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email: fina@fa.upc.es

Summary

We examine the spiral flow and the stability of the Taylor vortex flow in the peri-
odic Taylor-Couette problem. We use an efficient computational scheme adapted
to this problem based on continuation methods applied to an spectral discretiza-
tion of the Navier-Stokes equations. We have computed the spiral flow by using
an special coordinate system to exploit its symmetries and by writing the equa-
tions in the rotating reference frame where the spiral flow is steady. Taylor vortex
flows are stationary so they can also be computed using continuation methods
and their stability can be analyzed during the continuation process.

1 The Taylor-Couette problem.

The Taylor-Couette problem studies the flow of an incompressible fluid confined
between two coaxial independently rotating cylinders. The geometry of the sys-
tem is specified by the inner and outer radius of the cylinders r∗i and r∗o , with
gap width d = r∗o−r

∗
i . The inner cylinder rotates with angular velocity Ωi, which

is chosen by convention positive, and the outer cylinder rotates with angular ve-
locity Ωo. The non-dimensional parameters for the problem are the radius ratio
η = r∗i /r

∗
o , and the Reynolds numbers associated with the tangential velocity of

the cylinders Ri = dr∗iΩi/ν, Ro = dr∗oΩo/ν, where ν is the kinematic viscosity.
We use d as length scale and d2/ν as time scale. The dimensionless Navier-Stokes
equations and the incompressibility condition are then

∂tv + v · ∇v = −∇p+∆v, ∇ · v = 0. (1.1)

We will assume infinite cylinders and periodic solutionsin the axial direction, of
period 2π/k. The boundary conditions are:



v = Riêθ at r = ri, and v = Roêθ at r = ro. (1.2)

2 The continuation algorithm

A continuation procedure has been used for the location of equilibria, to study
their dependence with respect to parameters, and for detection and analysis of
bifurcations ([5],[9]).

Given f(x, λ) = 0 with

f : U ⊂ Rn+1 −→ Rn

the curves of solutions

x = x(s), λ = λ(s)

have been obtained using a predictor-corrector continuation algorithm.
At each stage of the continuation process a predictor step, based on the previ-

ous known points on the curve of solutions, provides the initial guess from which
a corrector step converges to a new point on it. In our code the first two predic-
tions are made using the tangent to the curve and after, quadratic extrapolation
is used based on the last three points on the curve.

Several correctors have been used. We apply Newton or chord methods as
correctors to the systems

f(x, λ) = 0
λ = λ0

}

or
f(x, λ) = 0
xk = xk0

}

with xk the variable that was most increased in the last continuation step ([6])
or the following method using the Moore-Penrose inverse: if z = (x, λ) and
g(z) = f(x, λ) this corrector can be constructed by defining the following it-
erative procedure. From a given z0 lets define zk+1 = zk + ∆zk where ∆zk is
obtained from the conditioned extrema problem

min ||∆zk||2
g(zk) +Dg(zk)∆zk = 0

}

with solution

∆zk = −Dg(zk)T
(

Dg(zk) · (Dg(zk))T
)−1

g(zk)

(see [7]).
Other features of the continuation process are, the automatic arc-length step

size control using curvature and number of iterations, the termination criteria
using windows for the variables and a user-defined function h(x, λ) = 0, and
finally the detection of stationary bifurcations and branch switching. Stationary
bifurcations can be detected from the third corrector iteration using that

Dg(zk) · (Dg(zk))T

is positive definite and has zero determinant only when rank(Dg(zk)) < n, i.e.,
at a bifurcation point.
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Figure 1 Branches of spiral flow. (a) Inner Reynolds number Ri as parameter,
b = 0.3055 and Ro = −50, (b) Outer Reynolds number Ro as parameter, b = 0.3055,

and Ri = 110, (c) Slope of spiral b as parameter, Ri = 110, and Ro = −50.

3 Spiral flow

The geometrical structure and symmetry properties of the spiral flow are well
known ([4]). The spiral flow that appears in the counter-rotating case has a
spatial structure invariant with respect to a rotation around the cylinders and a
simultaneous translation in the axis direction, i.e. a helical movement which we
call helical symmetry. To reduce the calculation of spirals to a 2D domain we
use the system of coordinates

x = 2r − (ri + ro), θh = θ, ρ = z/b− θ. (3.3)

with (x, θh, ρ) ∈ [−1, 1]× [0, 2π]× [0, 2π].
The solutions independent of θh are invariant under helical movements of the

form

(r, θ, z) −→ (r, θ + β, z + bβ)

where b is the relative magnitude of the rotation around the axis and the axial
translation. We will therefore look for solutions with ∂θh

= 0 and then ∂θ = −∂ρ,
∂z = b−1∂ρ.

The spiral flow is a travelling wave in both azimuthal and vertical directions.
Therefore, to calculate them, Navier-Stokes equations have been written in a
rotating frame of reference with angular velocity Ω, in which spiral flow is steady.

To eliminate the continuity equation and the pressure from the formulation
we use a representation of the velocity field using scalar potentials:

v = f êθ + hêz +∇× (ψêz) +∇×∇× (φêz)

where

f = Pρvθ, h = Pρvz and PρF =
1

2π

∫ 2π

0

F (r, ρ, t)dρ.
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Pρ is the averaging operator in the ρ periodic coordinate. Now, f and h are only
functions of r, and ψ and φ have zero ρ−average; Pρψ = Pρφ = 0. The details
of this formulation can be seen in Marqués [8].

The equations for ψ and φ are obtained as the curl and double curl of Navier-
Stokes equations and the ones for f , h are ρ−averages of the former

(∂t −DD+)f = −Pρ(êθ · b),

(∂t −D+D)h = −Pρ(êz · b),

(∂t −∆)∆hψ = (1− Pρ)(êz · ∇ × b),

(∂t −∆)∆∆hφ = −(1− Pρ)(êz · ∇ ×∇× b),

with b = ω × v + 2Ωêz × v, ω = ∇× v and where the operators are D = ∂r ,
D+ = D + 1/r , ∆h = D+D + r−2∂2

ρρ , ∆ = ∆h + b−2∂2
ρρ and the boundary

conditions

f(ri) = Ri − riΩ, f(ro) = Ro − roΩ
h = Dψ = φ = ∆hφ = 0
−bψ + rDφ = b∆∆hφ+ rD∆hψ = 0

}

on r = ri, ro.

The spiral flow has been computed in a wide range of parameters using contin-
uation methods to solve the pseudo-spectral discretization ([3]) of the equations.
This computational method is very well suited for studying different features of
the spiral flow.

Fig. 1 shows a representation of the dependence of the solution on the pa-
rameters. We have plotted A01 = sign(Re(ψ0,1))|ψ0,1|, the absolute value of the
amplitude ψ0,1 times the sign of its real part, versus the inner Reynolds number
Ri (fig. 1a) the outer Reynolds number Ro (fig. 1b) and the slope of spiral b
(fig. 1c). We have found that the spiral flow exists in a much wider parameter
range than experiments suggests. In particular, it also exists in the corotating
case (see fig. 1b). We have restricted the linear stability analysis of the spiral flow
to perturbations with helical symmetry. Even in this case, the spirals are only
stable in a small range of inner Reynolds numbers Ri (unstable branches are
plotted with dashed lines in fig. 1a). To decide if these flows can be observed in
the corotating case a complete stability analysis should be performed, including
transitions to three-dimensional solutions.

We now consider the structure of the spirals labeled 1, 2, 3, 4 in fig. 1a cor-
responding to inner Reynolds number 140, 220, 300, and 500, respectively. The
analysis of the flow properties shows some features very close to the ones corre-
sponding to the Taylor vortex flow, such as formation of jet like structures (see
fig. 2c) and the appearance of an inviscid core for high Reynolds number Ri (see
figs. 2c and 2d).

The detailed description of the aforementioned properties and others, as par-
ticle trajectories in the spiral flow, can be seen in Antonijoan et al. [2].
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Figure 2 (a) Perspective of the projection of the velocity field onto the mean radius
surface. (b) Velocity field at a vertical plane. (c) Isolines of azimuthal velocity. (d)

Isolines of vertical vorticity. The four plots in each case correspond to the spirals 1, 2,
3, and 4 along the Ri curve of Fig. 1a.
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4 Taylor vortices and their stability

We have computed the nonlinear, steady axisymmetric solutions of the Taylor-
Couette problem which correspond to Taylor vortices and examined their sta-
bility. As for the spiral flow, we will adopt a formulation based on potentials for
the velocity field suited for this case. The velocity field is now written as

v = f êθ + hêz +∇× (gêθ + ψêz) +∇×∇× (φêz). (4.4)

The main difference with the previous formulation is the apearance of the new
potential g that did not appear before because of the special symmetry properties
of the spiral flow ([8]).

As Taylor vortices are axisymmetric, the velocity field depends only on r and
z, and the formulation can be greatly simplified;

vv(r, z) = fvêθ +∇× (gvêθ)

with fv and gv verifying

∆̃f = −gzD+f + fzD+g

∆̃∆̃g =
1

r
∂zf

2 +D+g∆̃gz − gzD−∆̃g

The corresponding boundary conditions are

f(ri) = Ri, f(ro) = Ro, D+g = gz = 0 at r = ri, ro

and the operators are

D = ∂r, D± = D ±
1

r
, ∆̃ = DD+ + ∂2

zz.

Collocation methods have been used in the radial and axial coordinates.
The linear stability of the computed Taylor vortices has been studied. We

consider non-axisymmetric perturbations of vv of the same axial periodicity,

vp(r, θ, z, t) = vv(r, z) + v(r, z)eµteimθ (4.5)

being m ∈ Z the azimuthal wave number of the perturbation. In terms of the
most general scalar potentials 4.4

fp(r, z, t) = fv(r, z) + f(r, z)eµt

gp(r, z, t) = gv(r, z) + g(r, z)eµt

hp(r, θ, t) = h(r)eimθeµt

ψp(r, θ, z, t) = ψ(r, z)eimθeµt

φp(r, θ, z, t) = φ(r, z)eimθeµt.

6



2.0 2.2 2.4 2.6

λ

950

1050

1150

Ri

Envelope

1

2

4

6
8

10

12
14

15
17

19
21

23

25

27

29

31

33

(a)

1.8 2.0 2.2 2.4 2.6

λ

1225

1325

1425

Envelope

1

2

4
6

8
10

12

14
16

18
20

2224

26

28

30

32

34

(b)

Figure 3 The neutral stability curves from Taylor vortices corresponding to the
eigenvalue problem II, with parameters η = 0.883, and Reynolds number of the outer

cylinder Ro = 815 in fig. 3a, and Ro = 1060 in fig. 3b.
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Figure 4 The solid lines are the envelope curves shown in fig. 3a and fig. 3b. The
dashed lines correspond to the calculations of Weisshaar et al. [10] and the triangles

to Andereck et al. [1] experiments.
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It must be noticed that f and g do not depend on θ because they are defined as
certain azimuthal averages of ψ and φ.

It can be seen that f and g only contribute to axisymmetric instabilities that
can be detected during the continuation process to calculate Taylor vortices. So
we have put f = g = 0. In addition the eigenvalue problem can be splitted into
two parts by separating the potentials into its even and odd parts in the vertical
coordinate. If ψ and φ are written as ψ = ψe + ψo and φ = φe + φo and after
substituting into the equations, a detailed study of the parity of their terms
shows that the system can be separated into two kinds of eigenvalue problems:
Type I corresponding to wavy solutions for which the perturbations are out of

phase with the Taylor vortices:

µh(r) = ∆hh(r)− Pz(1− Pθ)êz · bh,ψo,φe (4.6)

µ∆hψ
o(r, z) = ∆∆hψ

o(r, z) + (1− Pθ)êz · ∇ × bh,ψo,φe (4.7)

µ∆∆hφ
e(r, z) = ∆∆∆hφ

e(r, z)

−(1− Pθ)(1− Pz)êz · ∇ ×∇× bh,ψo,φe (4.8)

and type II corresponding to twisted vortices solutions for which the perturba-
tions are in phase with the Taylor vortices:

µ∆hψ
e(r, z) = ∆∆hψ

e(r, z) + (1− Pθ)êz · ∇ × bψe,φo (4.9)

µ∆∆hφ
o(r, z) = ∆∆∆hφ

o(r, z)

−(1− Pθ)(1− Pz)êz · ∇ ×∇× bψe,φo (4.10)

The set of boundary conditions for each of the eigenvalue problems are

h = 0 (4.11)

∂rψ
o = φe = ∆hφ

e = 0 (4.12)

mψo + r∂rzφ
e = 0 (4.13)

m∆∆hφ
e − rD∆h∂zψ

o = 0 (4.14)

for I and

∂rψ
e = φo = ∆hφ

o = 0 (4.15)

mψe + r∂rzφ
o = 0 (4.16)

m∆∆hφ
o − rD∆h∂zψ

e = 0 (4.17)

for II, at r = ri, ro.
The notations bh,ψo,φe and bψe,φo have been used for the term b = ωv × v+

ω×vv when the perturbation v of the vv is v = hêz+∇×(ψoêz)+∇×∇×(φeêz)
or v = ∇× (ψeêz) +∇×∇× (φoêz) respectively.

In case II the boundaries between vortices are not distorted and transitions
to twisted vortices will be obtained. In case I because of the azimuthal oscil-
lations of the boundaries, and following Weisshaar et al. [10] we will name the
solutions wavy vortices or wavy twisted vortices depending on their appearance
and azimuthal wave number.
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The eigenvalue problems have also been solved by using a collocation method
on the same mesh used to calculate Taylor vortices. The stability of each solution
is obtained during the continuation process. The code that we have developed
follows a curve of solutions and stops when an user-defined condition H(x, p) = 0
holds. This procedure has been used withH defined as the real part of the leading
eigenvalue of one of the eigenvalue problems already stated.

We have focused our attention to the transition to twisted vortices (type II).
We have compared our results for the wide gap case with works on the narrow
gap and almost corrotating cylinders case ([10]) and with experimental results
([1]).

In fig. 3a and fig. 3b we have plotted the neutral stability curves. The radius
ratio is η = 0.883 and the Reynolds number of the outer cylinder is Ro = 815
and Ro = 1060 respectively, as in the experiments of Andereck et al. [1]. In both
figures the inner Reynolds number at which Taylor vortices become unstable
is plotted against the axial wave length λ of the perturbed vortex for different
azimuthal modes m. We show only some of the curves in the range 1 ≤ m ≤ 30
and the envelope of some of them. In fig. 3a the first unstable mode is m = 1 for
axial wave lengths below approximatelly 2.15 and above this value, the critical
azimuthal wavenumber m decreases with the axial wave length starting with
m = 25.

In fig. 4a and fig. 4b the triangles correspond to Andereck et al. [1] experiments,
the dashed lines to the calculations of Weisshaar et al. [10] and the solid lines are
the envelopes plotted in the previous figures. The correspondence between the
two numerical calculations is very good for a wide range of wave lengths λ but
our calculations match better the minimum value of λ at which twisted vortices
are observed in experiments.

There is a vertical shift between the calculated transition curves and the ex-
periments from [1]. It could be thought that these shifts were due to the narrow
gap approximation used in [10]. We have shown that this is not the case. The
only possible explanation is that they must be due to the cylinders finite length
effect.

In order to obtain a picture of the flow pattern near the bifurcation point,
we have added some small multiple of the velocity perturbation field to the
basic axisymmetric flow. Fig. 5a shows a perspective view of the axisymmetric
flow, and fig. 5b of the perturbed velocity field onto a cylindrical surface for
r = 0.9(ro − ri) + ri. Fig. 5b shows a pattern very similar to the experimental
ones found by Andereck et al. [1] in the twisted vortices regime.
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Figure 5 Perspective views of the projection of (a) the velocity field of Taylor
vortices and of (b) the perturbed velocity field corresponding to twisted vortices, onto

cylindrical surfaces for r = 0.9(ro − ri) + ri.
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