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Abstract

Efficient numerical algorithms for the continuation of periodic orbits of high-dimen-
sional dissipative dynamical systems, and for analyzing their stability are presented.
They are based on shooting, Newton-Krylov and Arnoldi methods. A thermal con-
vection fluid dynamics problem, which has a rich bifurcation diagram due to symme-
tries, has been used as test. After a pseudo-spectral discretization of the equations
a system of dimension O(104) has been obtained. The efficiency of the algorithms,
which allows the unfolding of a complex diagram of periodic orbits, makes the meth-
ods suitable for the study of large nonlinear dissipative partial differential equations.

Key words: Continuation methods, Periodic orbits, Poincaré maps, Variational
equations, Krylov methods, Arnoldi decomposition, Subspace iteration.

1 Introduction

The study of any dynamical system involves the computation of its invariant
manifolds (fixed points, periodic orbits, homo and heteroclinic orbits, invari-
ant tori, etc.), and the study of their persistence and changes of stability when
the parameters on which the problem depends are varied. Unstable manifolds
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must also be calculated because they may drive the dynamics of the system
or give rise to stable solutions as will be seen in the examples shown here.
Some of these tasks are now almost routinely performed for low-dimensional
problems. Many researchers in dynamical systems have benefited from the
availability of continuation and bifurcation packages such as AUTO [7], CON-
TENT [16], DSTOOL [9], etc. Due to the small size of the systems they are
designed for, they implement direct solvers for the linear problems involved
in the computations (linear algebraic systems and eigenvalue problems). The
extension to high-dimensional problems is not straightforward, the main ob-
stacle being the computational cost of the linear algebra. The development of
modern linear algebra techniques, many of them based on Krylov or Arnoldi
methods [28,30], allow the study of large systems such as those in computa-
tional fluid dynamics. This is the case of some works that have appeared in
the last years, most of them dealing with the computation of steady states
in fluid flows or reaction-diffusion problems. Inexact Newton-Krylov methods
are used to find the fixed points and the Arnoldi method to study their sta-
bility [2,8,21,23]. The main difficulty is always to achieve a fast convergence
of the linear solvers (GMRES [31] in many cases). Preconditioning is then
mandatory and its nature depends on how space variables are discretized.
For spectral discretizations in incompressible fluid problems, [8] suggest the
use of the Stokes operator as preconditioner. This is the method employed,
for example, in [23]. The use of preconditioners based on finite differences or
elements within a spectral method is also a possibility. This approach is in-
volved because the equations defining the system must be discretized in two
distinct ways. In the case of finite differences or finite elements, incomplete
LU decompositions provide reliable preconditioners [25,29,32].

Continuations of periodic orbits in large-scale dissipative systems have also
been performed in a few problems ([22,40] for instance) of moderate dimension,
which, in some cases, can still be integrated in time with library routines for
stiff systems of ordinary differential equations. These studies use the Newton-
Picard algorithm described in [22], which is based on a modification of the
recursive projection method (RPM) [33]. More recently ([38,39,41]), a limited
memory Broyden method has also been employed to compute periodic orbits
for high-dimensional systems. In this work, we present an alternative to those
methods. We apply Newton-Krylov techniques to obtain the fixed points of a
Poincaré map. Because of the dissipative nature of the problems the methods
are addressed to, their Floquet multipliers are clustered around the origin.
Therefore, there are two main differences with the computation of fixed points.
There is no need for preconditioning the iterative solver for the linear systems
at each Newton’s iteration, and there is no need to make shift-invert or Cayley
transformations [24] to find the spectra. In this sense it is easier to compute
periodic orbits than steady solutions as only a time stepping code is needed.
The evaluation of the functions involved is, obviously, much more expensive
because it implies the time integration of the equations over a period of the
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orbit.

We apply these algorithms to compute a complex bifurcation diagram of peri-
odic orbits and to study their stability in a non-trivial fluid dynamics problem
of dimension O(104). Specifically, we consider thermal convection in a bidi-
mensional cylindrical annular domain driven by a difference of temperature
externally imposed on its boundaries.

The layout of the paper is as follows. In Sec. 2 we describe the continuation
method used to find the periodic orbits and to study their stability, including
the arguments that justify the good convergence properties observed in the
applications. In Sec. 3 we introduce the problem to which the method has
been applied, the spatial discretization and the time integration algorithm
employed. The results obtained are presented in Sec. 4. Discussion on the
efficiency of the numerical method is done in Sec. 5. Finally, the paper closes
in Sec. 6 with a summary of the results and a brief description of some possible
extensions.

2 Continuation method for periodic orbits

Consider a finite dimensional autonomous dynamical system with governing
equations

Bẋ = f(x, λ) = L(λ)x+Q(x, x) + F, (1)

with (x, λ) ∈ U ⊂ Rn × R, and where L(λ) and Q are linear and quadratic
operators respectively with Q(0, 0) = 0 and DxQ(0, 0) = 0, F is a constant
forcing term, and B a constant linear operator. We also suppose that the de-
pendence of the problem on λ, which may be any of the governing parameters
of the problem, is of the form

L(λ) = L1 + λL2, (2)

where L1 and L2 are linear operators independent of λ.

Although the method here described is of general applicability, the calculation
of the derivatives of the right hand side of (1), needed to integrate its first vari-
ational equations, are trivial in this particular form. Many reaction-diffusion,
and fluid mechanics problems can be formulated in this way. The operators
L(λ) and Q could be the discretized versions of the continuous operators of
a system of partial differential equations (PDE). B might be singular if, for
instance, an incompressible velocity-pressure formulation of the Navier-Stokes
equations is employed giving rise to a differential-algebraic system, or invert-
ible in the case of streamfunction or scalar potential formulations. Even these
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latter constitute differential-algebraic systems depending on how the boundary
conditions are implemented.

Periodic orbits of (1) are obtained as fixed points of a Poincaré map on a
section Σ, which for simplicity is taken as a hyperplane. If xσ is a point close
to an initial periodic orbit, and ωσ is such that the hyperplane Σ given by

g(x) = ω>σ (x− xσ) = 0, (3)

is transverse to the flow of (1), the Poincaré map, P : V ⊂ Σ→ Σ, is defined
as

P (x, λ) = ϕ(t(x), x, λ), (4)

where x ∈ V , ϕ(t, x, λ) is the solution of (1) with initial condition x =
ϕ(0, x, λ), t(x) is the minimal time verifying t(x) > 0 and z = ϕ(t(x), x, λ) ∈
Σ, with ω>σ ∂tϕ(0, x, λ) and ω

>
σ ∂tϕ(t(x), z, λ) having the same sign. The partic-

ular form of computing t(x) and ϕ(t(x), x, λ) depends on the time integration
method used. The periodic orbits are then given by

x− P (x, λ) = 0, x ∈ Σ. (5)

To solve these equations the hyperplane Σ must be parametrized. Let ωσk be
a non-vanishing component of ωσ. It can be selected, for instance, verifying
|ωσk| = maxi=1,...,n |ωσi|. Let Rk be the projection of Σ onto Rn−1, Rk : Σ →
Rn−1, defined by

Rk(x1, . . . , xk−1, xk, xk+1, . . . , xn) = (x1, . . . , xk−1, xk+1, . . . , xn),

x̄ = Rk(x), and Ek be the map, Ek : Rn−1 → Σ, defined by

Ek(x1, . . . , xk−1, xk+1, . . . , xn) = (x1, . . . , xk−1, xσk−
ω̄>σ (x̄− x̄σ)

ωσk
, xk+1, . . . , xn),

with ω̄σ = Rk(ωσ) and x̄σ = Rk(xσ). These maps are diffeomorphisms and
verify Rk ◦ Ek = IRn−1 , Ek ◦Rk = IΣ, DRk(x) = Rk, and

DEk(x̄)(u1, . . . , uk−1, uk+1, . . . , un) = (u1, . . . , uk−1,−
ω̄>σ ū

ωσk
, uk+1, . . . , un)

if ū = (u1, . . . , uk−1, uk+1, . . . , un).

If we now define P̄ (x̄, λ) = Rk(P (Ek(x̄), λ)) thenDx̄P̄ (x̄, λ) = Rk(Dx̄P (x, λ)DEk(x̄))
with x = Ek(x̄), and the fixed points of P̄ , verifiying

x̄− P̄ (x̄, λ) = 0, x̄ ∈ Rn−1, (6)

are in one-to-one correspondence with those of P by the map x = Ek(x̄).
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Predictor-corrector parameter and pseudo-arclength continuation methods [14]
are used to study the dependence of the solutions of (6) on the parameter λ.
Second degree polynomial extrapolation with respect to the arclength, s, is
used as predictor and Newton’s method as corrector. They admit a unified
formulation by adding the equation

n(x̄, λ) ≡ θω>x̄ (x̄− x̄0) + (1− θ)ωλ(λ− λ0) = 0, (7)

(x̄0, λ0) being the predicted point along the curve of solutions. In the case of
parameter continuation θ = 0, ωλ 6= 0, and λ0 is the value of the parameter
for the next solution. In the case of pseudo-arclength continuation, (ωx̄, ωλ) is
an approximation to the tangent to the curve of solutions (x̄(s), λ(s)), which
can also be approximated by extrapolation, and 0 ≤ θ ≤ 1 is a parameter that
controls the relative weight of x̄ and λ in equation (7). A widely-used technique
is (x̄0, λ0) = (x̄1, λ1) + ∆s(ωx̄, ωλ), where ∆s is the desired increment in the
arclength, and (x̄1, λ1) the last point found. In this case (7) with θ = 1/2 is
equivalent to the original formulation of pseudo-arclenght, ω>x̄ (x̄−x̄1)+ωλ(λ−
λ1) = ∆s.

The system that determines a unique solution is then

x̄− P̄ (x̄, λ) = 0, n(x̄, λ) = 0, x̄ ∈ Rn−1, (8)

and the linear system to be solved at each Newton’s iteration, (x̄i+1, λi+1) =
(x̄i, λi) + (∆x̄i,∆λi), is







I −Dx̄P̄ (x̄
i, λi) −DλP̄ (x̄

i, λi)

θω>x̄ (1− θ)ωλ













∆x̄i

∆λi





 =







−x̄i + P̄ (x̄i, λi)

−n(x̄i, λi)





 . (9)

In the case of parameter continuation ∆λi = 0 and there is no need of DλP̄
in (9).

The linear system (9) is solved iteratively by matrix-free methods that only
require the computation of matrix-vector products. Therefore a procedure to
compute products of the form DxP (x, λ)∆x

i or DxP (x, λ)∆x
i+DλP (x, λ)∆λ

i

must be available. For systems of the form (1), they can be obtained, with
minor modifications of the time stepping codes employed to integrate them,
from a first variational equation. For the system

Bẋ= f(x, λ) = (L1 + λL2)x+Q(x, x) + F, (10)

λ̇=0, (11)

with initial condition (xi, λi), the first variational equation is
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Bẏ=Dxf(x, λ)y +Dλf(x, λ)µ

=(L1 + λL2)y + µL2x+Q(x, y) +Q(y, x), (12)

µ̇=0, (13)

with initial condition (∆xi,∆λi). The term Dλf(x, λ)µ must be included in
(12) only if pseudo-arclength continuation is used.

If ∆x is tangent to Σ, ω>σ∆x = 0, then, from the application of the implicit
function theorem to the identity g(ϕ(t(x), x, λ)) = 0 and the definition of
P (x, λ), we obtain

DxP (x, λ)∆x+DλP (x, λ)∆λ = u−
ω>σ u

ω>σ z
z, (14)

where u = Dxϕ(t(x), x, λ)∆x + Dλϕ(t(x), x, λ)∆λ can be obtained as u =
ϕ̂(t(x), x, λ), with ϕ̂(t, x, λ) solution of (12) with initial condition y(0) = ∆x,
µ = ∆λ. Here z denotes the tangent to ϕ(t, x, λ) at P (x, λ). It can be obtained
from the linear equation Bz = f(P (x, λ), λ) if B is invertible or, in any case,
by interpolation if a multistep time integration method is used. From (14) it
is clear that ω>σ (DxP (x, λ)∆x+DλP (x, λ)∆λ) = 0. See [34] for more details
about the computation of the differentials of Poincaré maps and for the case
of an arbitrary hypersurface g.

Each evaluation of DxP (x, λ)∆x
i +DλP (x, λ)∆λ

i requires the integration of
the 2n-dimensional system of equations (10), (12). Because matrix-free meth-
ods are employed, only this system must be integrated in time instead of
one of dimension n2 + n when the whole first variationals are employed to
solve (9) with direct methods. The value of DxP (x, λ)∆x

i + DλP (x, λ)∆λ
i

could be computed by finite differences, but the cost is the same because two
integrations of (10) are needed. Furthermore the variational estimate of the
differential is more accurate than the one obtained by numerical differenc-
ing. This implies that if finite differences are employed, the convergence of
Newton’s method may worsen.

We use GMRES [31] (generalized minimum residual method) to solve all the
linear systems. GMRES is an iterative projection method. Given an initial
guess y0 to the solution of the linear system of equations Ay = b, this class of
methods generate a sequence of approximations ym which satisfies two condi-
tions

ym ∈ y0 +Km and b− Aym ⊥ Lm, (15)

that determine each particular projection method. Km and Lm are two m-
dimensional linear subspaces. With these two conditions, ym minimizes the
Euclidean norm of the residual, b−Aym, over all the vectors in y0+Km. In the
particular case of GMRES, Lm = AKm and Km is the Krylov subspace Km =
{r0, Ar0, A

2r0, . . . , A
m−1r0}, where r0 = b − Ay0 (see [28] for implementation
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details). To prevent the dimension of the subspaces from growing, thus making
the method impractical, it is limited to a maximum M . If GMRES does not
converge to the desired accuracy inM iterations, the method is restarted using
the latest approximation found as initial guess y0, giving rise to the restarted
generalized minimum residual method GMRES(M).

The method described above will only be efficient if the convergence of GM-
RES is fast enough. The following result (see [30]) can be used to show that,
with the particular form of the spectrum of DxP (x, λ) for a dissipative sys-
tem, the number of iterations needed is much less than the dimension of the
system.

Proposition 1 Suppose that a matrix A is diagonalized as A = V ΛV −1,
where Λ = diag{λ1, . . . , λn} is the diagonal matrix of eigenvalues, Pm is the

set of polynomials of degree at most m, and κ2(V ) = ||V −1||2||V ||2 is the

norm-2 condition number of V . Then at the m-th step of GMRES

||b− Aym||2
||b− Ay0||2

≤ κ2(V ) inf
p∈Pm

p(0)=1

sup
i=1,...,n

|p(λi)|. (16)

This result implies that, if there are polynomials of low degree m, which are
small enough on the spectrum of A, i.e., κ2(V ) supi=1,...,n |p(λi)| < ε, then the
residual is reduced at least by a factor ε after a low number of iterations m.

Consider now the linear systems of the form

(I −DxP (x, λ))∆x = −x+ P (x, λ), (17)

solved in parameter continuation and where, from now on, we drop the over-
bars. We can suppose, without loss of generality, that the eigenvalues, µi,
of DxP (x, λ) have been ordered by non-increasing modulus, so that |µ1| =
maxi=1,...,n |µi|. The eigenvalues of I − DxP (x, λ) are 1 − µi. They are clus-
tered around z = 1 and are different from zero if the system (1) is derived
from the discretization of a dissipative system of PDE’s and x is near a regular
solution of (5). Therefore, the next proposition, which follows from the prin-
ciple of the maximum modulus, provides an upper bound for the right hand
side of (16).

Proposition 2 Let µ1, . . . , µk be the eigenvalues of DxP (x, λ) verifying |µi| >
δ with a fixed δ < 1, D = maxi=1,...,n |µi| and d = mini=1,...,k |1− µi|. Then the

polynomial q(z) = (−1)k+p(z−1)p
∏

i=1,...,k(z−1+µi)/(1−µi) verifies q(0) = 1
and supi=1,...,n |q(1−µi)| < δpS, with S = sup|z−1|=δ

∏

i=1,...,k |z−1+µi|/|1−µi|.

Moreover, S < (δ +D)k/dk.

By using (16) it follows that ||b−Aym||2/||b−Ay0||2 < ε if δ and p are chosen
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so that δpS < ε/κ2(V ), i.e.,

m = k + p > k + log

(

κ2(V )S

ε

)

/ log (1/δ). (18)

Therefore, if the number of GMRES iterations is larger than m, the residual
is reduced, at least, by a factor ε. A rough estimation of m can be obtained by
using that S < (δ+D)k/dk. The value of D indicates how unstable the orbit is,
and d how near singular I−DxP (x, λ) is. Suppose we are looking for not very
unstable orbits, so that D < 10, and x is not very near a bifurcation, d > 10−2

for instance, that we want to reduce the residual by ε = 10−16 and that V is far
from normal, as could be expected for large scale dissipative nonlinear PDE,
κ2(V ) = 1020 for instance. Let us take δ = 0.1 and suppose that then k ≈ 40
(as in some of the spectra we have computed). Therefore we could expect to
need, approximately, m = 200 iterations to have ||b−Aym||2/||b−Ay0||2 < ε.
This a low value for m for a high-dimensional system. If the spectrum in
Fig. 10, in which k = 40 eigenvalues have modulus greater that δ = 0.15, is
used to estimate S, we find that S < 4580 and m = 88. In practice we have
found that these are conservative lower bounds for m, and fewer iterations
are needed to solve the linear systems. As κ2(V ) and the distribution of the
eigenvalues are not known, a priori, some experiments must be performed to
determine good values for the maximal dimension M of Km. An example will
be given later.

The above argument only applies to parameter continuation. With pseudo-
arclength continuation the spectrum of the matrix in (9) instead of I −
DxP (x, λ) must be considered. We have calculated its dominant eigenvalues
for the example in section 3 at several points of the bifurcation diagram. We
have always observed very small perturbations of those of I −DxP (x, λ), ex-
cept for the appearance of a single new eigenvalue that does not affect the
reasoning. The consequence is that we have not observed slower convergences
in the case of pseudo-arclength continuation. It is also possible to use com-
pactness arguments on the continuous operators involved to show that both
I−DxP (x, λ) and the matrix in (9) have spectra of the kind described above.

Inexact Newton’s methods, like those we use, are known to converge if the
residual of the linear system to be solved at each Newton’s iteration is kept
sufficiently small [6]. They can retain quadratic convergence with a suitable
selection of the tolerance for the residual. This has been the case in all our
computations except, of course, in the neighborhood of bifurcation points. No
particular difficulty has been found near turning points.

Summarizing, we can expect to have convergence of the Newton-Krylov meth-
od when it is applied to find zeros of x − P (x), with P any map with its
multipliers at the fixed point clustered around the origin. In section 6 we
show how to use this fact to compute also steady solutions of (1).
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Once the periodic orbits have been obtained, we study their stability by com-
puting their dominant Floquet multipliers by subspace iteration, or by the
implicitly restarted Arnoldi iteration [19], using the ARPACK library [20] (see
also [1] or [10] for similar computations of Floquet multipliers in another hy-
drodynamic problem). This also requires the integration of the 2n-dimensional
system (10), (12). This differs from the method described in [22]. The use of
Newton-Picard provides simultaneously the solution and its stability. With the
algorithm we describe, the branches of solutions can be calculated in a first
stage, and later use a bisection method along the branch to detect possible
bifurcations, if it is needed. This implies studying the stability of only a few
solutions in a separate process.

3 The test problem: thermal convection in an annulus

To test the method, the two-dimensional nonlinear thermal convection of a
Boussinesq fluid in an annulus, with constant inward radial gravity and heated
from the inside, is considered. Its physical interest arises from the study of
large-scale motions generated by radial temperature gradients in geophysical
and astrophysical processes (see [27,26] for details). The nonlinear dynamics
of the two-dimensional vortices also provides a simple fluid dynamical system
highly attractive from the point of view of bifurcation theory, because it is
large enough to provide a rich spatio-temporal dynamics.

The two-dimensional domain has inner and outer radii Ri and Ro. The three
non-dimensional parameters of the problem are the radius ratio, η = Ri/Ro,
the Prandtl number, σ = ν/κ, and the Rayleigh number, Ra = α∆Tgd3/κν,
with ν, α and κ the kinematic viscosity, the thermal expansion coefficient, and
the thermal diffusivity of the fluid respectively, g a constant radial gravity, ∆T
the temperature difference between both boundaries, and d the radii difference.
Almost all the results shown in this section correspond to η = 0.3, σ = 0.025,
and Ra is taken as the continuation parameter. The values of ∆T , d and d2/κ
are taken as temperature, length and time units respectively. With this scaling
the inner and outer radii are ri = η/(1− η) and ro = 1/(1− η). From now on,
u and T will be respectively the non-dimensional velocity and temperature
fields. The conduction steady state uc = 0, Tc(r) = Ti + ln(r/ri)/ ln η is a
solution for any value of Ra.

The velocity field u is written in terms of a streamfunction, Ψ, as u = ∇ ×
(Ψêz), where êz the unit upward vertical vector. Let us define the azimuthal
average operator

Pθg(t, r, θ) = (2π)−1
∫ 2π

0
g(t, r, θ)dθ.
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By separating the mean flow f(t, r) = Pθuθ(t, r, θ) from Ψ, the preceding
expression of u can be written as u = f êθ +∇× (ψêz), with Pθψ(t, r, θ) = 0.

The equations for f , ψ and the perturbation of the conduction state temper-
ature , Θ = T − Tc, are















I 0 0

0 I 0

0 0 ∆















∂t















f

Θ

ψ















=















σ∆̃ 0 0

0 ∆ −(r2 ln η)−1∂θ

0 σr−1Ra ∂θ σ∆∆





























f

Θ

ψ















+















Pθ

[

∆ψ∂θψ
]

/r

J(ψ,Θ)− f∂θΘ/r

(1− Pθ)J(ψ,∆ψ) + ∆̃f∂θψ/r − f∂θ∆ψ/r















,

(19)

where ∆ = (∂r+1/r)∂r+(1/r2)∂2θθ, ∆̃ = ∂r(∂r+1/r), and J(h, g) = (∂rh∂θg−
∂rg∂θh)/r. With this formulation, the no-slip boundary conditions for the
velocity become f = ψ = ∂rψ = 0, and the temperature perturbation is
Θ = 0, on both boundaries. See [26] for details.

A simple inspection reveals that the system isO(2)-equivariant under arbitrary
rotations of angle θ0,

Rθ0 : (f,Θ, ψ)(r, θ)→ (f,Θ, ψ)(r, θ + θ0) (20)

and reflections with respect to diameters θ = θ0,

ζθ0 : (f,Θ, ψ)(r, θ)→ (−f,Θ,−ψ)(r, 2θ0 − θ). (21)

These symmetries are responsible for the large number of bifurcations found
in the problem.

We use spectral methods [4] to discretize (19); ψ and Θ are approximated by
Fourier expansions in θ

ψ = ψ(t, r, θ) = i
N/2
∑

n=−N/2
n6=0

ψn(t, r)e
inθ,

Θ = Θ(t, r, θ) =
N/2
∑

n=−N/2

Θn(t, r)e
inθ,

ψn(t, r) and Θn(t, r) being polynomials of degree L in r that verify the bound-
ary conditions. The unknowns of the problem are the values of f(t, r), ψn(t, r)

10



and Θn(t, r) on a mesh of Gauss-Lobatto points rj = ri + (1− cos(πj/L))/2,
with j = 1, . . . , L − 1 for f and Θn, and j = 2, . . . , L − 2 for ψn. The total
number is then (L− 1)(N + 2) + (L− 3)N .

The truncation parameters L and N have been chosen to minimize the com-
putational cost, but keeping the relevant features of the problem well resolved.
In the results shown, L × N = 32 × 192 for a total of 11582 unknowns. By
using only the time integration code and comparing with resolutions 32× 256
and 48 × 192, we have found differences below 0.2% for the worst resolved
frequency of the quasi-periodic solutions obtained above Ra = 18000 (see Ta-
ble I in [27]). With the same truncations, we have also estimated differences
below 0.5% in the Rayleigh numbers of the bifurcation points between stable
solutions up to Ra = 21000 used as a test. In addition, for a periodic orbit at
Ra = 17194 computed by parameter continuation with truncations 32 × 192
and 64× 256, the frequency difference is below 0.1%. For this solution, Fig. 1
shows the exponential decay of the coefficients of Θ and ψ when Θn and ψn
are expanded in Chebyshev polynomials, i.e., Θn(t, r) =

∑L
l=0Θl,n(t)Tl(x) with

x = 2(r−ri)−1. The maximum resolution employed has been 64×256, giving
a total of 31870 unknowns. The algorithms still work properly, but the CPU
time needed to integrate the equations increases considerably due to the need
of reducing the time step in order to keep the stability of the numerical inte-
gration scheme employed, and due to the increase in the cost of the evaluation
of the nonlinear terms and of the solution of the linear systems in (24).

The nonlinear terms of the equations are evaluated by using trigonometric
interpolation and FFT techniques for the azimuthal operators, and matrix-
matrix products to evaluate radial operators. These products are performed
by the ATLAS [42] version of the DGEMM routine of the BLAS library [18],
optimized for Pentium processors (all computations have been performed on
Pentium IV PC’s at 1.8 GHz). For time integration, backward differentiation
formulae (BDF) for the linear part of (19) and extrapolation formulae for the
nonlinear terms are used [13]. The BDF-extrapolation formulae, with a fixed
time step, ∆t, for the system

Bu̇ = Lu+N (u), (22)

where L and N are linear and nonlinear operators respectively, are

1

∆t
B

(

γ0u
n+1 −

k−1
∑

i=0

αiu
n−i

)

=
k−1
∑

i=0

βiN (un−i) + Lun+1, (23)

or rearranging,

(

γ0
∆t
B − L

)

un+1 = B

(

1

∆t

k−1
∑

i=0

αiu
n−i

)

+
k−1
∑

i=0

βiN (un−i). (24)
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The coefficients αi, βi and γ0 are listed in Table I. We have always used the
fourth order formula in the computations shown. Each time step involves one
evaluation of the nonlinear terms, one of the left hand side operator B, and
the solution of a linear system with matrix (γ0/∆t)B−L, which, in our case,
is block diagonal.

Two different methods have been employed to find the starting values u1, . . . , uk−1

needed to apply (24); a fourth order Runge-Kutta scheme with a smaller time
step, or a procedure involving increasing time steps and orders. We have not
found significant differences in precision or CPU time between the two meth-
ods.

Fig. 3 shows a numerical study of the precision that can be obtained with
this integration scheme for the test problem. It shows the dependence of the
relative difference,

||u∆t − uref ||2
||uref ||2

,

on ∆t. We denote as u∆t the solution calculated with time step ∆t, and uref
is a reference solution obtained with ∆t = 10−5. The initial condition for
both is taken on a periodic solution of the system with Ra = 8000 (see its
location in the bifurcation diagram of Fig. 4), and the total time integration is
twice the period of the orbit. Each curve corresponds to the integration with
a different order of the BDF-extrapolation formulae, and the order obtained
is used to label them. The results shown have been obtained by initializing
the integration with a fourth order Runge-Kutta method. It can be seen that
below ∆t = 8 · 10−5 the propagation of the rounding errors, generated mainly
in the evaluation of the nonlinear terms and in the initialization process, do
not allow us to obtain relative errors below 10−10. It must be pointed out
that the matrix of the derivatives in the radial direction, and some formulae
employed to apply the boundary conditions, are prone to cancellation errors,
and that the code employs the 3/2-rule dealiasing technique in the azimuthal
coordinate.

In this particular problem, the solutions of x = P (x) are determined up to
an azimuthal rotation. Therefore a phase condition must be added to obtain
a determinate system of equations. For this purpose one of the equations is
replaced by a condition that selects the solution closest to a previous refer-
ence solution xref . It is easy to see that this condition can be written as the
linear equation x>ref∂θx = 0. It is similar to the phase condition used in some
continuation codes for periodic orbits to fix the initial point on the orbit [15].

The periodic orbits we have found in this problem are known as direction
reversing travelling waves [17] (DRTW), or as symmetric cycles (S-cycles) in
the dynamical systems context, i.e., they have the following spatio-temporal
symmetry
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Θ(t, r, θ)=Θ(t+ T/2, r, 2θ0 − θ),

f(t, r)=−f(t+ T/2, r), (25)

ψ(t, r, θ)=−ψ(t+ T/2, r, 2θ0 − θ),

where T is the period of the orbit, and θ0 is fixed by the initial conditions. For
these periodic orbits the evolution by half a period in time is equivalent to the
reflection defined in (21) with respect to a certain diameter. This can be seen
in Fig. 2. It shows the time evolution of a S-cycle obtained at Ra = 17761, for
which θ0 ≈ π/2. See also [27] for shadowgraph space-time plots.

As f changes sign each half period (25), the net mass flow defined as

1

Ro −Ri

∫ Ro

Ri

uθ(t, r, θ)dr =
1

Ro −Ri

∫ Ro

Ri

f(t, r)dr (26)

changes sign twice per period. Therefore, the approximation to the zero net
mass flow condition,

∑L
j=0 ωjf(t, rj) = 0, where the ωj are the weights of the

Gauss-Lobatto quadrature formulae, has been used to define the hyperplane
Σ on which the Poincaré map is taken. Consequently, there has been no need
to change the hyperplane during the continuation, as might be required when
periodic orbits without symmetries are sought.

4 Results

Before presenting the results we want to stress that the main goal of this
paper is the presentation of a method to efficiently compute periodic orbits
for Navier-Stokes flows. The reader interested in a more complete bifurcation
diagram, in the attractors for the range of Ra studied or in the coexistence of
attractors for a fixed Ra, can find this information in [27]. Still many details
are missing, mainly concerning the continuation of unstable tori.

Fig. 4 shows the branches of the periodic orbits we have found in the test
problem. A weighted amplitude

A =
4
∑

n=0

wn|Θn(rp)|

of the first five azimuthal modes of the temperature perturbation, at the time
at which the net mass flow vanishes on Σ, versus the Rayleigh number has
been plotted. In A, rp is a fixed radial point, and the weights, wn, are selected
to clearly distinguish the different branches. Solutions related by the spatial
symmetries broken at the bifurcations correspond to the same points in the
diagram. Beside each branch we indicate the number of multipliers outside
the unit circle. If all of them are real we use a single number. When there are
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complex pairs we indicate the total number of unstable multipliers by the first
number followed by the number of those real.

The main branch is labeled n = 4 because only the azimuthal Fourier coef-
ficients of ψ and Θ with subscripts n which are multiple of 4 are non-zero.
It bifurcates from a stable steady solution through a Hopf bifurcation, after
the spatial interaction of steady n = 2 and n = 4 modes described in [27].
The isotropy group of these steady solutions (the group of transformations
that leave them invariant) is generated by a reflection by a diameter and a
rotation of π/2. Fig. 5 shows one of them at Ra = 6300. In this and all the
following figures, the leftmost plot corresponds to the contour plot of Ψ, the
centre one to the isotherms, and the rightmost to the lines of constant Θ. For
the periodic solutions (Figs. 6, 7, and 9), the plots show the data when they
cross the Poincaré section.

The periodic orbits are no longer reflection symmetric (see fig. 6 as exam-
ple), and consequently [17] are DRTWs that oscillate back and forth in the
azimuthal direction without net drift. For this type of solution, the spatio-
temporal symmetry (25) could have been used to halve the time needed to
compute each orbit, but we have always integrated the whole period, because
we are describing a general methodology, and we did not know in advance that
all the bifurcations between branches of periodic orbits were going to break
only spatial symmetries in the range of Ra considered. Information about the
origin and the physical behaviour of these solutions can be found in [27].

All the periodic solutions of the test problem have a µ = +1 multiplier due to
the invariance under rotations of the equations. It has been removed in all the
plots of the spectra shown, and because it never crosses the unit circle, it is not
considered in the following count of the critical multipliers. It is known [15]
that S-cycles cannot experience period doubling bifurcations through simple
µ1 = −1 multipliers. In agreement with this result, only bifurcations with µ1 =
+1 or µ1,2 = e±iθ0 were found. The turning points and the branching points of
periodic orbits have been marked with full circles; the other intersections are
due to the graphical representation. The D4 symmetry forces the second point
on the n = 4 branch to be double, and two other points are very close to non-
generic real double +1 bifurcations. This is so in the bifurcation marked with a
cross on the smallest loop of Fig. 4, and in the second bifurcation point on the
n = 2 branch. In both cases, two complex-conjugate multipliers of diminishing
frequency become real very near the unit circle (µ1,2 = 0.996 and µ1,2 = 0.994,
respectively). By increasing Ra, one of them grows and crosses the unit circle
while the other moves back. By slightly moving another parameter of the
problem, for instance the radius ratio, the complex multipliers would become
real exactly on the unit circle. The difference between the two transitions is
the symmetry group of the periodic orbits that bifurcate. In the diagram,
there are, moreover, two Neimark-Sacker bifurcations in the interval of Ra
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considered. They are indicated with asterisks at Ra = 10785 and Ra = 18683.

The detailed description of all the bifurcations is beyond the scope of this pa-
per; nevertheless we have selected some of them to show the accuracy obtained
in the solutions and in their spectra. As an example of the spatial structure of
the solutions, we display in Fig. 6 the first symmetry breaking bifurcation, and
in Fig. 7 some samples of solutions on the most unstable branches at higher
parameter values.

The pure n = 4 DRTWs that appear at Ra = 6897 maintain a Rπ/2-invariance;

Θ(t, r, θ) = Θ(t, r, θ + π/2), ψ(t, r, θ) = ψ(t, r, θ + π/2),

but they are no longer reflection symmetric as can be seen in the plots of
Fig. 6(a-c). The n = 4 DRTW is stable up to Ra = 10210, where it loses
stability in a subharmonic pitchfork bifurcation of periodic orbits. This is a
symmetry breaking bifurcation that reduces the spatial Z4 isotropy group to
Z2, where Z4 and Z2 are generated by rotations of π/2 and π respectively. The
symmetric branches of the pitchfork bifurcation are related by a rotation of
π/2. The change of symmetry can be observed in the dominant eigenfunction
of Fig. 6(d,e), and in the stable subharmonic n = 2 DRTW of Fig. 6(f-h),
if it is carefully observed. In the plots of the eigenfunction the isotherms are
omitted.

Fig. 7 shows a sample of the most unstable solutions found with σ = 0.025
and η = 0.3. All of them have three unstable multipliers and they are on
three different branches. Their locations at Ra = 15800, 17761 and 17194 are
indicated with arrows in Fig. 4. Their isotropy groups of spatial symmetries
are Z4, Z2, and trivial, respectively, as can be seen better in the contour plots
of the streamfunction. In addition, their leading multipliers are displayed in
Fig. 8, where the dotted line is the unit circle. In Fig. 8(a) the leading multiplier
is double.

The spectrum of the Neimark-Sacker bifurcation, indicated in Fig. (4) with an
asterisk at Ra = 18683, is in agreement with the results computed with the
time evolution code. By decreasing Ra with this code, we have found a saddle-
node bifurcation of tori at Ra ≈ 18440. We believe that this stable branch
of tori is connected with the periodic orbits we have computed through the
Neimark-Sacker bifurcation, because of the agreement between the frequency
determined from the dominant unstable multiplier and the second frequency
of the quasi-periodic solutions calculated. The results indicate that at the
bifurcation point, a branch of unstable quasi-periodic solutions appears. This
branch becomes stable through a bifurcation (or bifurcations) we have not
studied because our present codes do not allow to compute invariant unstable
tori. This is an example of an attractor connected through unstable manifolds
to other attractors. The main n = 4 branch of periodic orbits, which is stable
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up to Ra = 10210 bifurcates also from a steady solution connected to the
trivial conductive solution by unstable fixed points [27].

Calculations with different values of the radius ratio η have also been per-
formed to check if the method still works efficiently for more unstable orbits.
We show in Fig. (9) a solution for η = 0.19 and Ra = 20000. As can be seen
in Fig. 10 it has seven unstable multipliers, including a double complex con-
jugate pair. We have not found any significant change in the computational
cost to obtain these more unstable solutions.

5 Efficiency

Table 2 displays the number of iterations of Newton’s and GMRES meth-
ods needed to refine a periodic solution at Ra = 17194 (see Fig. 4 to lo-
cate it in the bifurcation diagram and Fig. 8 to see its leading multipliers).
The initial condition had components xi(1 + εui), x being a previous refined
solution and u a random vector satisfying |ui| < 1, and the value of the
parameter λ was kept fixed. Stopping criterion for Newton’s method was
||x(n+1) − x(n)||2/||x

(n+1)||2 < 10−8 and ||xn+1 − P (xn+1)||2 < 10−8. The di-
mension of the Krylov subspace was 60, but could have been 51 with the
same results, or 34 for ε ≤ 10−5 without need of restarting. The number of
iterations needed by GMRES decrease as Newton’s method approaches the so-
lution. This is a common feature with Newton-Krylov methods, when GMRES
is started with a zero initial guess.

Good initial conditions for Newton’s method must always be provided to have
efficient continuations, but in the case of continuation of periodic orbits this is
especially important. We recall that the most expensive calculation during the
continuation is the evaluation of DP (x, λ)v at each GMRES iteration. There-
fore, the predictor should use high-order extrapolation from previous solutions
or small parameter or pseudo-arclength steps. The highest suitable extrapola-
tion order depends not only on estimates on the extrapolation error, but also
on bounds on the errors in the previous solutions used in the extrapolation.
Finding the optimum between computing many solutions at low cost or fewer
solutions at higher computational effort is not an easy task, especially if this
must be done automatically. The total number of GMRES iterations used to
find a solution, not only the number of Newton’s iterations, should be used to
control the arclength step.

Fig. 11(b-e) show the total number of GMRES iterations needed to compute
each solution along the portion of branches displayed in Fig. 11(a) (compare
this plot with Fig. 4). B1 is an n = 4 branch, i.e., only a quarter of the
unknowns are non-zero. A system of dimension 2942 could have been solved,

16



although we did not made use of this particular characteristic. Along B2 and
B3 all the unknowns are non-zero. B2 is a regular arc without bifurcations and
there are two turning points on B3, which ends at a bifurcation point. With
this selection we explore all possible scenarios in the bifurcation diagram.

In all these calculations, the time step used was 10−4, and the stopping crite-
rion for Newton’s method was

∣

∣

∣

∣

∣

∣(x, λ)(n+1) − (x, λ)(n)
∣

∣

∣

∣

∣

∣

w
/
∣

∣

∣

∣

∣

∣(x, λ)(n+1)
∣

∣

∣

∣

∣

∣

w
< 10−7, and (27)

∣

∣

∣

∣

∣

∣

(

x(n+1) − P (xn+1, λ(n+1)), n(x(n+1), λ(n+1))
)∣

∣

∣

∣

∣

∣

w
< 10−7, (28)

with ||(z, µ)||w = (||z||22 + (w|µ|)2)1/2 a weighted norm.

Four cases have been considered. Fig. 11(b) corresponds to branch B1 cal-
culated by using parameter continuation and a fixed parameter step size of
200. For this branch the mean of the total number of GMRES iterations is
17. Branch B2 was calculated with both parameter (Fig. 11(c)) and pseudo-
arclength (Fig. 11(d)) continuation. The average number of evaluations of
DP (x, λ)v was very similar for both cases; 41 and 44 respectively. B3 was
only computed by pseudo-arclength continuation (Fig. 11(e)) due to the pres-
ence of the turning points. The mean number of GMRES iterations increased
up to 52. This branch is more expensive to compute because the solutions
change significantly through the turning points and there are multipliers near
+1 along all the curve.

The CPU times to complete each of these calculations were 22.2, 37.5, 38.8
and 100 hours respectively. Each evaluation of DP (x, λ)v took between 50
and 170 seconds depending on the branch considered. Then the CPU time to
compute each periodic orbit in the diagram of Fig. 4 varied from ten to ninety
minutes.

To obtain the 40 leading Floquet multipliers shown in Fig. 10, 100 evaluations
of DP (x, λ)v were required when using the ARPACK library. This is more
than has been usually required to obtain the information needed to study
the bifurcations and complete the diagram of Fig. 4. Only the calculation of
the first 12 multipliers was used to detect the bifurcations, and each spectra
needed between 40 and 80 matrix-vector products (i.e., time integrations of
system (12)) depending strongly on the separation between the required eigen-
values and the rest of them, and on the dimension of the Krylov subspace.

17



6 Conclusions and perspectives

We have shown that the Newton-Krylov method, applied to find fixed points of
Poincaré maps of high-dimensional dissipative systems, provides an efficient,
easy to implement, and robust tool to compute periodic orbits. A complicated
bifurcation diagram of periodic orbits, most of them unstable, for a system
of dimension 11582 has been obtained. Comparison with the Newton-Picard
method is not easy because, in the method we use, finding the cycles and study-
ing their stability are separate processes. The Newton-Picard method requires
the computation of a good basis of the invariant subspace corresponding to
the leading eigenvalues. This is an expensive task even using the most sophis-
ticated versions of subspace iteration or Arnoldi methods, but the stability of
the solution is also obtained. By using the Newton-Krylov method we retain
the quadratic convergence of the Newton’s iterations except, of course, near
bifurcation points. This is important to minimize the number of evaluations
of the differential of the Poincaré map where almost all the computing time
is spent. But surely, the main advantage of using the Newton-Krylov method
is its simplicity when compared with other options.

The procedure described in this paper might also be used to find steady so-
lutions of (1). The technique which is usually employed is to apply Newton’s
method

xi+1 = xi +∆xi, (29)

Dxf(x
i, λ)∆xi = −f(xi, λ), (30)

to the equation f(x, λ) = L(λ)x+Q(x, x)+F = 0, and to apply a matrix-free
iterative method to solve the linear system, preconditioned with L(λ)−1 or
approximations to this operator (see [3,5,23]), i.e.,

(

I + L(λ)−1
(

Q(xi, ·) +Q(·, xi)
))

∆xi = −L(λ)−1f(xi, λ). (31)

This procedure can be satisfactory near x = 0, where the matrix

I + L(λ)−1(Q(xi, ·) +Q(·, xi))

is a small perturbation of the identity. Far away from x = 0, the iterative
method to solve (30) might fail to converge. As stated in the introduction, if
finite differences or finite elements are employed, an incomplete LU decompo-
sition can be used as preconditioner to accelerate the convergence. In the case
of spectral methods it is not easy to find good preconditioners. Finite differ-
ences or finite elements versions of the problem have been successfully used
as preconditioners but the coding becomes more complicated. We suggest a
simple, although in general more expensive approach, that can be used when
other possibilities fail.
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Let ϕ(t, x, λ) be the solution of (1) with initial condition x, T a positive real
number, and define now P (x, λ) = ϕ(T, x, λ). If x0 is a fixed point of f ,
f(x0, λ0) = 0 then x0 − P (x0, λ0) = 0. The equation x − P (x, λ) = 0 can be
solved by the Newton-Krylov method. Now, as in the case of periodic orbits,
if the initial system is dissipative, the spectrum of the matrix I−DxP (x, λ) is
clustered around z = 1. The products DxP (x, λ)v are calculated by using (14),
but replacing t(x) by T . T is a parameter which must be selected to make con-
vergence fast. It should not be large if the fixed point x0 is very unstable. If it is
stable, the method can be seen as an acceleration of the time evolution toward
the steady state. If x0 is unstable, it is an stabilization method very close in
spirit to the condensation method of Jarausch and Mackens [11], or the RPM
of Shroff and Keller [33]. It has been used to complete some of the branches of
steady solutions in the annular problem [27]. Other invariant manifolds could
also be computed by using the same ideas here described. In particular we are
interested in extending the techniques employed in [35] and [12] to compute
invariant tori for, at least, moderate-dimensional problems.

It is known that simple shooting might not work for very unstable periodic or-
bits [37]; then multiple shooting should be used. Its implementation, with the
method described in this work, is quite straightforward. Even if the solutions
are not very unstable, multiple shooting could be used with each shoot com-
puted in parallel on a different processor. Almost all the CPU time is spent in
time integrations; therefore, this seems the only way of using parallelism effi-
ciently, on computers with relatively slow communications between processors
as in Beowulf clusters. None of the periodic orbits calculated in this paper has
required the use of multiple shooting.

We have only used GMRES to solve the linear systems but other possibilities,
BICGSTAB(l) [36] for instance, could be considered. They could improve the
convergence and reduce the storage requirements. For branches of periodic
orbits along which there are always multipliers very close to +1, the conver-
gence of the iterative linear solvers could be improved by using information
on the leading eigenpairs to build a preconditioner. Some of these issues are
now being studied.
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C. Benest C., C. Froeschlé, editor,Modern methods in celestial mechanics, pages
285–330. Editions Frontières, 1990. Accessible also at
http://www.maia.ub.es/dsg/2004/index.html.
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Fig. 1. Decay of the expansion in Chebyshev and Fourier coefficients of a periodic
solution at Ra = 17194. See its location in the bifurcation diagram of Fig. 4.

Fig. 2. Time evolution of a symmetric cycle at Ra = 17761 showing the spa-
tio-temporal symmetries of the solution. Upper row: Contour plots of the stream-
function. Lower row: Contour plots of the temperature. See the location of the
solution in the bifurcation diagram of Fig. 4.
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Fig. 3. Test of the order of the time integration method for Ra = 8000.
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Fig. 4. Diagram of bifurcations of periodic orbits for the annulus problem. See the
text for the meaning of the amplitude A. The solid circles correspond to turning
points and branching points of periodic orbits, the cross to a bifurcation very close
to a non-generic double +1 bifurcation and the asterisks to Neimark-Sacker bifur-
cations. The arrows indicate the location of the solutions plotted in Figs. 2, 6 and 7,
and of the solution for which the test of Fig. 3 has been made.
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Fig. 5. Contour plots of the streamfunction, the temperature and the temperature
perturbation for a steady solution at Ra = 6300.

Fig. 6. Contour plots of the streamfunction, the temperature and the temperature
perturbation; (a, b, c) for the stable pure n = 4 branch of DRTW at Ra = 10200,
and (f, g, h) for the stable subharmonic DRTW at Ra = 10225. (d, e) dominant
eigenfunction of the first multiplier that crosses the unit circle at Ra = 10210.
(d) corresponds to the contour plot of the streamfunction and (e) to that of the
temperature perturbation.
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Fig. 7. Contour plots of the streamfunction, the temperature and the temperature
perturbation; (a, b, c) for a solution on the n = 4 branch at Ra = 15800; (d, e, f)
for a solution on the n = 2 branch at Ra = 17761, and (g, h, i) for a solution with
no spatial symmetries at Ra = 17194. Their locations are marked with an arrow in
Fig. 4.
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Fig. 8. Leading Floquet multipliers of the solutions represented in Fig. 7; (a)
Ra = 15800 (the leading multiplier is double), (b) Ra = 17761, and (c) Ra = 17194.

Fig. 9. Contour plots of (a) the streamfunction, (b) the temperature and (c) the
temperature perturbation for the DRTW at Ra = 20000 and η = 0.19.
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Fig. 10. Leading Floquet multipliers of the solution represented in Fig. 9. The com-
plex pair outside the unit circle is double.
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Fig. 11. (a) Branches of periodic orbits used to study the efficiency of the method
(see also Fig. 4). Number of evaluations of DP (x)v needed to compute each
point along branches, (b) B1 with parameter continuation, (c) B2 with parame-
ter continuation, (d) B2 but with pseudo-arclength continuation, and (e) B3 with
pseudo-arclength continuation.
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Coeff./Order 1st 2nd 3rd 4th 5th 6th

γ0 1 3/2 11/6 25/12 137/60 147/60

α0 1 2 3 4 5 6

α1 0 -1/2 -3/2 -3 -5 -15/2

α2 0 0 1/3 4/3 10/3 20/3

α3 0 0 0 -1/4 -5/4 -15/4

α4 0 0 0 0 1/5 6/5

α5 0 0 0 0 0 -1/6

β0 1 2 3 4 5 6

β1 0 -1 -3 -6 -10 -15

β2 0 0 1 4 10 20

β3 0 0 0 -1 -5 -15

β4 0 0 0 0 1 6

β5 0 0 0 0 0 -1

Table 1
Integration coefficients of the BDF-extrapolation formulae.

ε Newton iter. GMRES iter. CPU time (s)

10−4 6 51,48,49,47,27,1 12004

10−5 3 34,12,1 2779

10−6 2 30,1 1845

10−7 2 17,1 1184

10−8 2 9,1 780

Table 2
Number of Newton’s and GMRES iterations when computing the solution of
Fig. 7(g-i) at Ra = 17194.
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