . . . Qm



















, and R =



















0 . . . . . . 0 Rm

R1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 Rm−1 0



















,
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Q ∈ R
mn×mk, and R ∈ R

mk×mk.

Equation (9) states that the columns of Q form an orthonormal basis of an invariant
subspace of A, of dimension mk. It is also clear that

(I −A)Q = Q(I −R). (10)

The matrix Q1 is such that AQ1 = Q1R is a partial real Schur decomposition of A, with
R = RmRm−1 · · ·R2R1. If this decomposition is known, the periodic Schur decomposition
can be computed by calculating AiQi and reorthogonalizing to obtain Qi+1 and Ri for
i = 1, · · · ,m−1, and finally Rm = Q⊤

1 AmQm, although this is not the most accurate way.
The periodic Schur decomposition, and more accurate algorithms to compute it are

described in [Bojanczyk et al., 1992], [Varga & Dooren, 2001], and [Kressner, 2005]. See
also the review [Watkins, 2005] on product eigenvalue problems. In the context of the
multiple shooting computation of periodic orbits it has been used in [Lust, 1997] in the
framework of the Newton-Picard method, and in [Lust, 2001] to improve the computation
of Floquet multipliers. The software psSchur [Lust, 2000], which computes the full peri-
odic Schur decomposition, is available. The subroutine MB03WD of the LAPACK-based
library SLICOT [Benner et al., 1999] also computes it. Unfortunately, as far as we know,
there is no available software to compute partial periodic Schur decompositions. However,
the Krylov-Schur algorithm is described in detail in [Kressner, 2006].

4 Preconditioners Based on Leading Invariant Subspaces

In this section a preconditioner, which can be used to accelerate the convergence of the
linear solvers, is described. It will be shown in Sect. 6 that its use helps to obtain linear
speedups when using parallel shooting.

Let us consider a generic linear system Cx = b, with non-singular matrix C ∈ R
n×n.

We look for a right preconditioner, M , based on the knowledge of approximate invariant
subspaces of C, such that the convergence of the iterative methods applied to

CM−1y = b, x = M−1y, (11)

be faster. Since for the matrices of the form I − A we will consider most of the spectrum
is clustered around +1, we assume this situation for C.

Let the columns of Q = [q1, · · · , qk] ∈ R
n×k form an orthonormal basis of an invariant

subspace of C corresponding to the first k leading (maximal distance to +1) eigenvalues
of C, with Q⊤Q = Ik, and k ≪ n. It can be obtained by any of the methods previously
described. The matrix Q verifies

CQ = QR, and C−1Q = QR−1, (12)
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with R an invertible k × k matrix. Then, we define M as

M = QRQ⊤ + (I −QQ⊤), (13)

so that

M−1 = QR−1Q⊤ + (I −QQ⊤), and CM−1 = QQ⊤ +C(I −QQ⊤). (14)

The operator QQ⊤ is the orthogonal projector onto Span{q1, · · · , qk}. Therefore, if z =
Qα, with α ∈ R

k, then CM−1z = z, and if Q⊤z = 0, then CM−1z = Cz. So, if
z = z1 + z2 with z1 ∈ Span{q1, · · · , qk}, and z2 ∈ Span{q1, · · · , qk}⊥, CM−1z = z1 +Cz2,
i.e., CM−1 acts as the identity on Span{q1, · · · , qk}, and as the original C on its orthogonal
complement.

In the case of multiple shooting we need preconditioners, M , for matrices of the form
I − A. They can be obtained as described in Sect. 3 from a partial Schur decomposition of
I − A (see Eq. (10)). Computing the action CM−1z implies k dot products to form Q⊤z,
k+ 1 BLAS AXPY operations to calculate QQ⊤z and (I −QQ⊤)z, and a matrix product
by C. In the case of I − A, Q, and R have block structure, which can be utilized to
compute efficiently the DOT and AXPY operations. No reference to the matrix R (or R)
or its inverse is needed during the iterations. It is only needed, at the end, to compute x
from y (see Eq. (11)). The effect of the preconditioner for I − A, is to bring its eigenvalues
on the external circles back to a neighborhood of +1.

There are several ways to compute the matrix Q needed for the preconditioner. The
first is to compute the leading multipliers, and the corresponding invariant subspaces of the
orbit by any variant of the power method: the implicitly restarted Arnoldi method [Sorensen,
1992] for which the ARPACK software [Lehoucq et al., 1998] is available, the Krylov-Schur
method [Stewart, 2002], or any variant of the slower but fully parallelizable subspace itera-
tion method. This provides Q1 in formula (7). Then Qi and Ri, with i = 2, · · · ,m, can be
computed sequentially by using equations (7) and (8). This is the method we have adopted
in our numerical experiments. Another more stable possibility, which should be used if
the periodic orbit is so unstable that the leading multipliers cannot be obtained by simple
shooting, is to compute Qi directly by using a recent algorithm [Kressner, 2006], which
computes partial periodic Schur decompositions. It is an extension of the Krylov-Schur
algorithm, which in turn is a modification of the implicitly restarted Arnoldi algorithm.
This latter version is parallelizable. The cost of computing Q depends on the method
used. As Q and R have the block structure shown in Sect. 3, Q only needs to be stored
as a set of m matrices of dimension n× k, and R as m matrices of dimension k × k. The
products by Q or R are computed by exploiting this block structure.

There are several ways of linking the computation of the stability and the precondi-
tioner with the calculation of the periodic orbits. Two of them are schematized in Fig. 6.
A first option (scheme a in Fig. 6) is to have m processors computing the periodic orbits,
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and another one calculating the stability, updating the hyperplanes and preparing the
preconditioner. As soon as the preconditioner is updated, the last computed solution is
sent to the processor which will obtain the leading invariant subspace. When the task
is finished, this processor communicates with the main process to obtain the current last
computed solution to update the hyperplanes. The preconditioner is then computed and
sent to the main processor to be updated, and the full process starts again.

Another possibility (scheme b in Fig. 6) is to use the information of the number of
iterations required to solve the linear systems to decide when to renew the preconditioner.
When this is needed the m processors stop computing the periodic orbits, and they are
used to compute the stability, and to update the hyperplanes and the preconditioner from
the last computed solution. In this case a parallelizable method to obtain the invariant
subspaces must be used. This second scheme was used in [Sánchez et al., 2002] to compute
fixed points in a Fluid Mechanics problem. The preconditioner was an incomplete LU
decomposition, and it was found that long continuations could be done without changing
the preconditioner. We have checked that the invariant subspaces need not be computed
with a high precision for the preconditioner to be effective.

Systems with matrix (4), can be preconditioned with

(

M −DλP
U⊤ uλ

)

, or

(

M 0
0 1

)

, (15)

and those with matrix (6) with the second. The former is a bordered system, which can
be solved in a stable way by the BEM algorithm (see [Govaerts, 2000]). It requires solving
systems with M and M⊤, and to know explicitly the column −DλP. Equation (14) shows
how to apply M−1, and it is easy to see that (M⊤)−1 = Q(R⊤)−1Q⊤+(I−QQ⊤). Finally,
the column −DλP can be obtained by integrating the first variational equations (5) with
initial conditions v(0) = 0, and µ(0) = 1.

5 Application of Newton-Krylov Methods to the Multiple

Shooting.

In order to perform some numerical experiments we have applied the multiple shooting
method to the thermal convection problem of a Boussinesq binary mixture, filling a two-
dimensional rectangular domain Ω heated from below. In non-dimensional units Ω =
[0,Γ] × [0, 1], Γ being the width to the height ratio, and x and y are the horizontal and
vertical coordinates, respectively.

The problem is governed by the mass, momentum, energy and one of the concentrations
(the denser in what follows) equations. The basic conductive and linearly stratified state,
which is a solution of the equations for any value of the parameters, is given by zero velocity
vb = 0, and linear profiles for the temperature Tb = Tb(0) − y, and the concentration
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Cb = Cb(0) − y. The values Tb(0) and Cb(0) are constants related by the parameters of
the problem.

The equations for the perturbation of the basic state (v,Θ, C), in non-dimensional
form, are

∂tv + (v · ∇)v = σ∇2v −∇p+ σRa(Θ + SC)êy,

∂tΘ + (v · ∇)Θ = ∇2Θ + vy,

∂tC + (v · ∇)C = L(∇2C −∇2Θ) + vy,

∇ · v = 0.

The problem depends on the non-dimensional Rayleigh, Prandtl, Lewis, and Separation
ratio numbers, denoted respectively by Ra, σ, L, and S. The boundary conditions con-
sidered are non-slip for the velocity field (v = 0 on ∂Ω), constant temperatures at the top
and bottom lids, insulating lateral walls, and non-porous boundaries (see [Batiste et al.,
2002] for more details of the formulation). In the continuation experiments we fix Γ = 4,
σ = 0.6, L = 0.03 and S = −0.1. The last three values correspond to a mixture of two
isotopes of Helium in liquid state. The Rayleigh number, which is proportional to the
difference between the bottom and top temperatures, will be the control parameter. If S
is below a negative critical value, as it is in the test problem, the primary bifurcation from
the basic state is a Hopf bifurcation.

The above equations are rewritten in terms of a stream-function, ψ, i.e., v = (vx, vy) =
(−∂yψ, ∂xψ), and an auxiliary function η = C − Θ. They are

∂t∇2ψ + J(ψ,∇2ψ) = σ∇4ψ + σRa [(S + 1)∂xΘ + S∂xη] ,

∂tΘ + J(ψ,Θ) = ∇2Θ + ∂xψ,

∂tη + J(ψ, η) = L∇2η −∇2Θ,

with J(f, g) = ∂xf∂yg − ∂yf∂xg, and the boundary conditions become

ψ = ∂nψ = ∂nη = 0 on ∂Ω,

Θ = 0 on y = 0, 1,

∂xΘ = 0 on x = 0,Γ.

In this way the incompressibility condition is identically fulfilled, the boundary conditions
for Θ and η decouple, and the number of unknowns is reduced.

The group of symmetries of this system is Z2 × Z2 generated by the reflections Rx

and Ry, with respect to the vertical, and horizontal mid-planes, i.e., changing x by Γ − x
and the sign of ψ, or changing y by 1 − y and the sign of all three functions, leaves the
system invariant. These symmetries give rise to pitchfork bifurcations of fixed points, and
periodic orbits, at which any of the two symmetries can be broken.
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To obtain the numerical solutions, the functions ψ, Θ, and η are approximated by a
pseudo-spectral method. Collocation on a mesh of nx×ny = 64×16 Gauss-Lobatto points
has been used in all the calculations shown. This gives a total dimension n = 3072. This
mesh is enough in the interval of Ra considered because the solutions are quite smooth.
A finer resolution with nx × ny = 128 × 32 (n = 12288) has also been used to check some
of the results.

The stiff system of ODEs obtained after the spatial discretization can be written as
Bu̇ = Lu + N(u), where the vector u = (ψij ,Θij, ηij) contains the values of ψ, Θ and η
at the mesh of collocation points. The operators L and N represent the linear and non-
linear terms in the equations. They are integrated by using fixed-time-step fourth-order
BDF-extrapolation formulas

1

∆t
B

(

γ0u
n+1 −

k−1
∑

i=0

αiu
n−i

)

=

k−1
∑

i=0

βiN(un−i) + Lun+1,

where the superscripts indicate the step. The coefficients, up to sixth order, are given,
for instance, in [Sánchez et al., 2004]. The initial points required to start the time inte-
gration are obtained by a fully implicit BDF method. The subroutine DLSODPK of the
ODEPACK package [Hindmarsh, 1983] has been used.

Figure 3 shows two branches of solutions for this problem. The horizontal line cor-
responds to the basic state. It becomes unstable at Ra = 2075 at a subcritical Hopf
bifurcation giving rise to the branch of periodic orbits, which is initially unstable. It be-
comes stable at Ra = 2061 at a saddle-node bifurcation and looses stability at Ra = 2067
at a Neimark-Sacker bifurcation. By following the unstable branch of periodic orbits three
pitchfork bifurcations are found at Ra = 2113, Ra = 2168, and Ra = 2196. At them, one
of the spatio-temporal reflection symmetries of the periodic orbits is broken.

Table 1 shows the first twenty Floquet multipliers of the periodic orbit at Ra = 2305
ordered by their moduli. Three of them, which are real, are outside the unit circle.
The complex conjugate multipliers, which crossed the unit circle at the Neimark-Sacker
bifurcation, become real when they collapse at the real axis, and the multiplier responsible
for the second pitchfork bifurcation gets back into the unit circle at the third. The invariant
subspaces, corresponding to this set of eigenvalues, will be used in Sect. 6 to obtain a
preconditioner for the linear systems of the multiple shooting. Fig. 4 shows the temporal
evolution of this periodic orbit. It contains the contour plots of ψ, θ, and C during a
period T in increments of T/8. It can be seen that it is a fixed cycle with respect to the
transformation Rx, and a symmetric cycle with respect to Ry [Kuznetsov, 1998], and the
composition RxRy. The periodic orbit consists on reversals of the rotating sense of the
vortices, as can be seen in the left column of plots, which produce an oscillation of the
temperature and the concentration.

The multiple shooting method has always been started with the periodic orbit at
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Ra = 2320 (shown in Fig. 3 as an empty circle) as initial condition, and with 1 ≤ m ≤ 10
sections. Pseudo-arclength and parameter continuation methods have been employed with
an arclength-step control based on the curvature of the curve of solutions, and on the
number of Newton’s iterations. They are stopped when eqs. (2-3) are satisfied with a
tolerance 10−8√m in euclidean norm, and the norm of the difference of the last two
iterates is below 10−8√m times the norm of the last iterate. The factors

√
m have been

included to have, approximately, the same accuracy in the periodic orbit for each value
of m. The control of the arclength-step is relative to the euclidean norm of the solution
to try that the same number of points be computed during the continuation for every m.
Two close initial conditions, on the curve of solutions, are used to start the continuation.
Linear extrapolation is used as predictor for the first step, and quadratical for the rest.
The linear systems are solved by the restarted version of GMRES (GMRES(M)), with
tolerances which ensure the quadratical convergence of Newton’s method.

Let us recall here that GMRES is a projection method which, from an initial approx-
imation y0 of the solution of a linear system My = b (M is the matrix (4) in our case),
obtains a sequence ym, eventually convergent to the solution, defined by the conditions
ym ∈ y0 +Km, with Km = {r0,Mr0,M2r0, . . . ,Mm−1r0} (the Krylov subspace of dimen-
sion m) and r0 = b − My0, and ym minimizing ||b − My||2 over y ∈ y0 + Km. Then it
is easy to see that rm = b−Mym = Pm(M)r0, Pm being a polynomial of degree m with
Pm(0) = 1. In the restarted version of the method (GMRES(M)), in order to prevent the
dimension of Km from growing too much, the iteration is stopped when the dimension
reaches a size M , and restarted by using the last approximation yM as the new initial
seed.

When a system with matrix (4) is solved without preconditioning, we take the maximal
dimension of the Krylov subspace for GMRES(M) as M = mKG, KG being the dimension
used for m = 1, which in all the computations shown has been KG = 10. This is done to
ensure that GMRES(M) sees the same fraction of the eigenvalues of each matrix. With
this value, GMRES(M) is almost never restarted, so it works as if we were using its full
version.

In the preconditioned case there is no need to take M = mKG because, for the m
considered, the maximum number of iterations required is reduced in such a way that
M can be taken independent of m. For instance, if the dimension of the base invariant
subspace is k = 20, the maximum number of iterations has always been below 25, and,
in order to have no restarting, M = 25 is enough for all m. Therefore, the memory
requirement of GMRES is not a problem for the application of the method. Moreover, the
computational cost of the linear solver has always been completely negligible compared
with the time integrations.

All the computations were performed using a small cluster of six Core 2 Quad Intel
processors Q9450 with 12Mb of cache memory, connected to a full-duplex Gigabit ethernet
local network. In order to minimize cache conflicts, at most two time integrations were
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computed on each processor at the same time. The parallelism was implemented by using
MPI, and only to compute P(X,λ) andDP(X,λ)(V, µ). These time integrations, represent
more than 99% of the total CPU time. The relative differences, between the CPU times to
compute each partial shoot, remained below 4% during all the continuations performed,
so that they are synchronized enough to allow good speedups.

We have check that, in all our calculations, the time spent in the communications
is negligible. This time must be compared with the time integration to obtain Pi(xi, λ)
or DPi(xi, λ)vi, which depends on the problem, but is orders of magnitude larger. In
the example shown, the computation of each action DPi(xi, λ)vi takes of the order of
several tens of seconds, depending on the number of intermediate shoots, m. The only
communications required, when using MPI, are sending the current value of the parameter
λ, sending xi and vi, and receiving Pi(xi, λ) or DPi(xi, λ)vi and Ti.

To study the efficiency of the multiple shooting method, we define T (m,k) as the wall-
clock time required to do a continuation withm sections, with each partial shoot computed
on a different processor, and using a preconditioner based on an invariant subspace of
dimension mk. By definition, k = 0 means no preconditioning. Notice that due to the
spreading of the eigenvalues, which can be seen in Fig. 7, the larger m the larger k must
be. This prevents the use of high values of m because the cost of the computation of the
stability and the preconditioner must be limited.

The (absolute) speedup, S(m,k), is defined as

S(m,k) = Tref/T (m,k), (16)

Tref being the wall-clock time of the best algorithm without using parallelism. In this
definition we compare the response time of doing a continuation for m sections using
parallelism, and preconditioning by using a subspace of dimension mk, with a reference
time corresponding to the best serial algorithm.

The efficiency, E(m,k), is

E(m,k) = S(m,k)/m. (17)

It can be greater than one if the serial and the parallel algorithms are different. If
E(m,k) = γ, the initial time Tref is reduced by a factor γm. The optimal case is γ = 1,
but suboptimal cases (γ < 1) are also of interest if γ is close to one.

Several issues must be taken into account to decide which is the best serial algorithm.
Let us define T ′(m,k) as the wall-clock time required to do a continuation with m sections,
using a preconditioner based on an invariant subspace of dimension mk, but now doing all
the computations on a single processor. If one wants to compare the same algorithm using
one or m processors, the (relative) speedup should be defined as T ′(m,k)/T (m,k). The
only added time in the parallel case is due to the communications, which are negligible, and
to the possible lack of synchronization of the different shoots, which can also be neglected
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by changing the sections frequently, as stated before. Therefore, T ′(m,k) ≈ mT (m,k),
and the efficiency would always be close to one, no matter the values of m and k, giving the
false impression that a linear speedup can be obtained regardless of how large m is. This
only indicates that this serial algorithm is a good candidate to parallelization. Notice that
the time T ′(m,k) increases with m at least for two reasons. The first is that the number
of expensive initializations of the time integrator is m, one for each partial shoot. The
second is that as m increases, the number of iterations to solve the linear systems also
increases proportionally to m (see below for an explanation). Therefore, for a given k,
one should use the lower possible value of m, allowed by the stability of the solution, to
compute the periodic orbit using a single processor. In our example we can still compute
the periodic orbits with m = 1. On the other hand, we have found that if m = 1 the
preconditioner is only effective if the value of the parameter at which the periodic orbit is
being computed is close to that at which the preconditioner was constructed. Therefore,
we have taken (16) as the definition of the speedup with Tref = T (1, 0).

We assume that the computation of the stability and the preconditioner is done on a
different processor, which would be also busy in the case m = 1 computing the stability
of the orbits. Consequently, the time needed to prepare the preconditioner is not included
in the definition of the speedup. In the unlikely case that the stability was of no interest,
the efficiency should be multiplied by a factor m/m+1 because there is another processor
being used.

As a first test, five periodic orbits were computed by both the pseudo-arclength, and
the parameter continuation methods without preconditioning. Figure 5 shows the speedup,
and the efficiency as a function of m. The reference line, in red, is that corresponding to
the linear speedup, S(m, 0) = m and E(m, 0) = 1, which will be plotted for comparison in
all the figures. The line in black corresponds to a process such that the wall-clock time is
independent of the number of processors. This is nearly what happens in the computations
shown. From these results it is clear that the only use of parallel multiple shooting does not
accelerate significantly the computation of periodic orbits, if the same number of points
is computed for each m. The wall-clock time does not decrease as T (m, 0) ≈ T (1, 0)/m as
should be for a linear speedup S(m, 0) = m, which is below 1.7 even for m = 10. This is
due to the already mentioned increase of the number of iterations of the linear solver with
m. Therefore, by using parallelism, we are dividing by, approximately, m the response
time of the time integrations, but also increasing the number of integrations required, in
such a way that the total response time is essentially the same.

It is easy to understand the linear dependence of the number of iterations with m,
if the following well known result on the convergence of GMRES (see [Saad & Schultz,
1986]) for a system My = b is used.

Proposition 3 Suppose that a matrix M diagonalizes with M = V ΛV −1, where Λ =
diag{λ1, · · · , λn} is the diagonal matrix of eigenvalues, Pq is the set of polynomials of
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degree at most q, and κ2(V ) = ||V −1||2||V ||2 is the norm-2 condition number of V . Then,
if yq is the approximation at the q-th step of GMRES, with initial condition y0,

||b−Myq||2
||b−My0||2

≤ κ2(V ) inf
p∈Pq

p(0)=1

sup
i=1,··· ,n

|p(λi)|. (18)

In our case M is the matrix (I − A) bordered as in (4). As the clustering of the eigenvalues
of (I − A) is not destroyed by the bordering, we can reason as if the matrix were (I − A).
If for m = 1 a polynomial of degree q takes a certain maximum value on the spectrum of
I−A, the degree required to attain the same maximum on the spectrum of (I − A) is mq
because of the spreading of its eigenvalues (see Proposition 1). The leading eigenvalues
of I − A, and (I − A) for m = 5 and m = 10 are shown in Fig. 7 for the periodic orbit
at Ra = 2305 (see also table 1). Therefore, the number of iterations required to solve a
linear system with GMRES would increase proportionally to m if the condition number
κ2(V ) was independent of m. Then T (m, 0) ≈ T (1, 0), and S(m, 0) ≈ 1. However, Fig. 5
shows that some speedup is obtained, although small. There are two main reasons for
this. The first is the better conditioning of the matrices of the multiple shooting, and of
the matrices of their eigenvectors. The second is the better prediction of the new points
along the curve of solutions. The periodic orbits we are computing are quite unstable, and
the predicted point gives, at the first Newton’s iteration, lower residuals as m increases.

6 Results for the Preconditioned System

In order to conform to the scheme of Fig. 6a, the length of the interval of Ra, that can
be computed during the time the stability and the preconditioner are calculated, was
estimated. The CPU time required to obtain the leading spectra (see table 1), and the
invariant subspaces of dimensions k = 6, 12, 16, and 20 of a periodic orbit at Ra = 2305
was found. Afterwards, the preconditioner was calculated for all these values of k, and m
from 2 to 10. Tables 2 and 3 show the CPU times needed. The worst case corresponds to
m = 9 or 10, and k = 20. A total of 1665 seconds were needed to compute the stability,
and to prepare the preconditioner. Then, starting at Ra = 2305, it was checked that the
preconditioners were effective in all the continuations lasting at least 3330 seconds. This
means that the number of iterations to solve the linear systems does not grow during the
continuations more than a 30%. During this time, an interval of more or less 30 units of
Ra could be computed. Therefore, following the scheme of Fig. 6a, the computation of
the periodic orbits can proceed without degrading during the time the preconditioner is
prepared for updating.

The preconditioner used in all the tests presented is that defined by the right-hand-side
matrix in (15), computed from the stability at Ra = 2305. The hyperplanes used for the
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computation are normal to the initial periodic orbit at Ra = 2320, and placed at equally
spaced times. In addition, and for the reasons explained before, the reference time, Tref .
in Eq. (16) has always been that corresponding to m = 1 and no preconditioning (k = 0).

We have not included the preconditionedm = 1 case in the figures, because the number
of iterations needed to solve the linear systems without preconditioning is close to 10, and
then it is very difficult to reduce it. Moreover, the first leading eigenvalues shown in
table 1 for Ra = 2305 depend strongly on Ra. This makes that, in the single shooting
case, the preconditioner be effective only close to the point at which the stability was
computed. Instead of accelerating the convergence it slows it down at the end of the
interval considered.

To isolate the effect of the preconditioner from that of the multiple shooting method,
the computation of the five points of Fig. 5 was repeated using the preconditioner. The
results are presented in Figs. 8, and 9. They show the speedups, S(m,k), and the effi-
ciencies, E(m,k), achieved, the graph of the linear speedup, S(m) = m or E(m) = 1, and
those computed by preconditioning with k = 0, 6, 12, 16, and 20. The curves of k = 0 were
already represented in Fig. 5. It can be seen that close to linear speedups can be obtained
for low m and large k, if only the effect of the preconditioner is taken into account to
accelerate the computation of the periodic orbits.

The speedup is better for the parameter than for the pseudo-arclength continuation,
since we use in both cases, the right-hand-side matrix in (15) as preconditioner, which
is best suited for the second case. The bordering of the matrix in the pseudo-arclength
continuation introduces an additional spreading of the eigenvalues, which we do not cap-
ture with this preconditioner. The left-hand-side matrix in (15), together with the BEM
algorithm, already mentioned, could be used in this case. We have not implemented this
option, and therefore we will restrict ourselves to parameter continuation from now on.

Figs. 10 and 11 correspond to the interval Ra = 2320 < Ra < 2335. So, all the
computations done in this interval take more than 1665 seconds. There are some general
characteristics which are common to the following figures. For a fixed m, both S(m,k),
and E(m,k) are, in general, increasing functions of k, as could be expected. The larger
the subspace used to preconditioning, the lower the number of iterations to solve the linear
systems. For a fixed k, S(m,k) increases with m in the range considered, but E(m,k)
has a maximum and then decreases. This indicates that, as m grows, the expansion of
the spectra shown in Fig. 7 is noticed by GMRES, which feels the circles of eigenvalues.
Then, an increase in k is required to have the same efficiency. A decrease of S(m,k) with
m can be expected if m is increased further.

The degrading of the preconditioner, explained before for the case m = 1, can be
perceived in Figs. 8 to 11 for m = 2, which is the next m for which this effect is present.
When m = 2, only if k = 20 there is a significant increase in E(m,k) with respect to the
unpreconditioned case. In Fig. 8, when m = 2, and k = 6 there is, in fact, a decrease in
E(m,k). This is what happens form = 1 in all the continuations performed for the selected
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interval of the parameter Ra. Therefore, it is better not to precondition the case m = 1.
Except a first few, the multipliers are strongly clustered at zero. Preconditioning the simple
shooting case would be interesting if there was more dispersion of the multipliers, even for
stable solutions. As stated before, if m > 1, the speedup grows almost monotonically with
k. In this case, the dependence of the leading eigenvalues of I − A and of the corresponding
invariant subspaces on the parameter becomes less pronounced. The greater m the weaker
the dependence. Therefore the size of the interval for which the preconditioner is still valid
grows with m.

In Fig. 10 the maximal continuation step size is limited to force that the number of
points computed be similar for all the m considered. Figure 11 corresponds to the same
computation, but without limitation on the continuation step size. The periodic orbits
being computed are quite unstable, and the step taken by the single shooting code must
be small to have a good starting condition for Newton’s method. This is not the case for
the multiple shooting, which can cover the considered interval by computing less points.
By adding this effect to the improvement due to the preconditioner, it has been possible
to obtain linear or better speedups for low values of m, without the need of a large value
of k. Efficiencies above 0.8 have been obtained by using k = 12. To study the stability
of the periodic orbits in the range of Ra considered, it is enough to know, for instance,
the first six multipliers, but, from table 2, it is clear that increasing to twelve the number
of multipliers has only a 30% extra cost. The increase in performance, due only to the
multiple shooting algorithm, can be seen in the k = 0 curves of all figures. In Fig. 9 (green
curve) the speedup arrives, approximately, to 1.6 for m = 10 (see also Fig. 5), but it is
close to 2.6 in Fig. 11.

In the last plots in Fig. 12 the same calculations as in Fig. 11 are presented, but
T (m,k) has been redefined as the average time to compute a single continuation point.
This figure is very similar to Fig. 8, and shows, again, the speedup and the efficiency due
only to the preconditioner.

In all figures E(m,k) decreases when m ≥ 4 and k is fixed. Therefore, as m increases
the dimension of the base invariant subspace k must be higher to keep E(m,k) at the same
value. For low values of m, a small k is enough to achieve close to optimal efficiencies.
This result is important because, in many applications it is interesting to compute stable,
or not very unstable periodic orbits, which do not require a high m. If we move along a
line E(m,k) = γ, the storage required for the linear solver, increases only proportionally
to m (it is mainly KGmn with KG fixed) because the number of iterations of the linear
solver is almost independent of m. These storage requirements are not a problem to use
the method. As k must be increased with m to have S(m,k) = m, and the dimension of
the invariant subspace is mk, the storage requirement for the preconditioner grows with
m2 (it is O(m2n)). This might limit the application of the method to relatively low values
of m, if linear speedups were needed, the dimension of the system n was very large, and the
action of the preconditioner was to be computed on one processor. If n = 106 and m = 10
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the required storage is less than 1Gb, which can be stored in the memory of a standard
current PC. If, for stability reasons, larger values of m were required, and the storage was
limited, then k should be small, and only sub-linear speedups would be available. Another
option would be to distribute the matrices Qi among the different processors, which would
only be done each time the preconditioner is updated, and to compute the action by M−1

in (14) in parallel.

7 Conclusions

We have shown that the computation of periodic orbits by parallel shooting can be ac-
celerated by the use of a preconditioner based on the information on their stability. This
information must be already obtained if a study of possible bifurcations is needed. The
efficiency of the preconditioner will depend on the distance from the point being computed
to that at which the invariant subspace was calculated. In the case of simple shooting, the
preconditioner presented provides a way of accelerating the convergence for problems with
small dissipation, or with mixed dissipative and small-dimension non-dissipative parts.

There are two issues which make it difficult to achieve linear speedups for large values
of m. The first one is the time integration initialization process. In the example pre-
sented we have used DLSODPK to start the time integrations, which is computationally
expensive because it requires solving a nonlinear system of equations at each step. A
better option would be using a variable-step variable-order semi-implicit method, based
on BDF-extrapolation formulas [Garcia et al., 2009], which could be used not only in the
starting process, but also during all the integration. In this case only a linear system must
be solved at each step. This would have reduced the starting time; anyway, this is an
intrinsic problem of any algorithm based on the multiple shooting method. The second
is related to the expansion of the eigenvalues as m increases. To keep the efficiency close
to the optimal, k must be increased with m to return the external circles of eigenvalues
of I − A back to a small neighborhood of +1. The computation of the corresponding
invariant subspace, and preconditioner will become too expensive for large m. Despite
these problems, we have seen that the computation time can be reduced easily by a factor
of ten.

The dimension k, required to have close to linear speedups, depends on how the mul-
tipliers of the orbits decay to zero. For parabolic equations this decay is, in general, faster
for three-dimensional than for lower dimensional problems. Therefore, best performances
could be expected in the cases for which the acceleration of the process is more necessary.

The method proposed is particularly useful for the computation of unstable periodic
orbits after one or several period-doubling bifurcations, because at each of them the mul-
tipliers are squared.

Other invariant objects could be computed in a similar way. For example, fixed points
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of f(x), which are difficult to obtain by preconditioned Newton-Krylov methods due to
the poor convergence of the linear solvers, could be computed as fixed points of the map
x→ ψ(T, x), if ψ(T, x) is the solution of ẋ = f(x) with initial condition x at time T . Now
T is a time adequately chosen. If the fixed point x0 is stable, the method is an acceleration
of the time evolution to x0. If x0 is unstable, T must be short enough to avoid escaping
too far away from x0, but long enough to let the contractive properties on almost all
the directions of the flow ψ(t, x) act. This method, based on Newton-Krylov iterations,
was suggested, for instance, in [Sánchez et al., 2004], although the original idea of using
stabilized time evolutions to find unstable fixed points goes back to [Jarausch & Mackens,
1987; Shroff & Keller, 1993]. Similar multiple shooting techniques could also be employed
in the computation of invariant tori, if the unknown of the problem is a single point of
the invariant curve on a certain generalized Poincaré section [Sánchez et al., 2009]. In
fact the method applies to any fixed point problem for dissipative maps obtained by time
integration.
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of periodic orbits for Navier-Stokes flows,”. J.Comput. Phys., 201(1), 13–33.

23



Sánchez, J., Net, M., & Vega, J. [2006]. “Amplitude equations close to a triple-(+1) bi-
furcation point of D4-symmetric periodic orbits in O(2)-equivariant systems,”. Discrete
and Continuous Dynamical Systems-Series B , 6(6), 1357–1380.
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Figure 3: Bifurcation diagram. The full circles indicate bifurcation points, and the empty
circles the point at which the continuation is started in the numerical experiments (Ra =
2320), and that at which the preconditioner has been computed (Ra = 2305). Solid and
dashed lines mean stable and unstable branches, respectively. The labels beside the branch
of periodic orbits indicate the number of multipliers outside the unit circle.
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Figure 4: Temporal sequence during a period, T , for the periodic orbit at Ra = 2306,
showing its spatio-temporal symmetries. Time increases from top to bottom in increments
of T/8. The left, center, and right columns correspond to the streamfunction ψ, the
perturbation of the temperature Θ, and that of the concentration C, respectively.
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Figure 8: Pseudo-arclength continuation of 5 points. (a) Speedup, and (b) efficiency.
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Figure 9: Parameter continuation of 5 points. (a) Speedup, and (b) efficiency.
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Figure 10: Parameter continuation of an interval of 15 units in Ra limiting the step size.
(a) Speedup, and (b) efficiency.
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Figure 11: Parameter continuation of an interval of 15 units in Ra without limitation of
the step size. (a) Speedup, and (b) efficiency.
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Figure 12: Parameter continuation of an interval of 15 units in Ra without limitation of
the step size. (a) Speedup, and (b) efficiency considering the average time to compute a
new point.
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Real Part Imag. Part Modulus Real Part Imag. Part Modulus
0.8912E+4 0.0000E+0 0.8912E+4 0.1161E-2 0.0000E+0 0.1161E-2
0.2513E+4 0.0000E+0 0.2513E+4 0.2353E-3 0.0000E+0 0.2353E-3
0.1250E+2 0.0000E+0 0.1250E+2 0.1029E-3 0.5231E-5 0.1030E-3
0.8042E+0 0.0000E+0 0.8042E+0 0.1029E-3 -0.5231E-5 0.1030E-3
0.6312E+0 0.0000E+0 0.6312E+0 0.5525E-4 0.0000E+0 0.5525E-4
0.3638E-1 0.0000E+0 0.3638E-1 0.1190E-4 0.0000E+0 0.1190E-4
0.4632E-2 0.0000E+0 0.4632E-2 -0.5218E-5 0.1025E-4 0.1150E-4
-0.3338E-2 0.2436E-2 0.4132E-2 -0.5218E-5 -0.1025E-4 0.1150E-4
-0.3338E-2 -0.2436E-2 0.4132E-2 -0.5560E-5 0.4723E-5 0.7295E-5
0.2572E-2 0.0000E+0 0.2572E-2 -0.5560E-5 -0.4723E-5 0.7295E-5

Table 1: First twenty leading Floquet multipliers at Ra = 2305.

k 6 12 16 20
CPU time 449 586 895 858

Table 2: CPU time, in seconds, required to compute the stability at Ra = 2305.

m k = 6 k = 12 k = 16 k = 20
2 207 417 557 695
3 212 428 573 717
4 219 443 592 742
5 219 442 591 742
6 226 456 613 769
7 230 466 625 788
8 229 464 622 783
9 235 478 642 807

10 235 477 642 805

Table 3: CPU time, in seconds, required to compute the preconditioner at Ra = 2305.
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