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Accurate numerical computations of the onset of thermal convection in wide rotating
spherical shells are presented. Low-Prandtl-number (σ ) fluids, and non-slip boundary
conditions are considered. It is shown that at small Ekman numbers (E), and very low
σ values, the well-known equatorially trapped patterns of convection are superseded
by multicellular outer-equatorially-attached modes. As a result, the convection spreads
to higher latitudes affecting the body of the fluid, and increasing the internal viscous
dissipation. Then, from E < 10−5, the critical Rayleigh number (Rc) fulfils a power-law
dependence Rc ∼ E−4/3, as happens for moderate and high Prandtl numbers. However,
the critical precession frequency (|ωc|) and the critical azimuthal wavenumber (mc)
increase discontinuously, jumping when there is a change of the radial and latitudinal
structure of the preferred eigenfunction. In addition, the transition between spiralling
columnar (SC), and outer-equatorially-attached (OEA) modes in the (σ , E)-space is
studied. The evolution of the instability mechanisms with the parameters prevents
multicellular modes being selected from σ � 0.023. As a result, and in agreement with
other authors, the spiralling columnar patterns of convection are already preferred
at the Prandtl number of the liquid metals. It is also found that, out of the rapidly
rotating limit, the prograde antisymmetric (with respect to the equator) modes of
small mc can be preferred at the onset of the primary instability.

1. Introduction
The first attempts to find the asymptotic dependence of the non-axisymmetric

onset of thermal convection in self-gravitating and internally heated fluid spheres
were by Roberts (1968), and Busse (1970). In these early papers the scaling laws
Rc ∼ E−4/3, |ωc| ∼ E−2/3, mc ∼ E−1/3, the symmetry, and the azimuthal drifting of the
marginal columnar modes of convection at large rotation rates were established. These
modes were localized inside a cylinder centred at a critical interior radius. Later, the
non-local perturbation analysis of Soward (1977) showed that small disturbances, at
values of the Rayleigh number just above Rc given by the Roberts–Busse theory,
decay exponentially as t → ∞. The weak point of their analysis comes from using a
local theory that neglects the dependence of the boundary inclination on the distance
to the axis of rotation.

The numerical calculations of Zhang & Busse (1987), and Zhang (1992) revealed
that, in rapidly rotating spherical shells, the preferred modes of convection are strongly
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dependent on the Prandtl and Ekman numbers. At fast rotation rates, and moderate
and large Prandtl numbers, they are thermal Rossby waves in the form of spiralling
columns, while, at low Prandtl numbers, they are waves attached to the equator
(equatorially trapped waves).

A revised asymptotic theory for the spiralling columnar convection was proposed
by Yano (1992). Following the guidelines of Soward (1977), he improved the critical
parameters for σ > 0.1 by extending the solution of Roberts (1968), and Busse (1970)
onto a complex plane of the radial coordinate of the point where the convection
amplitude attains its maximum, but maintaining the limit of small inclination of the
boundaries. The projection of the solution onto the real axis gives the inclination of
the columns with respect to the radial direction. His calculations agree well with the
numerical results. Jones, Soward & Mussa (2000) have determined the leading-order
value of Rc, and the first-order correction for the columnar convection in spheres with
internal heating, and stress-free boundary conditions. They have generalized the work
of Yano (1992) by considering the full spherical problem. For the same problem, Busse
& Simitev (2004) have found explicit expressions for the dependence of Rc on mc. On
the other hand, Dormy et al. (2004) have completed the asymptotic theory for the
onset of columnar convection in spherical shells. The differential heating problem, for
which there are no heat sources in the fluid, is also studied. Then, the critical mode
of convection localizes around the inner radius because, according to the authors, the
conduction temperature gradient (∝ r−2) decreases very rapidly by increasing r . In
this work, the corrections due to Ekman suction are included.

In the 1990s, many theoretical and numerical papers were devoted to the study
of the spiralling columnar type of convection, mainly with stress-free boundary
conditions, since it is relevant to astrophysical problems. The dependence of Rc, ωc

and mc on E and σ , and the influence of the Ekman boundary layers on the onset
of convection in spherical shells were studied by Zhang & Jones (1993). For fluids
of σ � O(1), their numerical results show that the extra dissipation in the Ekman
boundary layers generated near the rigid boundaries destabilizes the flow, and also
reduces |ωc|, and mc. However, for σ <O(1), and moderate E, the thermal dissipation
dominates over the viscous dissipation, and the boundary layers stabilize the flow.

Low-Prandtl-number problems are important in magnetohydrodynamics since they
model planetary metallic cores. The importance of equatorial drifts in the Earth’s
core was stated by Finlay & Jackson (2003). They showed a westward drift of the
equatorial patches of the radial magnetic field from observations of the magnetic field
flux over 400 years. This phenomenon may be due to either waves or advection by the
underlying flow. The latest estimations of the thermal and magnetic Prandtl numbers
for the Earth’s outer core are σ ≈ 0.1 and 10−6, respectively. They are based on the
value of the viscosity determined by Wijs et al. (1998), and on the electrical resistivity
determined by Secco & Schloessin (1989), at the physical pressure and temperature
conditions of the Earth’s outer core. The study of thermal convection with liquid
metals in these conditions is very difficult. The numerical computations require very
high resolutions to approach the extremely low Ekman numbers of the cores, and
to solve the thin Ekman boundary layers near the rigid boundaries. For this reason,
there have been very few attempts to compute the marginal modes in this range of
parameters. Frequently, as in Pino, Mercader & Net (2000), Plaut & Busse (2005),
and Gillet et al. (2007), a quasi-geostrophic model is used to approximate the real
problem.

According to Zhang (1993, 1994), the equatorially trapped modes are quasi-
inertial waves, i.e. at leading order they are solutions of the Poincaré equation.



Low-Prandtl-number convection in rotating spherical shells 319

Moreover, Ardes, Busse & Wicht (1997) found that, at moderate rotation rates and
stress-free boundary conditions, the dominant modes remain attached to the outer
equator, but can be multicellular before the transition to spiralling columns at low
Ekman numbers. They supplied a sketch of this transition in the (σ, E)-plane. In the
work of Plaut & Busse (2005), valid for E � σ , it is seen that in cylindrical annuli
with curved lids the critical modes at small σ are also quasi-inertial and multicellular.
In addition, they have demonstrated by a perturbation analysis, that Rc decreases
when the number of vortices of the streamfunction in the radial direction increases,
because it depends on a balance between dissipation and buoyancy. The increase of
power consumed by viscous dissipation is overcome by a much more efficient release
of power developed by the buoyancy forces. This effect is due essentially to the fall
of the precession frequency of the wave when the number of cells increases.

There are no accurate experiments on the onset of convection using low-Prandtl-
number fluids. The only experimental study is that of Jaletzky (1999), although the
apparatus is a cylindrical annulus of conical lids. By using mercury (σ =0.025), he
measured low-frequency rotating waves for Rayleigh numbers of order E−2. However,
it is important to notice that, in the nonlinear regime, Aubert et al. (2001) and Gillet
et al. (2007) have found experimental retrograde zonal flows (generated by Reynolds
stresses) storing most of the kinetic energy of the fluid.

The first study of the asymptotic dependence of Rc and ωc in the small-Ekman-
number limit, for the equatorially trapped convection in a self-gravitating fluid sphere,
including solutions of the spherical boundary layer, is that of Zhang (1995). His
perturbation analysis is valid only for very low Prandtl numbers, namely σ � Em5/2.
For small but finite σ , no simple power-law dependence can be derived from this
perturbation theory. Zhang & Liao (2004), and Zhang, Liao & Busse (2007) have
proposed a new method for the study of the asymptotic solutions in a rapidly rotating
sphere, which does not assume any asymptotic scaling for E � 1. Then it is valid
for 0 � σ/E < ∞, i.e. it also includes moderately small and high Prandtl numbers.
The main contribution of these papers is to unify the inertial-oscillation and the
convective instability problems for both stress-free and non-slip boundary conditions.
The eigenfunctions are written either as a single or as a superposition of quasi-
geostrophic inertial modes, and it is shown that the viscous coupling of these modes
causes the spiralling structure of convection. The analytical results are compared with
those obtained from a numerical code for a wide spherical shell displaying a good
agreement in any considered case.

This paper seeks to help to understand the onset of thermal convection at small
Prandtl numbers between rigid spherical boundaries. Specifically, the dependence of
Rc, ωc and mc on E and σ , and the features of the preferred modes of convection
in the parameter space are studied. The small value of the radius ratio η = 0.2 will
be maintained in the paper for three reasons. Until now, the known preferred modes
of convection were spiralling columnar or equatorially attached for any η value, so
η =0.2 facilitates the calculations because the number of relevant marginal stability
curves is small, and they are much more separated than for higher η values. In the
second place, it concerns geophysical applications, because the Earth’s outer core is a
wide spherical shell, so the study is restricted to 0.005 � σ � 0.1. Finally, it facilitates
comparison with preceding papers.

In § 2, we introduce the formulation of the problem, and the numerical method
used to find the leading spectra of the linearized equations. We also include some of
the tests made in order to check our new computational code. In § 3, the marginal
stability curves as a function of E and σ , and the structure of the preferred patterns of
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convection are analysed. A comparison between these results and previous asymptotic
and numerical analysis, in the low-Prandtl-number limit, is also established. Finally,
in § 4, the paper ends with some brief comments on the results obtained.

2. Mathematical model and numerical method
A spherical shell rotating about an axis of symmetry with constant angular velocity

Ω =Ωk, and radial gravity g = −γ r , where γ is a constant, and r the position vector,
is considered. The gap width is d ≡ ro − ri , where ri and ro are the inner and outer
radii. We use the same formulation of the problem as in Simitev & Busse (2003),
which allows us to study internal and differential heating at the same time. The
non-dimensional units are d for the distance, ν2/γ αd4 for the temperature, and d2/ν

for the time; ν being the kinematic viscosity, and α the thermal expansion coefficient.
The velocity field is written in terms of toroidal and poloidal potentials

v = ∇ × (Ψ r) + ∇ × ∇ × (Φr), (2.1)

consequently, the linearized equations for both potentials, and the temperature
perturbation Θ from the conduction state (v = 0, T = Tc(r)), with r = ||r ||2, are

[(∂t − ∇2)L2 − 2E−1 ∂ϕ]Ψ = −2E−1QΦ, (2.2)

[(∂t − ∇2)L2 − 2E−1 ∂ϕ]∇2Φ + L2Θ = 2E−1QΨ, (2.3)

(σ∂t − ∇2)Θ − (Ri + Reη(1 − η)−2r−3)L2Φ = 0. (2.4)

The parameters of the problem are the internal Ri , and external Re, Rayleigh numbers,
the Prandtl number σ , the Ekman number E, and the radius ratio η,

Ri =
γαqd6

3cpκ2ν
, Re =

γα�T d4

κν
, E =

ν

Ωd2
, σ =

ν

κ
, η =

ri

ro

, (2.5)

κ being the thermal diffusivity, cp the specific heat at constant pressure, q the rate of
heat due to internal sources per unit volume, and �T the difference of temperature
between the inner and outer boundaries due only to differential heating. The operators
L2 and Q are defined by L2 ≡ − r2∇2 + ∂r (r

2∂r ), Q ≡ r cos θ∇2 − (L2 + r∂r )(cos θ∂r −
r−1 sin θ∂θ ), (r, θ, ϕ) being the spherical coordinates, with θ measuring the colatitude.
In non-dimensional units, the conduction state reads

Tc(r) = T0 − (Ri/2σ )r2 + (Reη/σ (1 − η)2)/r. (2.6)

Non-slip perfect thermally conducting boundaries

Φ = ∂rΦ = Ψ = Θ = 0 (2.7)

are used, but for testing purposes also stress-free Φ = ∂2
rrΦ = ∂r (Ψ/r) = Θ = 0

boundary conditions are implemented.
The system is SO(2) × Z2-equivariant, SO(2) generated by azimuthal rotations,

and Z2 by reflections with respect to the equatorial plane, i.e. the actions

ϕ → ϕ + ϕo, u → u,

θ → π − θ, u → ζu,

}
(2.8)

with u =(Ψ, Φ, Θ), and ζu =(−Ψ, Φ, Θ), leave the system invariant. In terms of the
velocity field, the same holds with u =(vr, vθ , vϕ, Θ) and ζu =(vr, −vθ , vϕ, Θ).
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The equations for X = (Φ, Ψ, Θ) are solved by expanding the eigenfunctions in
spherical harmonic series up to degree L, namely

X(t, r, θ, ϕ) =

L∑
l=0

l∑
m=−l

Xm
l (r, t)Y m

l (θ, ϕ), (2.9)

with Y m
l (θ, ϕ) = P m

l (cos θ) eimϕ , and P m
l being the normalized associated Legendre

functions of degree l and order m. In the radial direction, a collocation method on a
Gauss–Lobatto mesh is employed.

In order to find the critical parameters we use a new computational code, which
allows us to find the leading eigenvalues with a good resolution by means of an
iterative method. The linearized equations (2.2)–(2.4), (2.7) are separated into their
azimuthal Fourier coefficients. Let the equations for a given azimuthal mode m be
written as

ẋm = Amxm, (2.10)

where xm are all the values at the collocation mesh of the amplitudes of the variables
in spherical harmonics of order m. We compute the eigenvalues of Am by evolving
(2.10) a time t . Its solution with initial condition x0

m is exp(tAm)x0
m. The eigenvalues

μ of the linear map exp (tAm) are related to the eigenvalues λ of Am by μ = exp (tλ).
This transformation maps eigenvalues of maximum real part of Am to multipliers
of largest modulus of exp (tAm). To find the latter we employ subspace iteration or
Arnoldi algorithms (see Lehoucq, Sorensen & Yang 1998). The integration of (2.10)
is performed by a multi-step BDF-extrapolation formulae (BDF meaning backward
differentiation formulae), with initial conditions obtained by a Runge–Kutta method.
It is important to notice that an explicit treatment of the term in Q allows us to
decouple the left-hand sides of (2.2)–(2.4) for each degree l. The time interval t is
selected to be as short as possible to reduce the cost of the evaluation of exp (tAm)x0

m,
but large enough to separate the eigenvalues to make their convergence fast.

The onset of convection breaks the axisymmetry of the conduction state. Then,
according to Ecke, Zhong & Knobloch (1992), it is a Hopf bifurcation giving rise to
a wave travelling in the azimuthal direction. Typically, the critical solutions maintain
the Z2 symmetry with respect to the equatorial plane, i.e. they are symmetric with
respect to the equator. This implies that only associated Legendre functions with
odd (m + l) for Ψ , and even for Φ and Θ contribute to the linear problem. Then,
the number of unknowns can be halved if needed. However, it will be seen that at
low rotation rates, antisymmetric modes can also be selected at onset. Moreover,
from moderate rotation rates, the axisymmetric (m = 0) modes of convection are
waves travelling from the equator or mid-latitudes to the poles. Although they are
non-preferred linearly, nonlinear interactions involving these modes could give rise to
waves of this type at higher Rayleigh numbers.

Table 1 shows the convergence of the numerical method by increasing the number of
radial points Nr , and the maximal degree L of the associated Legendre functions, for
E = 3.16 × 10−6. All the results of table 1 correspond to a fourth-order time-integration
method. The tolerances required are kept at each run of the code. However, we have
checked, by changing the time step and the order of the method, that we do not
introduce numerical instabilities that could lead to erroneous critical parameters. In
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Nr × L Ric −ωc

40 × 65 8 836 856.9 16 513.198
40 × 85 8 850 865.2 16 513.533
50 × 85 8 644 084.1 16 545.639
50 × 100 8 645 078.5 16 545.794
60 × 85 8 627 974.3 16 547.513
60 × 100 8 629 021.4 16 547.655
70 × 85 8 627 670.2 16 547.753

Table 1. Convergence of the iterative method for η = 0.2, σ = 0.005, E = 3.16 × 10−6, m= 5
and Re = 0, with a fourth-order time integrator.
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Figure 1. Critical Rayleigh number (Rec
)AE1.16 versus the radius ratio η for σ = 1, and

E =10−4. The integer numbers denote the critical azimuthal wavenumber, mc , of the preferred
modes of convection for each η computed.

the table, Ric means the critical internal Rayleigh number. The negative frequencies
give positive drifting velocities c = −ωc/m, i.e. in this case, the waves precess in the
prograde direction.

We have also checked our code working with non-slip boundary conditions with
Al-Shamali, Heimpel & Arnou (2004) for differential heating, with Zhang (1995) for
internal heating, with Li et al. (2005) for a non-rotating shell, also with internal
heating, and finally, with Simitev & Busse (2003) for internal heating and stress-free
boundary conditions. The satisfactory results of the first comparison are plotted in
figure 1, for various η values. The critical Rayleigh number (Rec

)A used in Al-Shamali
et al. (2004) is related to ours by (Rec

)A = Rec
/(1 − η). The full circles and crosses

correspond to their and our numerical results, respectively, and the solid line is their
fitting to the solutions. Our results also agree very well with those presented in the
first figure of Li et al. (2005) with tiny differences of less than 0.06 % for the two η

of that figure. We do not know exactly the resolution employed in Simitev & Busse
(2003), but, the differences are less than 1.3 % in Ric , and 0.2% in ωc for σ =0.025.
However, we have found discrepancies greater then 13 % in Ric with Zhang (1995),
which will be explained below.

Hereinafter only η = 0.2, and internal heating is considered, so Re =0, and R = Ri

is defined.
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Figure 2. (a) The critical Rayleigh number (Rm
c )Z , and (b) the critical precession frequency

|ωm
c |, of each critical mode with azimuthal wavenumber m, plotted versus the Ekman number

EZ for σ = 0.005. (c) Detail of (a) showing pairs of different preferred modes with the same
wavenumber m. The full circles indicate the parameters of figures 3 and 4. (d) The two lowest
marginal stability curves for m= 3 (thick and thin solid lines), m= 5 (thick and thin dashed
lines), and m= 7 (thick and thin dotted lines) azimuthal modes. The m= 3, 5, 7 thick lines
were also calculated by Zhang (1995).

3. Numerical results
3.1. Dependence of very low Prandtl number flows on the Ekman number

First of all, the stability of the conduction state is studied for σ = 0.005, the very low
Prandtl number case computed in Zhang (1995). A mesh Nr × L =50 × 85 is used,
because it guarantees relative errors below 0.2 % in the critical Rayleigh numbers
at least up to E = 3.16 × 10−6 (see table 1), and minimizes the computing time.
Figure 2(a–c) shows the critical Rayleigh number Rm

c , and the critical precession
frequency |ωm

c | versus E, for each neutral stability curve of azimuthal wavenumber m.
In order to facilitate the comparison with Zhang, and to show the change of modes,
E and Rm

c are rescaled in the figure in accordance with Zhang (Z) units. The relations
are EZ = E(1 − η)2 and (Rm)Z = RmE/(1 − η)4.

The cusps in each curve of figure 2(a) and its enlargement figure 2(c)
indicate crossings between curves of the same wavenumber m. In figure 2(a), for
EZ > 3.6 × 10−4 the preferred m = 1 patterns of convection are symmetric retrograde
(ωc > 0) body modes, in the sense that they fill the shell up to the polar regions.
Then, they are superseded by prograde waves (ωm

c < 0) of m =2, 3, 4, whose shape is
weakly influenced by rotation. When the Ekman number is decreased, they become
more and more confined to the equatorial region, and at EZ � 3 × 10−5 these critical
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 3. The preferred equatorially trapped mode of convection with azimuthal wavenumber
m= 4, plotted at EZ = 1.92 × 10−5 for σ = 0.005. Contour plots of the radial velocity field (a)
on a sphere, (b) on the equatorial plane, and (c) on a meridional section. (d–f ) As (a–c) for the
colatitudinal velocity. (g–i) As (a–c) for the azimuthal velocity. (j–l) As (a–c) for the kinetic
energy density.

eigenfunctions can be recognized clearly as the equatorially trapped modes (see
figure 3) described for the first time in Zhang & Busse (1987). From this point, the
crossings of the curves of the same m produce decreases of mc, which lead to critical
eigenfunctions with the same mc, and relative extrema inside the arms of the spirals
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 4. The preferred tri-cellular mode of convection with azimuthal wavenumber m= 6,
plotted at EZ = 3.69 × 10−6 for σ = 0.005. Same contour plots as in figure 3.

(see figure 4). The components vr and vϕ have extrema on the equatorial plane,
and vθ and vϕ on spherical projections very close to the outer boundary. So, these
eigenfunctions display multicellular patterns of convection. We will refer to their
shape on the equatorial plane as the radial structure, that on spherical projections
as the latitudinal structure, and the local vortices on these projections as latitudinal
cells. In figure 2(c), modes with m =5, 6, 7 dominate successively twice in a short
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range of EZ . In any case, the main contribution to the latitudinal structure of the
dominant modes corresponds to the associated Legendre functions with l = mc for Φ

and Θ , and l = mc + 1 for Ψ . The only difference seems to be the relative weight of
the associated Legendre functions of higher degree.

Figure 2(b) shows |ωc| in a logarithmic scale versus EZ . The jumps also indicate the
changes between radial and latitudinal patterns of convection, which can maintain the
azimuthal wavenumber. When E decreases, the waves drift more slowly after every
jump. Moreover, under the influence of rotation, the vortices tend to spiral eastward,
and to split, forming cells attached to the outer boundary of the fluid. We will employ
the term outer equatorially attached (OEA) modes to describe both the equatorially
trapped patterns (mono-cellular) and the multicellular equatorially attached patterns,
to distinguish them from the well-known spiralling columnar (SC) modes preferred
at moderate and large Prandtl numbers.

In Yano (1992), the localized columnar convection is explained from the dispersion
relation of the wave. There, it is seen that the existence of a columnar mode requires
a strong buoyancy force counterbalanced by the kinematic diffusivity, and then the
thermal diffusivity acts to isolate the columns. However, without an effective kinematic
diffusivity (σ <O(1)), the pattern becomes a spiralling column. We have checked that
when the multicellular modes become selected, the viscous dissipation in the body
of the fluid increases, but the buoyancy force decreases significantly, so for these
solutions the preceding balance is not fulfilled. Nevertheless, our result agree with
the conclusions of Zhang et al. (2007). They demonstrate that the tendency of the
multicellular modes to spiralling is due merely to the viscous coupling of different
quasi-geostrophic inertial waves.

Figure 2(d) shows the two lowest marginal stability curves for m =3, 5, 7, in the
range of EZ of figure 1(b) of Zhang (1995). Zhang’s figure 1(b) illustrated the com-
parison between the m =3, 5, 7 curves found in his numerical analysis for η = 0.2 with
those obtained by a perturbation method, but for a full sphere. Our thick marginal
curves agree very well with those found by Zhang, but they do not give Rm

c in the full
interval. As can be seen in figure 2(d), from EZ < 1.98 × 10−5 they are superseded by
the thin lines (not found before), which correspond to multicellular modes. Namely, in
the spherical shell, the thick curves, which correspond to equatorially trapped modes
of one cell, give the correct Rm

c only down to EZ = 1.98 × 10−5. From this point,
multicellular OEA modes become preferred. This explains the important differences we
found in Rm

c when comparing both results at high rotation rates in order to check our
code.

Figures 3 and 4 show the contour plots of two preferred eigenfunctions. The first
is an m =4 equatorially trapped mode preferred at moderate EZ , and the second an
m =6 mode, selected as a sample of the multicellular patterns of convection preferred
at small Ekman numbers. Three projections of the components of the velocity field
(vr, vθ , vϕ), and the kinetic energy density are displayed in each figure (see figure
captions). The contour plots of the temperature perturbation strongly resemble those
of the radial velocity, and they are not plotted. The projections in figures 3(a) and
4(a) are taken on spheres of r = ri +0.70d and r = ri +0.47d for vr , and r = ri +0.98d

for the rest, although all of them are plotted at the same size. In this way, all the
projections are taken nearly cutting the extrema of every scalar field. The projections
on spherical surfaces of smaller radius lose some of the cells extending only to low
latitudes. Projections in figures 3(b) and 4(b) are taken on the equatorial plane, and all
meridional sections in figures 3(c) and 4(c) are cut more or less by the centre of a vr

vortex. The grey scale is the same for each row of contour plots in each figure. White
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means positive components of the velocity field. Notice that vθ = 0 in the equatorial
plane, so the contour lines in figures 3(e) and 4(e) are residuals.

Figure 3 corresponds to the preferred eigenfunction at EZ =1.92 × 10−5,
(R4

c )Z = 38.90 of figure 2(c). In Zhang (1993) it is shown that the inertial waves
extend to a characteristic latitude L = (2/m)1/2, m being the azimuthal wavenumber.
Since this latitude is very small, the presence of an inner sphere is irrelevant for
wave motions with m > π(1 + η)/2(1 − η), where η is the radius ratio of the spherical
shell. We have measured the extent of the thermal–inertial waves in the equatorial
zone following the criterion given for the solutions of the Poincaré equation, i.e.
we consider an exponential decrease of the waves with latitude, and look for the
latitude L at which the maximum of vϕ diminishes down to vϕ/e. Numerically, we
found L = (90◦ − θ) ≈ 29◦. Although E = 3.00 × 10−5 is not extremely high, the waves
are much more confined than the theoretical prediction. In the case of figure 3,
theoretically for m =4, L = 40.5◦. The discrepancy is probably due to the inclusion
of the buoyancy term in our linear analysis.

For EZ < 1.9 × 10−5, multicellular patterns of convection become preferred. When
the Ekman number is decreased, the convection spreads to high latitudes without
detaching from the equator. The spiralling flow tends to split, forming a multicellular
spiral in the boundary layer. The m =6 tri-cellular pattern found at EZ = 3.70 × 10−6

is shown in figure 4. In this case, the convection affects up to (90◦ − θ) ≈ 44◦, the
main Θ cell moves towards the inner boundary. We think that the bi-cellular mode
(not shown here) was also found numerically in Zhang (1995) (see his figure 3), but
interpreted as the spiralling columnar mode preferred at higher Prandtl numbers.

The meridional sections display the z-dependence of the components of the velocity
field. Except in the very thin Ekman boundary layers, vϕ fulfils the Taylor–Proudman
constraint, because it is a component orthogonal to the axis of rotation. We have
checked that, at high rotation rates, this becomes the strongest component on the
spherical surfaces near the outer boundary. In consequence, the contour plots of
kinetic energy density of figure 4(j–l) resemble those of vϕ , and the energy is also
almost z-independent. The perturbations from bi-dimensionality mainly come from
vr and vθ .

3.2. Dependence of low-Prandtl-number flows on the Ekman number

In order to study the dependence of the low-Prandtl-number flows on the Ekman
number, including the transition between prograde and retrograde modes, σ =0.1 has
been selected.

Figure 5 displays the results of the linear stability analysis as a function of E

(see figure caption). If E < 10−4, the regime dominated by the Coriolis force is fully
developed, and, in agreement with Zhang (1992) and Yano (1992), prograde SC modes
of convection become preferred. So, from this point, the flow remains mono-cellular
down to the lowest E values explored. In this case, the vortices detach from the
equator when the rotation rate is increased, avoiding the formation of extremely
strong Ekman layers near θ = π/2, and move towards the inner boundary, i.e. the
Ekman layers affect only mid- and high-latitudes. For instance, at E =3.78 × 10−5,
the SC modes have the maximum at r ≈ 0.6r◦, and the velocity field near the outer
surface affects latitudes higher than (90◦ −θ) ≈ 13◦. It is important to notice that these
values vary a lot with the parameters E, σ , and η.

Out of the asymptotic regime, the neutral stability curves of |ωm
c | and ωm

c versus
E (figures 5b, c), show clearly three different types of transition among modes
of the same m. For E > 3.43 × 10−3 and m < 3, there is a competition between
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Figure 5. (a) The critical Rayleigh number Rm
c , and (b) the critical precession frequency |ωm

c |,
of each critical mode of azimuthal wavenumber m, plotted versus E for σ = 0.1. (c) Detail of
(b) in linear vertical scale showing the jump to spiralling columnar modes of convection.

antisymmetric prograde and symmetric retrograde body modes. The former can
also be preferred at the onset of convection, as happens with the m =1 mode in the
interval 5.88 × 10−3 < E < 6.10 × 10−3, located just before the big cusp of the envelope
of figure 5(a) (see also the detail). We have compared the balance of terms of the
equations for the preferred antisymmetric mode, and for the neighbouring symmetric
solutions of higher and lower E. The only difference found is a slight decrease of the
viscous diffusive and buoyancy terms in the antisymmetric modes.

If m > 3, only symmetric modes become selected. For 3 � m � 6, the cusp of each
curve in figure 5(a) is the intersection of two curves of symmetric retrograde modes,
although one of them becomes prograde when E is decreased. This change of sign
of the precession frequency corresponds to the ‘fall’ of |ωm

c | to zero in figure 5(b).
The crossings can also be seen as jumps of ωm

c in figure 5(c). For m > 6, the jumps
disappear. To see in detail why this happens, the three lowest neutral stability curves
with m =5 and m =7 are plotted in figure 6. The type of line gives the correspondence
between the (E, Rm) and (E, ωm) curves. Moreover, the meaning of the acronyms used
in the labels of the curves, and, from now on, in the text is summarized in table 2.

Following the solid curve in figure 6(a) from high to low E values, the body modes
of the PS2 curve transform their spatial structure continuously, becoming PS1 modes
after the first fold, and NS1 after the second. These NS1 modes are the SC preferred
at high rotation rates. The jump of the m =5 critical curve in figure 5(c) is associated
to the intersection of the dotted PS1, and the solid NS1 curves at E = 2.76 × 10−3
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Acronyms Symmetry Sign of ω Number of latitudinal cells

PS1 Symmetric Positive (retrograde) 1
PS2 Symmetric Positive (retrograde) 2
NS1 Symmetric Negative (prograde) 1
NA1 Antisymmetric Negative (prograde) 1

Table 2. Acronyms for the leading modes found at high Ekman number.
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Figure 6. (a) The Rayleigh number R5, and (b) the precession frequency ω5 of the three
lowest marginal stability curves of azimuthal wavenumber m= 5, plotted versus E for σ = 0.1.
(c) R7 and (d) ω7, for the three lowest curves of m= 7. The meaning of labels PS1, PS2, NS1,
and NA1 is summarized in table 2.

in figure 6(a). Notice that at this point both are mono-cellular symmetric solutions
of positive precession frequency (PS1). The change of sign of ωc takes place at
E = 2.48 × 10−3, marked with a full circle in the figure, close to the crossing.

For m =7, there is a qualitative change in the neutral stability curves. By comparing
figure 6(a) with figure 6(c) it is easy to recognize an interchange of curves. In
figure 6(c), the right-hand part of PS1 remains connected with the left-hand part of
NS1, forming the first lower marginal curve, and the left-hand part of PS1 (dotted
in figure 6a) remains connected with the first part of NS1, forming the solid line of
figure 6(c), which has two very narrow folds. This phenomenology was also described
for stress-free boundary conditions in the pioneering numerical work of Zhang &
Busse (1987).
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Figure 7. (a) The critical Rayleigh number Rc , (b) the critical precession frequency |ωc|,
(c) the critical wavenumber mc , plotted versus σ . From bottom to top, ∗, ◦,  and ×
mean E = 10−4, 3.16 × 10−5, 10−5 and 3.16 × 10−6, respectively (d). The transitions among the
different modes of convection. The stars correspond to calculated points.

The interchange of like-parity modes is analysed in detail for the onset of oscillatory
binary fluid convection in Batiste et al. (1999). According to these authors, the
interchange takes place at a resonant double-Hopf bifurcation (surely hidden by
the critical non-resonant double-Hopf bifurcations), where the crossing neutral curves
become tangent. At this point, both modes will have the same frequency. This explains
why along the critical stability curves (like those of m =7, 8, 9 in figure 5c) there are
cusps without jumps in the frequency, or abrupt changes in the eigenfunctions. The
values of m (3 and 6 in this case) which separate the different behaviours of the neutral
curves depend on η. A resonant double-Hopf bifurcation has codimension-three, and
to determine the point of tangency without changing m, a third parameter (η or σ )
must be moved.

The continuous transformation of the eigenfunctions along the folds of the curves of
symmetric modes, and the interaction of modes described, explain why multicellular
modes are never preferred at moderate and high σ values. Unlike what happens
when σ = 0.005, for σ = 0.1 the crossing of the lowest curves with the same m takes
place after the transformation, and then, all of them are NS1 (SC). For instance,
the mono-cellular m =7 NS1 (SC) mode, which becomes critical at E ≈ 5.77 × 10−5,
comes from a bi-cellular PS2 mode.

3.3. Prandtl number dependence

In order to study the transition between the OEA and the SC patterns of convection,
the envelope of the marginal stability curves (σ, Rm

c ) is shown in figure 7(a–c) for four
E values in the small Ekman number limit (3.16 × 10−6 < E < 10−4). Table 3 gives the
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Jump E × 105 σ Rc × 10−5 |ωc| × 10−3 mc

OEA1/OEA2 3.16 0.0052 5.12 7.11/3.63 4/4
OEA2/OEA3 1.00 0.0063 22.4 12.0/7.49 7/5
OEA3/OEA4 0.447 0.0074 66.0 18.2/12.9 9/7
OEA3/OEA4 0.316 0.0052 83.3 26.5/18.6 9/7
OEA1/SC 10.0 0.014 2.47 1.83/1.11 3/3
OEA2/SC 3.16 0.023 11.1 3.12/2.20 7/7
OEA3/SC 1.00 0.0186 39.5 7.25/5.14 9/6
OEA4/SC 0.447 0.0168 101.6 12.6/9.56 11/8
OEA4/SC 0.316 0.0104 120.0 19.1/14.6 11/9
OEA5/SC 0.141 0.0087 306.0 34.9/27.8 13/11
SC/SC 1.00 0.051 61.4 4.69/4.05 12/9
SC/SC 0.316 0.023 182.0 14.2/11.2 14/10
SC/SC 0.316 0.045 250.0 10.8/9.09 17/12

Table 3. Parameters and critical values of the bi-critical points of figure 7 giving rise to jumps
of decreasing |ωc|. The number after OEA indicates the number of latitudinal cells near the
outer boundary.

parameters and features of the bi-critical points where changes of types of preferred
eigenfunctions (not just changes of m) take place. The table contains additional points
calculated for E =4.47 × 10−6 and E = 1.41 × 10−6 without rounding off new curves
up to σ =0.1. Figure 7(d) shows the transitions of the table. From the double-Hopf
OEA/SC bifurcation, the SC modes detach from the equator, moving towards a
cylindrical radius r ∈ (ri, ro), while the OEA modes remain equatorially trapped when
σ decreases.

Figure 7(b) shows small increasing, and big decreasing jumps in |ωc|. The small
correspond either to jumps between OEA modes of the same number of latitudinal
cells, or between SC modes. In both cases, mc increases in one unit. This is the normal
situation. In contrast, the big jumps are due either to jumps between OEA modes of
different numbers of latitudinal cells, between OEA and SC modes, or between SC
modes of decreasing mc (see figure 7c). In order to help to follow them, the discrete
points are joined with a dotted line.

Figure 7(d) shows that there is a direct transition between the equatorially trapped
(OEA1) and SC modes only near E = 10−4, i.e. just at the beginning of the small
Ekman number limit. For lower E, the transition is direct from multicellular to SC
modes. Moreover, we have been unable to find any simple law defining the OEA/SC
transition with non-slip boundaries, unlike in Ardes et al. (1997) for stress-free
boundary conditions.

At moderate E, the OEA/SC transition occurs near the Prandtl number of
some usual experimental fluids, namely for σ < 0.023. This result agrees with the
experimental results of Aubert et al. (2001) for liquid gallium (σ = 0.027). They
suggest that the nonlinear flows keep traces of the SC Rossby waves for Ekman
numbers of order 10−7, in a spherical shell of η = 0.35. The location of the transition
point can also explain why Zhang & Liao (2004) found OEA critical modes for
σ = 0.023, a very small η, and E order 10−6. Near the OEA/SC transition, a small
variation of the parameters and/or the boundary conditions can vary the type of
preferred eigenfunction.

In order to understand the jumps among SC modes of decreasing m (see figure 7c),
and why the eigenfunctions after the jumps still have the same structure, the two
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lowest envelopes of the neutral curves with m =7 for E = 10−5, and m = 12 for
E = 3.16 × 10−6 are plotted in figure 8 as functions of σ . Figure 8(a) shows that
the solid curve develops a cusp, and the dashed line a bump, near σ = 0.043. This
causes an abrupt decrease of R7 along the solid line for larger σ . The frequency
curves of figure 8(b) also become distorted (see detail), becoming nearly tangent close
to σ = 0.05. We have checked that other curves of low m have the same behaviour.
In contrast, figures 8(c) and 8(d) show the shape of the curves for higher m. It can
be seen that close to σ = 0.04, the two curves have already reconnected in the way
explained in § 3.2. The details in figures 8(c) and 8(d) show traces of the fold developed
by one of the curves before becoming tangent, and the almost equal frequencies of
both modes after the bifurcation.

Since for σ > 0.023 the neutral stability curves are more or less folded, the different
degree of deformation of the curves depending on m, mean that curves of low m

dominate suddenly again, after others of higher m. This explains the fall of mc and
|ωc| in figures 7(b) and 7(c) at the SC/SC jumps. In addition, at the resonant double-
Hopf bifurcations, neutral curves of the same m interchange their properties, and
then when this m reappears as preferred (in a non-resonant double-Hopf bifurcation)
the same structure is seen again along the critical stability curve. In this case, for a
given m, it is possible to capture the resonant double-Hopf bifurcation by moving η

and/or E, in addition to σ .
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3.4. The asymptotic limit

Figure 9 shows the critical Rayleigh number Rc, the precession frequency |ωc|, and
the critical wavenumber mc versus E, for the two fluids studied in § 3.1 and § 3.2
(see figure caption). For completeness, we include the results of the linear stability
analysis of a fluid of σ = 0.025 (mercury/liquid gallium), which, in addition of being
near the OEA/SC border, has experimental interest in magnetohydrodynamics. To
study this transition experimentally it is also worth mentioning the usefulness of the
liquid sodium. With σ = 0.01, it is below the critical value σ =0.023, but still near the
competition between OEA/SC modes at lower E (see figure 7d).

For σ = 0.025, and high E values, the critical waves have ωc > 0, but the
antisymmetric m =1 mode with ωc < 0 is preferred in 3.13 × 10−3 < E < 3.63 × 10−3.
According to the preceding results, the preferred patterns of convection of fluids with
σ ≈ 0.023 can be either OEA or SC modes depending on E. For E ≈ 4.47 × 10−5, it
is difficult to distinguish from the contour plots the type of preferred eigenfunction.
In fact, to decide it, it is necessary to know its position in the (σ, Rc)-plane of figure 7.
For E < 3.16 × 10−5, all the critical patterns are SC.

In figure 9(a), the power laws of the numerical fittings for low E are included
in our non-dimensional units. The intervals used for the fitting, and the maximal
numerical relative errors due to the numerical truncation of the data of figure 9 are
given in table 4. They are estimated by recomputing the points with 70 radial, and 110
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σ Interval (E × 104) E × 105 εRc
(%) εωc

(%)

0.1 (0.35, 1) 3.500 2.5 × 10−5 2.1 × 10−3

0.025 (0.01, 0.1) 0.100 5.0 × 10−1 8.6 × 10−2

0.005 (0.01, 0.1) 0.316 7.8 × 10−2 9.7 × 10−3

0.005 (0.01, 0.1) 0.112 2.6 2.6 × 10−1

0.005 (0.01, 0.1) 0.100 2.9 3.4 × 10−1

Table 4. Prandtl number, interval considered for adjusting the asymptotic laws of figure 9,
E of the point in the interval at which the error due to truncation is maximal, and the
corresponding numerical relative errors (ε%) of Rc and ωc .

latitudinal points. In general, an over-truncation overestimates Rc and underestimates
ωc. However, as can be seen in the table, we have relative errors below 3% for Rc

with σ = 0.005 and E ≈ 10−6. With these values, the estimated error for the exponent
of the power law of Rc is 1.3%, and 17% for the prefactor. For σ = 0.025, 60 radial
and 100 latitudinal points are used everywhere, so the error of the exponent is less
than 0.2%, and that of the prefactor is 1.7%. For σ =0.1, the truncation error is even
smaller, because the curve is cut at higher E.

In any case, the power of Rc is not far from −4/3, the leading order of the
asymptotic expansions of Roberts (1968), Busse (1970), and Dormy et al. (2004) (see
§ 1) for moderate Prandtl numbers. In contrast, the dependence of |ωc| on E is not so
clear. For σ = 0.005, the precession frequency diminishes sharply when a new pattern
of convection is selected, but keeping the previous slope (see figure 9b). The jumps
are smaller as E is decreased. Perhaps this indicates that for ω, the asymptotic
limit is not fully reached. Although the fitting of each straight segment gives
approximately a 1.10 power, greatly exceeding −2/3 given by the asymptotic limits,
the law |ωc| =5.33 × E−0.66 is found by considering the interval 10−6 < E < 10−5. The
jumps for E � 3.0 × 10−5 along this curve are between OEA modes. By increasing
σ , the height of the jumps in the same range of E is smaller. For σ = 0.025 and
E < 4.47 × 10−5, there are some E for which it is difficult to classify the eigenfunctions.
As in the preceding case, the fitting for E < 10−5 gives |ωc| =2.12 × E−0.68. Finally
for σ = 0.1, the power-law dependence of |ωc| is included, since for E < 4.47 × 10−3,
the dominant modes correspond to the same pattern of eigenfunctions (SC), and the
small jumps of increasing |ωc| correspond to changes of increasing mc.

The dependence of mc on E is plotted in figure 9(c). Again, the discrete points
are joined with a dotted lined. By neglecting the discontinuities, we have checked
that the potential law mc ∼ E−1/3 of the theoretical expansions also fits well to our
numerical values. We have found mc = 0.15 × E−0.31 for σ = 0.005, mc = 0.16 × E−0.34

for σ = 0.025, both for E < 10−5, and mc =0.30 × E−0.32 for σ = 0.1 and E < 10−4.

4. Concluding remarks
The detailed numerical computations of this work clarify previous results, and also

show some unexpected aspects of the thermal convection at low Prandtl numbers, σ .
Far from the small-Ekman-number limit (E > 3.16 × 10−3), the antisymmetric

prograde waves with low mc can be preferred; mc depending on η. For instance,
mc = 1 for η = 0.2, and in other computations with η = 0.35 and differential heating
(not displayed here), mc = 2.
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For η = 0.2, and a wide range of E (see table 3), the transition OEA/SC takes place
near σ = 0.023, namely, it occurs near the Prandtl number of the experimental liquid
metals in normal laboratory conditions. At this value, both modes become unstable
almost at once, and consequently nonlinear chaotic dynamics may be expected at or
near Rc. So, the numerical and experimental study of these regimes appears as an
interesting objective which should be easy to reach in the near future. By decreasing
E, the transition to SC modes takes place at lower σ values, this means that at the
very low Ekman numbers of the planetary cores, it is very unlikely that convection
can excite the outer equatorially attached modes. However, they could be excited by
other mechanisms, or become relevant owing to the action of the magnetic field on
the equatorial waves.

The location of the transition point could explain why Simitev & Busse (2003) detect
temporal-chaotic states near the onset of convection with η = 0.4 and σ = 0.025,
and a transition to stable travelling waves followed by amplitude vacillations for
moderate and large σ values. However, the nonlinear results of Schnaubelt & Busse
(1992), Herrmann & Busse (1997), Pino et al. (2001) and Plaut & Busse (2002)
among others, obtained for cylindrical annuli of large radius ratios, suggest that in
thin spherical shells, the preceding behaviour could have another reason. Sideband
instabilities leading to spatially modulated waves, and mean zonal flow/resonance
instabilities at moderate/low σ are the mechanisms responsible for the instability of
the thermal Rossby waves. At low σ , the region of stability of the waves comes away
from the neutral stability curve, and becomes narrower until disappearing for very low
σ values, so stable complex time-dependent flows develop at the onset of convection.

Our results are restricted to wide spherical shells, and it could be interesting (but
very expensive) to see how the transition OEA/SC moves by narrowing the gap.
Other linear calculations made for η = 0.35 down to E = 1.20 × 10−7 with differential
heating, show that the dominant modes in the small-Ekman-number limit are also
columnar for σ = 0.1, but attached to the inner boundary.

For σ greater than approximately 0.023, the modulation of the eigenfunctions along
the folds of the neutral stability curves (σ, Rm) explains the bi-critical bifurcations
labelled SC/SC. When two neutral stability curves become tangent, the eigenfunctions
at the tangency point have the same structure. Moreover, a sudden decrease in the
Rayleigh number takes place (see figure 8). Consequently, if a neutral curve becomes
preferred after the tangency, at a higher σ , the new preferred modes look like those
that were preferred before (but for the azimuthal wavenumber).

For very low σ , the equatorially trapped mono-cellular modes are soon superseded
by multicellular modes when E decreases. Therefore, a direct transition between
equatorially trapped and spiralling columnar modes exists only in a narrow range of
Ekman numbers, at the beginning of the rapidly rotating regime. This result agrees
qualitatively with the sketch of Plaut & Busse (2005). They also found that, in rotating
annuli, at low E and σ the transition is between multicellular and spiralling columnar
modes. The z-dependence of the modes of convection inside the fluid shell is stronger
in spherical than in cylindrical geometry. When the multicellular patterns become
selected, the convection tends to fill the shell, spiralling from the body of the fluid by
the effect of the rotation, but without detaching from the outer equatorial boundary.
At the same time, small vortices, which remain stuck to the outer boundary, appear.
By comparing the structure of these modes with those found by Ardes et al. (1997),
and Zhang & Liao (2004) with stress-free boundary conditions, it seems that the
non-slip boundaries tend to inhibit the formation of such vortices, in the sense that
they are smaller and more confined.
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The numerical potential laws obtained with non-slip boundary conditions and low
Prandt numbers agree well on average with the leading order of the theoretical
asymptotic expansions of Roberts (1968), Busse (1970) and Dormy et al. (2004).
However, the jumps of the precession frequencies, for low σ values, can indicate that
even at E =10−6 the asymptotic limit for ωc is not fully reached.
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