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Juan Sanchez UmbrfaFerran Garcia Gonzaleand Marta Net Marcé
*Departament de 8ica Aplicada, Universitat Pokicnica de Catalunya, Barcelona, Spain

SummaryAzimuthal waves appearing in the thermal convection of & ffluid contained in a spherical shell with both boundaries at
different temperatures are studied. They are computedibyg asentinuation methods as steady solutions in the referepstem of the
wave. There stability is also studied, and the secondatydafions to modulated waves are detected.

Equationsfor the wavesin the spherical shells

Consider a spherical shell of inner and outer ragdandr,, rotating at an angular veloci®, filled with a homogeneous
fluid of densityp, thermal diffusivity x, thermal expansion coefficient, kinematic viscosityy, and in the presence
of a radial gravitational fielgg = —~r. In the Boussinesq approximatien « andv are considered constants, and
p = po(1—a(T —Tp)) is assumed to vary linearly with the temperatiirist in the gravity term. Therefore the velocity
field v satisfies Navier-Stokes equations and it is divergenae-fée assume constant temperature at the boundariés,
being the difference of temperatures between the two sphere

The non-dimensional parameters appearing in the equatienthe radius ratig, and the Ekmank, Rayleigh,R, and
Prandtl,c, numbers defined as

n=ri/ro, E=v/Qd> R=~yaATd"/kv, oc=v/k with Q=|Q|, and d=r,—r;. 1)

The Ekman number is related to the Taylor numbefby: Ta~'/2. The conduction state given by= 0 and7,(r) =

To + Rn/o(1 — n)*r, whereT andr are now non-dimensional variables, is a solution for anyeaif the parameters.
When it becomes unstable the bifurcation is usually a Hdpfrtation giving rise to azimuthal waves.

The equations governing the dynamics of the fluid are writtespherical coordinate@:, 0, ) (6 being the colatitude,
and the longitude), in the rotating frame of reference of theesph, and in terms of two scalar potentials (toroidal and
poloidal) for the velocity, i.ey = V x (¥r) + V x V x (®r) . The equations for the potentials are obtained by applying
the operators - Vx andr - V x V x to Navier-Stokes equations. The potentials and the pextiorbof the temperature
from the conduction state are expanded in spherical hagsanies up to degrele as

L l
(‘I’,@,@)(t,?‘,e,(p) = Z Z (\I/;naq);na@;n)(ﬁar)y}m(ea‘p)v
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=0 m=—

with ¥, = ¥, &, ™ = &, and®; ™ = ©]". Moreover, to have the two potentials completely deterahime can
choosel§ = @ = 0.
If the operatorD; is defined aD; = 92, + (2/r)d,. — I(I + 1)/r?, the equations for the amplitudes are

0t =D + =) 2E7! (imP]* — [Q®]") — [r- V x (w x V)]["] 2

1
oD@ = DiO" — O + ) RE (imDy®" + [QU]") + [r- V x V x (w x v)]]"], (3)
00" = o 'DO + o (I + 1)Ry(1 — n) 2r 30" — [v- VO (4)

wherew = V x v is the vorticity, and the operata@p is defined by its action on a functiof expanded in spherical
harmonics as

[QAIF =~ + )}y Do [y — (L= D+ De" DY fiy, with ¢ = (12 = m?) /(412 = 1))'/2, (5)

andD;" f = 0, f+1f/r. Onthe boundaries = n/(1—n) andr, = 1/(1—n), stress-free®” = 92.®" = 9, (V" /r) =
0) or non-slip ;" = 0, ®* = ¥]* = 0) boundary conditions may be selected for the velocity fiBlekfectly conducting
(07" = 0) boundaries are used for the temperature (see [1, 2, 3] foe details on the formulation).
The above system, will be written as

LoOiu = Lu+ B(u,u), (6)

whereu = u(t,r, 6, ) is a vector containing the values of the amplitudes at a mésbllmcation points in the radius,
and L and B are, respectively, linear and bilinear operators, wittlepending on all the parameters of the problem. As
the dependence of the solution will be studied by fixing alhefm excepi? we will make explicit the dependence on a
single parameter\(= R in our calculations). Suppose thatat A, the solutionu = 0 becomes unstable, and a branch
of azimuthal waves starts there. Then, at this valug, dfiere are a vectar. and a constant. such thatw.Lov. = Lv,.
The waves.(t,r,0, ) = u(r, 0, ¢), solutions of (6), withp = ¢ — wt, verify the equatiow Lo0z0 + Lu + B(u, ) = 0,
or, by deleting the tildes,

F(u,w,\) = wLo0,u+ L(A\)u+ B(u,u) = 0. (7)
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This equation must be supplemented by adding a phase aamditie use the conditiof(u) =< u, d,u. >= 0, where
< -,- > is the£? product, and.. is a reference solution (the eigenvectar,= v., atA = )\, or a previously computed
solution). It is a necessary condition fioe — u.||3 to be minimal with respect to the phase.

The action of the Jacobig@,, F, 0., F, O\ F)(u,w, X) on (v, , 1) is

DuF (1, w, v + 0 F(u, w, A)C + OnF (1, w, )it = wLodyv + CLodyu + LN 4+ pLPu + B(u,v) + B(v, u),

due to the dependence éfon ), which has the fornT.(\) = L) 4 AL(3). The action of the Jacobia®,G(u) on
(v, ¢, 1) I8 0, G(u)v =< v, d,u. > . During the continuation process to study the dependendeafiaves with\, linear
systems of equations with matrices
OF O.F O\F
G 0 0 (8)
T

w,, Wy W

must be solved. The last row comes from the pseudo-arcleogidition They will be preconditioned by matrices of the
form
wpLloOp+L, 0 0
0 1 0],
0 0 1

with L, = L(),) andw, being the operatoL and the frequency of the wave at a previous step. Sihé block-
tridiagonal, due to the operat®r (5), it is possible to solve this latter system efficiently. [4

To study the stability of the waves there are two possibditifinding the leading eigenvalues of the Jacobian (8),lwhic
requires some kind of transformation (Cayley or shift-imyv#or instance), or integrating the linearized equatiaheut
the wave, which does not require transformations, but itasenexpensive.

6e+05 : : : : 130
5e+05[ 1120
4110
4e+051
>
{1002
£ 9]
O 3e+05} =
z Norm 1g0 @
LL
2e+05}
“._ Freq. 180
le+05f 170
0e+00 . . : . 60
5e+05 6e+05 7e+05 R 8e+05 9e+05 1e+06
e

Figure 1: On the left, norm of the solutiofiw||2, and frequencyy, of the wave as a function of the Rayleigh number. On the (g,
solution at the bifurcation point = 7.936 x 10°), and (down) imaginary part of the leading eigenfuctioringivrise to a modulated
wave.

Preliminary resultsand conclusions

Fig. 1, computed with non-slip boundary conditions, showgpécal plot of the curve of solutions and the frequency
as a function of the control paramet&r The rest of the parameters have been kept constant to thesval= 0.35,

o =0.1,andE = 3.54 x 107° (T'a = 8 x 1078). The discretization dimensions arg = 32 (the number of radial
collocation points) and. = 8 x 16 = 128 (only the first 16 spherical harmonics of order multiple3adre stored). The
contour plots on the right represent the level curves of gréupbation of the temperature at the three sections itetica
with dashed lines. The upper plots correspond to the bifimegoint which gives rise to a quasiperiodic solution (for
perturbations with the same azimuthal wavelength). Thetamnes show the imaginary part of the leading eigenfunction
at the bifurcation point.

References

[1] R. Simitev, F. H. Busse, Parameter dependences of cbomedriven spherical dynamos, in: E. Krause, W. Jager (EHsgh performance computing
in science and engineering '02, Springer, 2002, pp. 15-35.

[2] M. Net, F. Garcia, J. Sanchez, On the onset of low-piamagiinber convection in rotating spherical shells: nop-8loundary conditions, J. Fluid
Mech. 601 (2008) 317-337.

[3] F. Garcia, J. Sanchez, M. Net, Antisymmetric polar nedéthermal convection in rotating spherical fluid shellbigh taylor numbers, Phys. Rev.
Lett. 101 (19) (2008) 194501—(1—4).

[4] F. Garcia, M. Net, B. Garcia-Archilla, J. Sanchez, Avqmarison of high-order time integrators for the boussinesger-stokes equations in rotating
spherical shells, J. Comput. Phys. 229 (2010) 7997-8010.



