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Abstract

This paper deals with the analysis of numerically obtained spatio-temporal data
for thermal convection in a two-dimensional circular annulus. These data are
post-processed using a recent method called the spatio-temporal Koopman de-
composition, which applies to the frequent case in which the underlying dynam-
ics exhibit oscillatory (possibly growing or decaying) behavior in both time and
one of the spatial directions (the azimuthal coordinate for the present prob-
lem). When this holds, the method decomposes the data into Fourier-like series
in both the distinguished spatial direction and time. In the general case, the
obtained series account for, not only the involved temporal frequencies and
spatial wavenumbers, but also the spatial and temporal growth rates. In the
simpler situation of attractors showing spatially periodic behavior, the spatial
and temporal growth rates vanish (or are very small). In this case, the analysis
of the wavenumber–frequency pairs that are present allows for uncovering the
spatio-temporal structure of the flow in the circular annulus. The analysis fo-
cuses on periodic and quasi-periodic attractors, which exhibit spatio-temporal
symmetries that are identified by the method. In addition, for quasi-periodic
attractors, the method gives semi-analytic descriptions for the tori densely cov-
ered by particular trajectories. Although the paper concentrates on the thermal
convection problem in an annulus, it will become clear that the method applies
to other related dynamics as well.
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1. Introduction

Many, generally nonlinear dynamical systems are such that the temporal
dynamics of the scalar or vector state variable qs (with the superscript s de-
noting the components of the state variable) depending on the vector spatial
coordinates x and time t, exhibit the following approximate behavior

qs(x, t) =

N
∑

n=−N

anu
s
n(x) e

(δn+iωn)t, (1.1)

where an ≥ 0 and usn are the mode amplitudes and the conveniently normalized
spatial modes, respectively, and δn and ωn are the temporal growth rates and
frequencies, respectively. For attractors, the growth rates δn are all zero (or
very small). Positive values of δn are associated to instabilities and negative
values, to transient behavior approaching attractors. Examples are numerous
and include, e.g., purely fluid dynamic problems, such as vortex shedding [1],
aeroelastic phenomena [2], and thermal convection problems [3, 4] in 2D or 3D.
Note that, strictly speaking, the = sign appearing in Eq. (1.1) (and in many
equations below) should be replaced by ≃ for two main reasons. First, the data
in the left hand side are usually subject to errors. Second, the expansion in the
right hand side is truncated retaining only 2N + 1 terms. However, Eq. (1.1)
can be considered as exact to the approximation relevant in this paper and the
= sign will be maintained hereinafter. The involved errors will be indicated.

If the data are real, as we assume hereinafter in this paper, those terms
in (1.1) can be conformed in complex conjugate pairs, which means that the
2N +1 terms appearing in the expansion (1.1) can be organized such that they
are invariant under the action

n→ −n, ωn → −ωn, usn → ūsn, (1.2)

where the overbar stands hereinafter for the complex conjugate. Note that
when the components of the state vector are coupled, δn and ωn are typically
common to the state variable components, namely they are independent of s.
The expansion (1.1) will be obtained in discretized form as

qs(xi, tk) =

N
∑

n=−N

anu
s
n(xi) e

(δn+iωn)tk , (1.3)

where the discrete values of time, tk, must be equispaced, which is a very im-
portant requirement for the methods used below. The expansion (1.3) can be
computed using standard dynamic mode decomposition (DMD) [5]. However, as
further explained in [6], this method fails when the spatial complexity (defined
as the rank of the set of spatial modes) is smaller than the spectral complexity

(defined as the number of terms that are present in the expansion). In this
case, standard DMD can be substituted by a recent extension, called higher

order DMD (HODMD) [6], which will be summarized Section 2 and gives good
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results for arbitrary values of the spatial and spectral complexities [7]. The
method depends on three tunable parameters, but at the moment we only men-
tion a (small) threshold ε2 that defines truncation. Namely, we only retain those
modes such that

an/amax ≥ ε2, (1.4)

where amax is the maximum value of the mode amplitudes. This truncation
condition defines N in the expansions (1.1) and (1.3).

Whatever the method, setting tk continuous in the expansion (1.3) leads to
temporal interpolation. Spatial interpolation in x (which is only known at the
considered discrete values of x associated with the spatial grid) could also be
performed using an appropriate interpolation method. On the other hand, for
transient dynamics converging to an attractor, some of the modes are such that
δn = 0 (or very small) and the remaining ones exhibit negative δn. Eliminating
from the expansion the latter modes permits computing the attractor (temporal
extrapolation [8]). In the sequel, we concentrate on attractors, for which the
temporal growth rates are all zero (or conveniently small). In this case, a good
account of how well the expansions (1.1) and (1.3) converge results from a semi-
logarithmic plot of the amplitudes vs. the frequencies, which will be called the
a−ω diagram. Time may be replaced in Eqs. (1.1) and (1.3) by a distinguished
spatial coordinate, which gives a spatial counterpart of these decompositions,
called spatial DMD.

When the modes appearing in Eqs. (1.1) and (1.3) are proportional to their
complex conjugates, namely ūsn = eiα

s

usn, the state variable oscillates in phase
at all spatial points, giving a pure standing wave (SW), which appear for in-
stance when the dynamics exhibit a convenient instantaneous reflection sym-
metry. Note that the phase αs does generally depend on s because a phase
shift between the various state variable components is generally to be expected.
When the phases also depend on n, the expansion (1.3) gives a modulated SW,
in which the pattern goes not only up and down but also, say, left and right as
time proceeds. These patterns appear generically when the dynamics exhibit
a spatio-temporal reflection symmetry. Examples of pure and modulated SWs
will be given below. More general, non-standing patterns are progressive, and
may show a very complex dynamical structure or not. Among the latter, for
systems that are invariant under translations in a distinguished direction, x,
pure traveling waves (TWs) are steady in axes moving along the longitudinal
direction x and modulated TWs are generally periodic or quasi-periodic in mov-
ing axes. TWs (and also SWs, see the applications in this paper) are more
clearly analyzed using the following spatio-temporal counterpart of Eq. (1.1)

qs(y, x, t) =

M
∑

m=−M

N
∑

n=−N

amnu
s
mn(y)e

(νm+iκm)x+(δn+iωn)t, (1.5)

where vector y denotes the remaining transverse spatial coordinates, νm and
κm are the spatial growth rates and wavenumbers, respectively, and the spatio-
temporal amplitudes and normalized modes are amn ≥ 0 and usmn, respectively.
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As above, the discrete counterpart of this expansion is

qs(yi, xj , tk) =

M
∑

m=−M

N
∑

n=−N

amnu
s
mn(yi)e

(νm+iκm)xj+(δn+iωn)tk , (1.6)

where the discrete values of x and t, xj and tk, respectively, are both taken as
equispaced, which again is a very important condition for the methods in this
paper. And, again, setting both xj and tk continuous involves interpolation in
these variables; a further convenient interpolation in y leads to Eq. (1.5).

Since the state variable is real, the various terms in the expansions (1.5)
and (1.6) appear in complex conjugate pairs, which means that they may be
organized such that they are invariant under the action

m→ −m, n→ −n, κm → −κm, ωn → −ωn, usmn → ūsmn, (1.7)

which is the counterpart of Eq. (1.2).
The expansion in (1.6) will be obtained via the spatio-temporal Koopman

decomposition (STKD) method [9], which will be summarized in Section 2. As
in the purely temporal decomposition (1.3), a tunable parameter ε2 is used to
truncate (1.6), retaining only those spatio-temporal modes such that (cf (1.4))

amn/amax ≥ ε2, (1.8)

where amax is the maximum value of the mode amplitudes. This truncation
condition defines both M and N , which in principle define the total number of
modes appearing in (1.5) and (1.6). However, typically, condition (1.8) leads to
a smaller number of modes to be retained, namely P ≤ (2M +1)(2N +1). The
resulting expansion can still be written in the form (1.6), with the neglected
amplitudes set equal to zero.

When the dynamics correspond to a temporal attractor whose spatial struc-
ture is also permanent in the spatial variable x, the spatial and temporal growth
rates are very small. In this case, the plot of κ vs. ω, to be called the κ−ω dia-

gram, will give an idea of the structure of the dynamics, identifying in particular
SWs or TWs. In the former case, such diagram conforms horizontal lines, while
in the latter case it is organized in oblique straight lines. For thermal convec-
tion in a 2D annular geometry, SWs will be analyzed in the applications along
the paper, while examples of TWs appearing in both the 1D Ginzburg–Landau
equation and thermal convection in a 3D spherical shell can be found in [9].

It is to be noted that the preliminary applications in [9] were only intended
to illustrate the performance of the STKD method. Here, instead, we use the
method to analyze the dynamics for thermal convection in a two-dimensional
circular annulus, for which we perform a deeper analysis of periodic and quasi-
periodic attractors, focusing on the identification of the symmetries that are
present in the dynamics. Also, for quasi-periodic attractors, we obtain a semi-
analytic description of the whole torus densely covered by the particular tra-
jectories. It is remarkable that efficiently identifying invariant tori associated
with quasi-periodic solutions in high-dimensional phase spaces is a major open
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problem in the field; in the applications below, the quasi-periodic attractors will
exhibit only two incommensurable fundamental frequencies, but it will become
plain clear that the method is straightforwardly extended to higher dimensional
tori. Also, we anticipate that these results will be obtained using data in a lim-
ited timespan, which makes a significant difference with more standard methods,
such as FFT and PSD [10]. Other known methods are available to obtain the
frequencies and amplitudes for scalar signals (instead of the high-dimensional
signals considered in this paper). These methods use relatively short times, and
are based on iterative procedures [11, 12]. The particular problem considered
here is used for the sake of clarity in the exposition, but it will become clear
that the ideas in the paper (in connection with identifying both symmetries and
invariant tori) also apply to other thermal convection problems and, moreover,
to other dynamical systems.

The truncated expansions considered above are only approximations of the
actual dynamics. The error of these approximations will be measured in terms
of the relative root mean square (RMS) error, defined for the discrete approxi-
mations as

RRMS error =
‖qsapprox. − qsexact‖2

‖qsexact‖2
, (1.9)

where the norm ‖ · ‖2 denotes hereinafter the Euclidean norm for vectors and
the Frobenius norm for matrices or tensors.

Note that expansions of the type (1.1) and (1.5) (usually retaining only a
few terms) are implicit in the weakly-nonlinear analysis of oscillatory pattern
forming systems [13]-[16], using approximations of the governing equations. The
methods considered in this paper, instead, give these expansions for fully non-

linear dynamics in a purely data-driven fashion, without using at all the model
equations that govern the underlying dynamics.

The remaining of the paper is organized as follows. Section 2 summarizes
the temporal HODMD and spatio-temporal STKD methods. In Section 3, the
STKD method is applied to the thermal convection in a 2D annulus. Three
cases are considered. The first two correspond to periodic solutions in time and
the third one, to a quasi-periodic regime. The case of noisy data is considered
in Section 4. The article ends with some conclusions and remarks, in Section 5.

2. The HODMD and STKD methods

Let us now give a brief description of the HODMD and STKD methods.
The temporal HODMD method yields the expansion (1.3) using a set of K

snapshots that can be organized in a snapshot matrix, whose elements are given
by qs(xi, tk). The method proceeds in three steps that are summarized here
(see [6] for more details and the relevant formulae to compute the expansion
and see [17] for a MATLAB executable): (a) the first step consists in a dimen-

sion reduction, which decreases the approximate rank of the snapshots set using
a truncated singular value decomposition (SVD) [18] applied to the snapshot ma-
trix. This step takes advantage of the redundancies among the snapshots and
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truncation is performed using a tunable tolerance ε1. The outcome is a set of
dimension-reduced snapshots and an inverse projection matrix that permits re-
constructing the original snapshots from the dimension-reduced snapshots. (b)
As a second step, each dimension-reduced snapshot is enlarged considering also
the former d− 1 (with d ≥ 1 tunable) time-shifted snapshots and the standard
DMD method is applied to these enlarged-reduced snapshots, which leads to
a dimension-reduced version of the expansion (1.3); the mode amplitudes are
computed via least squares fitting with the actual reduced snapshots. The ex-
pansion (1.3) is recovered from its dimension-reduced version using the inverse
projection matrix mentioned in step (a) and appropriate rescaling the resulting
spatial modes (which leads to a re-definition of the mode amplitudes computed
for the dimension-reduced expansion). (c) As a third step, the resulting ex-
pansion (1.3) is truncated according to (1.4) (with ε2 tunable), which defines
the number of retained modes, 2N + 1. Note that this algorithm, called the
DMD-d algorithm, synergically combines the advantages of standard DMD and
the Takens’ delayed embedding theorem [21].

As described, the method depends on (i) the timespan in which the method
is applied, which should be somewhat larger (say, 1.5 times as large) than the
largest involved period, (ii) the number of equispaced snapshots taken in this
timespan, which should be such that the distance between consecutive values
of t is much smaller (say, five times smaller) than the smallest involved period,
and (iii) the spatial discretization used in the variable x. In addition, the
method depends on three tunable parameters, namely ε1 (defining truncation
in step (a)), ε2 (defining truncation in step (c)), and d (defining the number
of delays in step (b)). It is to be noted that the selection of d is not critical,
namely the plot of the error of the approximation vs. d is usually fairly flat
near the minimum [6] and, for a given timespan, the number of delays, d, scales
with the number of snapshots K. Robustness of the results against variations
of the various parameters is an important property that must be checked in
the application of the method. When the index d = 1, the HODMD method
described above reduces [6] to the standard DMD method [5].

Likewise, spatial DMD along a distinguished spatial coordinate x is per-
formed similarly, by just substituting t by x.

Now, the STKD method gives the spatio-temporal expansion (1.6), whose
left hand side depends on three indexes and thus defines a snapshot tensor, in-
stead of a snapshot matrix. The method combines higher order SVD (HOSVD),
a method introduced by Tucker [19] and more recently popularized by de Lath-
auwer et al. [20], and two applications of HODMD performed along the longi-
tudinal and temporal directions, x and t, respectively, with indexes dx ≥ 1 and
dt ≥ 1, respectively, which do not necessarily coincide; see [9] for more details
and the relevant formulae. Truncation in the application of the HOSVD method
(which can be seen as a dimension reduction) is performed requiring that the
relative RMS error of the truncated approximation be smaller that some (small)
tunable parameter ε1. This is a good strategy when the data are very clean.
However, for noisy data, truncation can be performed (to filter noise) in view
of the HOSVD singular values distribution (see Section 4).
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Concerning the computational cost of the STKD method, note that it re-
quires [9]: (a) applying tools such standard SVD and HOSVD, which reduce
the dimension of the snapshot matrix or tensor, (b) computing eigenvalues of
some dimension-reduced matrices, to calculate the spatial and temporal growth
rates, wavenumbers, frequencies, and modes, and (c) applying a dimension re-
duced least squares fitting to compute the mode amplitudes. These operations
require polynomial times in the amount of involved data. For the specific case
considered in this paper, the most computationally expensive STKD compu-
tation (for the quasiperiodic dynamics considered below) required ∼ 24 CPU
seconds in a standard PC, with a microprocessor Intel Core I7-8700K at 3.7GHz.

3. Thermal convection in a two-dimensional annulus

Let us analyze some periodic and quasi-periodic solutions obtained in the
study of the thermal convection in an annulus subject to an inward radial grav-
ity g∗, and heated from the inside. The inner and outer radii are r∗i and r∗o ,
respectively, with the superscript ∗ denoting hereinafter dimensional quanti-
ties. The problem is nondimensionalized using r∗o − r∗i , (r∗o − r∗i )

2/κ∗, and
∆T ∗ = T ∗(r∗i )−T ∗(r∗o) as units for length, time, and temperature, respectively.
In the Boussinesq approximation, the problem depends on three nondimensional
parameters, the radius ratio η = r∗i /r

∗

o , and the Rayleigh and Prandtl numbers,
defined as

Ra ≡ α∗∆T ∗g∗(r∗o − r∗i )
3

κ∗ν∗
, Pr ≡ ν∗

κ∗
, (3.1)

where κ∗ is the thermal diffusivity, ν∗ is the kinematic viscosity, and α∗ is the
thermal expansion coefficient.

The annulus is described in terms of the nondimensional radial, azimuthal,
and temporal variables, r, φ, and t, respectively. The continuity, Navier-Stokes,
and energy equations are formulated in terms of a streamfunction, ψ(r, φ, t), the
azimuthal average of the azimuthal velocity, f(r, t), and the perturbation of the
temperature, Θ(r, φ, t), with respect to the quiescent conduction profile, given
by v = 0, T = Tc(r). Thus, the continuity equation is identically fulfilled and
the nondimensional temperature and velocity fields are written as

T = Tc +Θ, v = fφ̂+∇× (ψk̂), (3.2)

where k̂ is the unit vector normal to the plane containing the annulus. The func-
tion f(r, t) is needed to guarantee the possible existence of a non-zero azimuthal
average of the azimuthal velocity, which is zero if homogeneous boundary con-
ditions are taken for ψ. Thus, actually, the total streamfunction is

Ψ(r, φ, t) = ψ(r, φ, t)−
∫ r

ri

f(r, t) dr. (3.3)
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The governing equations are

(∂t − Pr∆̃)f = Pφ

[

∆ψ
(1

r
∂φψ

)

]

, (3.4)

(∂t − Pr∆)∆ψ =
PrRa

r
∂φΘ+ (1 − Pφ)J(ψ,∆ψ) +

∆̃f
(1

r
∂φψ

)

− f
(1

r
∂φ∆ψ

)

, (3.5)

(∂t −∆)Θ = − 1

r2 ln η
∂φψ + J(ψ,Θ)− f

(1

r
∂φΘ

)

, (3.6)

where Pφ is the operator that averages in the azimuthal direction, ∆ is the hor-
izontal Laplacian operator in polar coordinates, J(g, h) = (∂rg∂φh−∂rh∂φg)/r,
and ∆̃ = ∂r(∂r + 1/r). The non-slip and constant temperature boundary con-
ditions become

f = ψ = ∂rψ = Θ = 0 on r = ri, ro. (3.7)

The above system is O(2) equivariant, i.e., invariant under arbitrary az-
imuthal rotations RφR

RφR
: (f, ψ,Θ)(r, φ, t) → (f, ψ,Θ)(r, φ+ φR, t), (3.8)

and reflections ζφ0
through any angle φ = φ0

ζφ0
: (f, ψ,Θ)(r, φ0 + φ, t) → (f,−ψ,Θ)(r, φ0 − φ, t). (3.9)

To obtain the data that will be used below, the fields ψ and Θ are discretized
using a Fourier expansion up to order 192 in the azimuthal coordinate, φ, and
collocation, on a Gauss–Lobatto mesh of 32 points, in the radial coordinate
r. The resulting set of equations is integrated in time by using a fourth order
semi-implicit BDF-extrapolation time-stepping scheme with a fixed time step
∆t = 10−4. With this discretization, the relative RMS truncation error is
∼ 10−9 (see [22]). However, it is important to note that the discretization
method is irrelevant for the application of the HODMD and STKD methods.
The only requirement is that the pointwise data be equispaced in both the
azimuthal coordinate and time. With this very small discretization error and
the large amount on spatial data, the DMD-1 algorithm (namely, the standard
DMD method) will provide good results. However, for not so clean data, the
index d in the DMD-d algorithm must be taken larger than one, as it will be
seen in section 4.

In order to apply the HODMD and STKD methods below, a set of K snap-
shots, equispaced in time, is selected in an appropriate time interval. Each
snapshot will contain the values of Ψ and Θ on a mesh of I points in r and
J equispaced points in φ. The HODMD and STKD methods can be applied
to both Ψ and Θ simultaneously, or separately. In the former case, some care
must be taken with the order of magnitude of both variables depending on the
nondimensionalization choosen, meaning that some scaling could be necessary
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before applying the methods. Here, for simplicity, we shall apply the methods to
only the temperature. Results for the streamfunction are similar and omitted.

The HODMD method can be applied either in space or time, which leads to
the expansions

Θ(r, φ, t) =

M
∑

m=−M

aspatialm uspatialm (r, t)e(νm+iκm)φ (3.10)

and

Θ(r, φ, t) =

N
∑

n=−N

atemporal
n utemporal

n (r, φ)e(δn+iωn)t, (3.11)

respectively, where the spatial and temporal modes, uspatialm and utemporal
n , are

conveniently normalized to exhibit unit RMS, as

‖uspatialm ‖2√
IK

= 1,
‖utemporal

n ‖2√
IJ

= 1. (3.12)

This RMS normalization defines the spatial and temporal amplitudes aspatialm ≥ 0
and atemporal

n ≥ 0, respectively, which permits truncation according to (1.4).
However, these expansions give a less enlightening information about the spatio-
temporal structure of the dynamics than the spatio-temporal expansion (ob-
tained via the STKD method)

Θ(r, φ, t) =

M
∑

m=−M

N
∑

n=−N

amnumn(r)e
(νm+iκm)φ+(δn+iωn)t, (3.13)

where the spatio-temporal modes are conveniently normalized to exhibit unit
RMS, as

‖umn‖2√
I

= 1, (3.14)

which defines the amplitudes amn ≥ 0 and permits truncating the expansion
according to (1.8). It is convenient to note that, to the approximation relevant
here, the spatial and temporal expansions (3.10) and (3.11) are readily obtained
from the spatio-temporal expansion (3.13) as

aspatialm uspatialm (r, t) =

N
∑

n=−N

amnumn(r)e
(δn+iωn)t, (3.15)

atemporal
n utemporal

n (r, φ) =

M
∑

m=−M

amnumn(r)e
(νm+iκm)φ. (3.16)

Recall that uspatial and utemporal must be rescaled in these equations such that
(3.12) holds.
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In the remaining of this section, we consider three cases exhibiting different
spatio-temporal symmetries, namely a simple periodic flow, a more complex pe-
riodic flow, and a quasi-periodic flow. In all cases, the numerical solver is first
run along a time stage to eliminate transient behavior in which the dynamics
approach the considered time-dependent attractors; snapshots are collected af-
ter this time stage, whose length depends, in general, on several factors. The
most important of these are the initial conditions, the degree of stability of the
attractor, and the presence of nearby bifurcations or other branches of solu-
tions, such that the transient trajectory could spend long times near weakly
unstable solutions. In the present problem, to reach stable saturated periodic
solutions, takes less than 2 time units if the initial condition is a nearby peri-
odic attractor. This transient stage is approximately 14 times larger than the
timespan where the snapshots are sampled. For the quasi-periodic solutions,
the transient takes less than 15 time units, which is 3 times larger than the
timespan where the snapshots are collected. In all cases, we ensure that after
this transient stage we are already in the attractor by checking that the tem-
poral growth rates of the calculated modes are all very small. The outcomes of
the STKD method will be given below with as many significant figures as are
estimated to be exact. In particular, the involved frequencies will be computed
with seven exact significant figures, which will give a very good computation
of the period in periodic dynamics and will help to analyze quasi-periodicity.
The involved wavenumbers will be computed even more precisely. We anticipate
that these very precise calculations of the frequencies and wavenumbers will be
obtained using a limited number of snapshots in a timespan comparable to the
period for periodic dynamics and comparable to the largest involved period for
quasi-periodic dynamics.

3.1. Simple periodic flow

Let us first consider the case of an annulus with radius ratio η = 0.3. The
Prantl and Rayleigh numbers are Pr = 0.025 (mercury) and Ra = 10000, re-
spectively, and the dynamics are periodic with period T = 0.14868194, which
will be computed with these seven significant figures below.

Figure 1 shows four representative snapshots in the first row, and the same
snapshots after subtracting the time average over a period (mean field) in the
second. They suggest (but do not ensure) that the pattern exhibits the following
instantaneous and spatio-temporal symmetries

Θ(r, φ, t) = Θ(r, φ+ π/2, t) and Θ(r, φ0 +φ, t) = Θ(r, φ0 −φ, t+T/2), (3.17)

respectively, where the phase φ0 (which, because of the instantaneous symme-
try, is defined modulo π/4), will be precisely computed below. Note that the
snapshots in the first row of Fig. 1 are very close to each other, which suggests
that the oscillation is almost standing, namely the temperature field approxi-
mately just goes up and down; this will be also explained below. The differences
between the snapshots become clear after removing the mean field, and the
spatio-temporal symmetry becomes obvious. The up–down oscillation is illus-
trated in Fig. 2, which shows the evolution during four periods of Θ(r, φ0−φ1, t)
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Figure 1: Four representative snapshots of the perturbation of the temperature for the simple
periodic flow at (a) t = 0, (b) t = T/4, (c) t = T/2, and (d) 3T/4, with the exact symmetry
diameter (as computed below, see Eq. (3.19)) indicated with thick dashed line. (e–h) same
snapshots after subtracting the mean field.
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Figure 2: Time evolution of the temperature at two points symmetrically located around the
thick dashed line in Fig. 1.

and Θ(r, φ0 + φ1, t), where r = 1.246, φ1 = π/5, and the phase φ0 as defined
above. Note that the amplitude of the oscillation is small compared to the
mean value and also that the two curves are T/2 out of phase, consistently with
the spatio-temporal symmetry of the solution. Also, the oscillation is almost
monochromatic, which will also be explained below.

Now, we apply the SKTD method considering only 20 equispaced snapshots
in the temporal interval 0 ≤ t ≤ 0.1412 (which is slightly smaller than one
period), with each snapshot discretized using I = 33 values of r in the interval
ri ≤ r ≤ ro and J = 51 equispaced values of φ in the interval 0 ≤ φ ≤ 2π.
Concerning the tunable parameters, we set ε1 = 10−8, ε2 = 10−3, and d = 1
(although this parameter may be taken in a wide interval, namely 1 ≤ d ≤
30, for both spatial and temporal decompositions, obtaining almost identical
results); this flexibility illustrates the robustness of the method, which will also
be encountered in the remaining cases considered below. With these values of
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the tunable parameters, the method retains 2M + 1 = 11 spatial modes and
2N +1 = 7 temporal modes. However, instead of the 77 spatio-temporal modes
that would in principle appear in the expansion (3.13), condition (1.8) decreases
this number to 49. Retaining these 49 modes, the RRMS error of the spatio-
temporal expansion (3.13) (as defined in Eq. 1.9) is ∼ 2 × 10−3. As already
explained, the RRMS error would be decreased by decreasing ε2, which would
increase the number of retained modes.

The κ − ω diagram associated with the spatio-temporal expansion (3.13)
is given in Fig. 3, where only those (κ, ω) pairs associated with nonzero mode

-20

-10
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 20

-150 -100 -50  0  50  100  150

κ

ω 

Figure 3: The κ− ω diagram for the simple periodic flow.

amplitudes are displayed. According to this diagram, the expansion (3.13) only
contains integer values (with 13 significant figures) of the wavenumber (includ-
ing the value κ0 = 0), as expected due to the periodicity in φ. They are all
multiples of 4 (with 6 significant figures), which confirms the instantaneous
four-fold spatial symmetry in (3.17). The frequencies are all multiples (with six
significant figures) of the primary frequency ω1 = 42.259238, which gives the
period of the orbit, T = 2π/ω1 = 0.14868194 that was anticipated above. The
spatial and temporal growth rates are ∼ 10−13 and ∼ 10−6, respectively. Thus,
the expansion (3.13) can be approximated for the present case as

Θ(r, φ, t) =

M
∑

m=−M

N
∑

n=−N

amnumn(r)e
i(4mφ+nω1t), (3.18)

where, as explained above, some of the amplitudes amn = 0. We insist that this
expansion is defined for continuous values of φ and t, in spite of the fact that
it has been calculated using discrete data in these variables. Also, it is to be
noted that retaining only those modes with m = 0 and n = 0, we obtain the
spatial and temporal thermal mean fields, respectively.

The a − κ and a − ω diagrams associated with the spatial and temporal
expansions (3.10) and (3.11) are given in Fig. 4, where it can be seen that the
amplitudes in these expansions decay exponentially. Also, the amplitude of
the temporal mean field (ω = 0) is much larger than those of the oscillatory
modes (ω 6= 0), which explains the small amplitude of the oscillation, compared
to the mean value in Fig. 2. Finally, the amplitudes of the leading nonzero
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Figure 4: The (a) a− κ, and (b) a− ω diagrams for the simple periodic flow.

wavenumbers and frequencies are about ten times larger than those for the
remaining modes, which explains why the oscillation was almost monochromatic
in Fig. 2.

Let us now use the expansion (3.18) to analyze the spatio-temporal sym-
metries that are present. This is done by checking that the modes exhibiting
opposite wave numbers for a fixed frequency are such that

umn = e−8imφ0u−m,n if n even and umn = −e−8imφ0u−m,n if n odd, (3.19)

where φ0 = −0.0117170 rad. Note that φ0 (which is indicated in Fig. 1) is
defined modulo π/4, which makes the derivation of (3.19) somewhat tricky. In
fact, Eq. (3.19) only permits computing φ0 modulo π/(4m). Here, we have
calculated φ0 using the (complex) cosine of the angle formed by the complex
modes form = ±1, n = 0, which equals one with ten significant figures, meaning
that φ0 is exact with five significant figures, as anticipated above. Then, we have
checked that (3.19) holds with this value of φ0 for the remaining values of m
and n, also with five significant figures. Equation (3.19) means that within the
approximation relevant here, the expansion (3.18) can be decomposed into two
parts, as

Θ(r, φ, t) = Θeven(r, φ, t) + Θodd(r, φ, t), (3.20)

where

Θeven(r, φ, t) =

M
∑

m=0

N
∑

n=−N
n even

amnũmn(r)e
inω1t cos[4m(φ− φ0)], (3.21)

Θodd(r, φ, t) =i

M
∑

m=0

N
∑

n=−N
n odd

amnũmn(r)e
inω1t sin[4m(φ− φ0)], (3.22)

with
ũ0n = u0n and ũmn = 2e4imφ0umn if m > 0. (3.23)

Thus, Θeven and Θodd are symmetric and antisymmetric around φ = φ0, re-
spectively. Moreover, Eqs. (3.21) and (3.22) imply that both Θeven and Θodd
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satisfy the spatio-temporal symmetry in (3.17), which invoking (3.20) implies
that Θ also exhibits this symmetry. In addition, it has been checked that Θeven

is about ten times larger than Θodd, which means that the whole pattern is a
modulated standing wave pattern that slightly oscillates left and right around
the diameter φ = φ0, φ0 + π. This explains why the snapshots in Fig. 1 were
very close to each other. Similar patterns with a larger amplitude were found
in [23] in a short reaction-diffusion system. This type of oscillation can also be
interpreted as a wave slightly moving back and forth around the symmetry axis
(see [24]).

Summarizing, the SKTD method gave the precise semi-analytic expression
(3.18) for the considered periodic solution, which moreover, has been decom-
posed into its symmetric and antisymmetric parts around a symmetry axis that
has been computed very precisely. Decomposing the solution into its symmetric
and antisymmetric parts around this axis, as in (3.20)-(3.23), has permitted
uncovering the instantaneous and spatio-temporal symmetries in (3.17).

3.2. More complex periodic flow

As a second application of the HODMD and STKD methods, we consider
the case with η = 0.3, Pr = 0.025, and Ra = 10600, in which the dynamics are
also periodic with period T = 0.1452264, which will be accurately computed
below. Figure 5 shows four representative snapshots in the first row, and the

Figure 5: Counterpart of Fig. 1 for the more complex periodic flow.

same snapshots after subtracting the mean field in the second. They suggest
that the pattern exhibits again the spatio-temporal symmetry

Θ(r, φ0 + φ, t) = Θ(r, φ0 − φ, t+ T/2), (3.24)

with φ0 as defined in Eq. (3.26). A careful look at the plots in Fig. 5 shows that
the instantaneous four-fold spatial symmetry appearing in Eq. (3.17) approxi-
mately holds, but has been broken, which will be confirmed below. As in the
case considered in the last subsection, the four initial snapshots in the first row
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of Fig. 5 are very close to each other, which once more suggest that the whole
pattern is approximately (but not exactly, as seen comparing the plots of the
second row after removing the mean field) a standing wave pattern, in which
the temperature field approximately just moves up and down; this will be ex-
plained below. The up–down oscillation is illustrated in Fig. 6, which shows the
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Figure 6: Counterpart of Fig. 2 for the more complex periodic flow.

time evolution during four periods of Θ(r, φ0 − φ1, t) and Θ(r, φ0 + φ1, t), with
r = 1.246, φ1 = π/5, and the phase φ0 is as indicated above (and computed in
Eq. (3.26) below). Again, the curves are T/2 out of phase, which is consistent
with the spatio-temporal symmetry (3.24). Note that the oscillation in Fig. 6
is more complex (namely, less monochromatic) than its counterpart in Fig. 2,
which is due to the larger number of modes involved, see Figs. 7 and 8 below.

Now, we apply the SKTD method considering 34 equispaced snapshots in
the temporal interval 0 ≤ t ≤ 0.2396, somewhat smaller than two periods, with
each snapshot discretized using I = 33 values of r in the interval ri ≤ r ≤ ro
and J = 101 equispaced values of φ in the interval 0 ≤ φ ≤ 2π. Note that
the number of snapshots and the number of values of φ are both larger than in
the case considered in the last subsection, which is due to the larger complexity
of the flow in the azimuthal direction. Concerning the tunable parameters, we
set ε1 = 10−8, ε2 = 5 × 10−4 (smaller than in the former case to obtain a
comparable error), and d = 1 (although, as in the former case, almost identical
results are obtained taking this parameter in a wide interval for both space and
time, namely 1 ≤ d ≤ 5 for both the spatial and temporal decompositions).
With these tunable parameters, the method retains 2M +1 = 49 spatial modes
and 2N + 1 = 9 temporal modes. However, instead of the 441 spatio-temporal
modes that would in principle appear in the expansion (3.13), condition (1.8)
decreases this number to 171. Retaining these 171 modes, the RRMS error of
the spatio-temporal expansion (3.13) (as defined in Eq. (1.9)) is ∼ 2.5× 10−3.

The κ − ω diagram associated with the spatio-temporal expansion (3.13)
is given in Fig. 7. This figure only exhibits integer values (with 13 significant
figures) of the wavenumber, including the values κ0 = 0 and κ = ±1. This both
explains that the number of involved wavenumbers is larger than in the case
considered in the last subsection and means that the instantaneous four-fold
symmetry appearing in (3.17) does not strictly apply in the present case. How-
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Figure 7: The κ− ω diagram for the more complex period flow.

ever, it has been checked that those modes with κ a positive or negative multiple
of 4 exhibit much larger amplitudes (approximately, five times larger, see Fig. 8
below) than those for the remaining modes. This explains why the four-fold
instantaneous symmetry is still approximately seen in Fig. 5 and means that
the Rayleigh number for the present case is somewhat close to its value at the
bifurcation where this symmetry is broken. Concerning the relevant frequencies
in Fig. 7, they are all multiples (with six significant figures) of the primary fre-
quency ω1 = 43.26476. Thus, the period of the orbit is T = 2π/ω1 = 0.1452264,
as indicated above. The spatial and temporal growth rates are ∼ 10−13 and
∼ 10−6, respectively. Thus, the expansion (3.13) can be approximated for the
present case as

Θ(r, φ, t) =

M
∑

m=−M

N
∑

n=−N

amnumn(r)e
i(mφ+nω1t), (3.25)

where, as in the previous case, some of the amplitudes are amn = 0, and this
expansion is defined for continuous values of φ and t, in spite of the fact that
it has been calculated using discrete data in these variables. Also, it is to be
noted that retaining only those modes with m = 0 and n = 0, we obtain the
spatial and temporal mean fields, respectively.

The a−κ and a−ω diagrams for the spatial and temporal DMD expansions
(3.10) and (3.11) are given in Fig. 8. As in the case considered in the last
subsection, this figure shows that the mode amplitudes decay exponentially.

The expansion (3.25) can be used to analyze the spatio-temporal symmetries.
The counterpart of Eq. (3.19) is

umn = e−2imφ0u−m,n if n even and umn = −e−2imφ0u−mn if n odd, (3.26)

where φ0 = 0.7780 rad. Again, φ0 is computed for the case m = 1, n = 0.
Then, it is checked that Eq. (3.26) holds with this φ0 for the remaining values
of m and n. And, once more, Eq. (3.26) means that the expansion (3.25) can
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Figure 8: The (a) a− κ and (b) a− ω diagrams for the more complex period flow.

be decomposed into two parts, as in Eq. (3.20), with Θeven and Θodd given by

Θeven(r, φ, t) =

M
∑

m=0

N
∑

n=−N
n even

amnũmn(r)e
inω1t cos[m(φ − φ0)], (3.27)

Θodd(r, φ, t) =i

M
∑

m=0

N
∑

n=−N
n odd

amnũmn(r)e
inω1t sin[m(φ− φ0)], (3.28)

where
ũ0n = u0n and ũmn = 2eimφ0umn if m > 0. (3.29)

These are the counterparts of (3.21)-(3.23) noting that the present pattern does
not exhibit the four-fold symmetry. As in the last subsection, Eqs. (3.27) and
(3.28) imply that both Θeven and Θodd are invariant under the reflection symme-
try (3.24), which in turn implies that Θ is also invariant under this symmetry.
In addition, it has been checked that Θeven is about ten times larger than Θodd,
which means that the whole pattern is again a modulated standing wave pattern
that slightly oscillates left and right around the diameter φ = φ0, φ0 + π. This
explains why the four snapshots in Fig. 5 were very close to each other.

Summarizing, as for the simpler periodic solution considered in the former
subsection, we have obtained a semi-analytic description of the solution and
have precisely computed the symmetry axis for the relevant spatio-temporal
symmetry. Also, we have explained that the four-fold instantaneous symmetry
does not exactly hold in the present case, although it is approximately present.

3.3. A quasi-periodic flow

Let us consider now the case with η = 0.3, Pr = 0.025, and Ra = 11500, in
which the dynamics are seemingly quasi-periodic. In fact, quasi-periodicity is
a subtle matter that cannot be ascertained with finite precision computations.
Instead, we shall use the high precision in computing the relevant frequencies
via the STKD method to address this question. The counterpart of the first
row of Figs.1 and 5 for the present case is given in Fig. 9, where the period
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Figure 9: Counterpart of the first row of Fig. 1 for the quasi-periodic flow at (a) t = 0, (b)
t = τ1/4, (c) t = τ1/2, and (d) t = 3τ1/4, where τ1 is the return time. The meaning of the
axis plotted with thick dashed line will be explained below.

T has been substituted by the return time τ1, defined as the first value of
t at which the trajectory in phase space conveniently approaches the initial
condition; see below. The four considered snapshots, which are representative
of the dynamics, show that (i) the flow is conformed by an approximate (but
not exact) three fold pattern and (ii) the four snapshots are fairly close to
each other, which suggests that the whole pattern represents a slight (quasi-
periodic) approximately standing oscillation around the axis defining the global
symmetry of the torus that contains the trajectory; see below. The up–down
oscillation, illustrated in Fig. 10, shows the evolution during four time units of
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Figure 10: Counterpart of Fig. 2 for the quasi-periodic flow.

Θ(r, φ0 − φ1, t) and Θ(r, φ0 + φ1, t), with r = 1.246, φ1 = π/5, and φ0 is the
angle formed by the symmetry line in Fig. 9 and the horizontal axis. Note that
the oscillation is slowly modulated in time, and that there is an approximate
time shift in the oscillation at the two symmetric points.

Now, we apply the SKTD method considering 667 equispaced snapshots in
the temporal interval 0 ≤ t ≤ 4.655, which is about 3.8 times t2 = 2π/ω2,
(see below for the value of ω2). Note that both the considered timespan and
the number of snapshots are much larger than in the cases considered in the
former subsections, which is due to the more complex quasi-periodic dynamics
in the present case. Each snapshot is discretized using I = 33 values of r in
the interval ri ≤ r ≤ ro and J = 101 equispaced values of φ in the interval
0 ≤ φ ≤ 2π. Note that I and J coincide with their counterparts in the last
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subsection because the present pattern exhibits a similar complexity in the radial
and azimuthal directions. Concerning the tunable parameters, we set ε1 = 10−8,
ε2 = 2×10−4 (smaller than in the former case to obtain a comparable error), and
d = 1 (although, as in the former cases, this parameter may be taken in a wide
interval, namely 1 ≤ d ≤ 30 for both the spatial and temporal decompositions to
obtain almost identical results). With these values of the tunable parameters,
the method retains 2M + 1 = 61 spatial modes and 2N + 1 = 97 temporal
modes. However, instead of the (2M + 1) × (2N + 1) = 5917 spatio-temporal
modes that would in principle appear in the expansion (3.13), condition (1.8)
decreases this number to 1073. Retaining these 1073 spatio-temporal modes, the
RRMS error of the spatio-temporal expansion (3.13) (as defined in Eq. (1.9)) is
∼ 3× 10−3. This very small reconstruction error is illustrated in Fig. 11, which

Figure 11: Contour plots of the temperature for, a) the left snapshot Fig. 9, b) its reconstruc-
tion using expansion (3.30), and c) the difference between both.

shows in this more complex (quasi-periodic) case, the first snapshot in Fig. 9,
its reconstruction using the expansion (3.30), and the difference between both.
The snapshots lie in the interval [−4.28, 3.08] and the difference between both,
in the interval [−1.85× 10−3, 2.72 × 10−3]. Thus, the plots Fig. 11(a) and (b)
cannot be distinguished.

The a − κ and a − ω diagrams, associated with the spatial and temporal
expansions (3.10) and (3.11) are given in Fig. 12, which shows the exponential
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Figure 12: The (a) a − κ and (b) a− ω diagrams for the quasi-periodic flow.

decay of the spatial and temporal mode amplitudes. The involved values of the
wavenumber are all integer numbers (with 13 significant figures). Also, as in the
periodic dynamics considered in the former subsection, the minimum positive
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wavenumber is 1, which explains that the approximate three-fold instantaneous
symmetry that is seen in Fig. 9 is not exact. However, according to Fig. 12(a),
the mode amplitudes of those modes associated with wavenumbers that are
positive or negative multiples of three are much larger than the remaining ones,
which explains the approximate three-fold symmetry. Note that the a − ω
diagram is organized in an overall triangular pattern (indicated with thin solid
lines in Fig. 12), which is typical of quasi-periodic dynamics [9]. Moreover,
the overall triangular pattern is formed by smaller sub-triangles, also indicated
in Fig. 12. Each of these sub-triangles gives a slowly modulated pattern with
a monochromatic carrier, whose frequency is the vertex of the sub-triangle.
The whole pattern is the superposition of these patterns and thus, it is more
complex. The upper vertices of the sub-triangles in Fig. 12(b) are located at ω =
0,±ω1,±2ω1, . . ., where ω1 = 45.59202 is computed with seven exact significant
figures. On the other hand, the smallest positive frequency appearing in this
diagram, ω2 = 5.184255, is also computed with seven exact significant figures.
The frequency ω1 is much larger than ω2, which is very clearly illustrated in the
κ − ω diagram associated with the spatio-temporal expansion (3.13), plotted
in Fig. 13. The much larger value of ω1 compared to ω2 explains why the
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Figure 13: The κ− ω diagram for the quasi-periodic flow.

oscillation shown in Fig. 10 is a slowly modulated wave, of carrier frequency ω1

and modulating frequency ω2. Note that the (ω, κ) pairs in Fig. 13 accumulate
in clusters, which in fact are the counterparts in this figure of the sub-triangles
in Fig. 12(b).

The frequencies ω1 and ω2 can be seen as the fundamental frequencies of
the quasi-periodic pattern. This is because the remaining frequencies appearing
in the expansion (3.13), are all (very approximately) linear combinations with
integer coefficients of the primary frequencies, of ω1 and ω2. This can be seen
in Table 1. Note that these values of n1 and n2 are consistent with what is seen
in the κ− ω diagram in Fig. 13. As already explained, in finite-precision com-
putations, it is not possible to decide whether ω1 and ω2 are incommensurable
or not. However, in the appendix we show that ω2/ω1 = 0.1137097 ≃ 141/1240
with a relative error ∼ 0.3× 10−7. Therefore in case of being in resonance, this
is very weak.
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10
−3ω Error n1 n2 10

−2ω Error n1 n2

0.187553 0.18 × 10
−5

4 1 0.963683 0.23 × 10
−6

2 1

0.182368 0.10 × 10
−5

4 0 0.911840 0.16 × 10
−6

2 0

0.177184 0.30 × 10
−5

4 -1 0.859998 0.28 × 10
−6

2 -1

0.152331 0.17 × 10
−4

3 3 0.808157 0.24 × 10
−5

2 -2

0.147144 0.27 × 10
−5

3 2 0.663300 0.15 × 10
−4

1 4

0.141960 0.98 × 10
−6

3 1 0.611444 0.70 × 10
−5

1 3

0.136776 0.18 × 10
−6

3 0 0.559605 0.12 × 10
−5

1 2

0.131593 0.45 × 10
−6

3 -1 0.507763 0.81 × 10
−6

1 1

0.126407 0.91 × 10
−6

3 -2 0.404077 0.97 × 10
−6

1 -1

0.111910 0.96 × 10
−4

2 4 0.352233 0.53 × 10
−5

1 -2

0.106736 0.89 × 10
−5

2 3 0.155523 0.28 × 10
−4

0 3

0.101553 0.26 × 10
−5

2 2 0.103686 0.46 × 10
−5

0 2

Table 1: Frequencies, integer factors n1 and n2, and relative error |ω−n1ω1 −n2ω2|/|ω| with
ω1 = 45.59202 and ω2 = 5.184255.

The relevant frequencies (and thus ω1, ω2, and the ratio r = ω2/ω1) could
also be obtained from a FFT of the time evolution of a scalar quantity, for
instance, the value of Θ at a given radius and angle. This requires a very long
integration time to have enough precision. The SKTD method, instead, provides
the same resolution for a shorter time interval of about 1.5 t2 with t2 = 2π/ω2,
and uses all values of Θ contained in the snapshots, ensuring that these values
of ω1 and ω2 are appropriate for the whole spatial domain.

On the other hand, the spatial and temporal growth rates are ∼ 10−13 and
∼ 10−3, respectively. Thus, the expansion (3.13) can be approximated for the
present case as

Θ(r, φ, t) =

M
∑

m=−M

∑

n1,n2

amn1n2
umn1n2

(r)ei[mφ+(n1ω1+n2ω2)t], (3.30)

where, as in the previous cases, some of the amplitudes are amn1n2
= 0, and

this expansion is defined for continuous values of φ and t, in spite of the fact
that it has been calculated using discrete data in these variables. Note that al-
though 10−3 can seem as non-negligible, the temporal growth rates only achieve
this value for the smaller amplitudes. We have checked that neglecting δn only
introduces changes of ∼ 10−7 in the spatio-temporal expansion, which is smaller
than the relevant accuracy of this expansion. Also, it is to be noted that retain-
ing only those modes with m = 0 and n = 0, we obtain the spatial and temporal
mean fields, respectively.

The expansion (3.30) permits computing the return time τ1 appearing in
Fig. 9, as that value of t for which the trajectory in phase space approaches
the initial condition. To this end, we need that exp(i(n1ω1 + n2ω2)t) be close
to 1 simultaneously for all n1 and n2. Let r = ω2/ω1 and p/q = 141/1240
be the rational approximation (with a relative error ∼ 0.3 × 10−7) of r com-
puted in the appendix. If τ1 = 2qπ/ω1 (or any integer multiple of this value),
then exp(i(n1ω1 + n2ω2)τ1) ≃ exp(2i(qn1 + pn2)π) = 1 with the relative error
anticipated above, as required.

21



Note that, if the approximating fraction is p/q = 141/1240 then τ1 involves
1240 oscillations with the largest fundamental frequency, or 141 oscillations with
the smallest frequency, a time span that is much larger than that covered by
the snapshots used to compute the STKD approximation. This illustrates the
known ability of the HODMD and STKD methods for temporal extrapolation
of the dynamics [6, 8, 9].

As in the previous cases, the expansion (3.30) can be used to analyze the
spatio-temporal symmetries that are present. It turns out that the counterpart
of Eq. (3.26) for the present case is

umn1n2
= e−2imφ0u−mn1n2

if n1 even, (3.31)

and
umn1n2

= −e−2imφ0u−mn1n2
if n1 odd, (3.32)

where φ0 = 0.8465290 rad. As for the periodic dynamics considered in the
previous subsections, φ0 is first computed for the case m = 1, n1 = n2 = 0
and then checked that Eqs. (3.31) and (3.32) hold with this value of φ0 for the
remaining values of m, n1, and n2. The symmetry above could be expected
because when a symmetric cycle undergoes a Neimark–Sacker bifurcation, the
emerging tori are, generically, invariant as a set relatively to the symmetry of
the cycle [25]; in fact, the invariant torus (and its symmetries) associated with
the quasi-periodic dynamics (3.31) will be computed below. It is important to
note that the spatio-temporal symmetry given by Eqs. (3.31) and (3.32) depends
only on the parity of n1, which is associated to the frequency ω1, because it is
inherited from that of the periodic orbit from which it bifurcates. As explained
above, there are alternative methods [24] to compute φ0 (and the return time
τ1) with a comparable accuracy, but these methods are based on scalar data
and require much larger timespans.

As in the previous subsections, Eqs. (3.31) and (3.32) imply that the ex-
pansion (3.30) can be decomposed into its symmetric and antisymmetric parts,
as

Θ(r, φ, t) = Θeven(r, φ, t) + Θodd(r, φ, t), (3.33)

where

Θeven =

M
∑

m=0

∑

n1,n2

n1 even

amn1n2
ũmn1n2

(r)ei(n1ω1+n2ω2)t cos[m(φ− φ0)], (3.34)

and

Θodd = i

M
∑

m=0

∑

n1,n2

n1 odd

amn1n2
ũmn1n2

(r)ei(n1ω1+n2ω2)t sin[m(φ− φ0)]. (3.35)

Here,
ũ0n1n2

= u0n1n2
and ũmn1n2

= 2eimφ0umn1n2
if m > 1. (3.36)

22



In addition, it has been checked that Θeven is about ten times larger than Θodd,
which means that the whole pattern is a modulated standing wave pattern that
slightly oscillates left and right around the lines φ = φ0. This explains why the
four snapshots in Fig. 9 are very close to each other.

Because of the quasi-periodicity, Eqs. (3.33)-(3.35) do not imply any invari-
ance under spatio-temporal reflection of the particular solution that is being
considered. However the invariant torus that is densely covered by the solution
does exhibit a reflection symmetry, as is seen now. To this end, we obtain a
semi-analytic expression of the torus in terms of two curvilinear coordinates,
θ1 and θ2. This is done by just replacing in (3.30) ω1t and ω2t by θ1 and θ2,
respectively, which yields

Θ(r, φ, θ1, θ2) =

M
∑

m=−M

∑

n1,n2

amn1n2
umn1n2

(r)ei(mφ+n1θ1+n2θ2). (3.37)

Obviously, this parametrization of the torus is periodic with period 2π in both
θ1 and θ2. On the other hand, as we did above with the particular orbit, the
parametrization can be decomposed into its symmetric and antisymmetric parts
as

Θ(r, φ, θ1, θ2) = Θeven(r, φ, θ1, θ2) + Θodd(r, φ, θ1, θ2), (3.38)

where

Θeven =

M
∑

m=0

∑

n1,n2

n1 even

amn1n2
ũmn1n2

(r)ei(n1θ1+n2θ2) cos[m(φ− φ0)], (3.39)

and

Θodd = i
M
∑

m=0

∑

n1,n2

n1 odd

amn1n2
ũmn1n2

(r)ei(n1θ1+n2θ2) sin[m(φ − φ0)], (3.40)

with ũmn1n2
as defined in (3.36). Now, Eqs. (3.39) and (3.40) show that Θeven

and Θodd are both invariant under the action

θ1 → θ1 + π, φ→ φ0 − φ, Θ → Θ, (3.41)

which invoking (3.38) is a reflection symmetry of the whole torus.
Unfortunately, it is not possible to illustrate, neither the semi-analytical de-

scription of the whole torus nor the reflection symmetry, in the high-dimensional
phase space. Thus, we only consider in Fig. 14 a three-dimensional projection of
the torus in the three dimensional space spanned by Θ(r, φ0−φ1), Θ(r, φ0+φ1),
and Θ(r, φ0), with r = 1.246, and φ1 = π/5. In fact, for the sake of clarity, we
have plotted a very long trajectory, instead of the whole torus. Note that in this
perspective the symmetry plane is the vertical plane containing the horizontal
diagonal. Also note that the projected torus exhibits self-intersections.
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Figure 14: Three-dimensional projection of the trajectory plotted in Fig. 10. The points p1,
p2, and p3 are located at (r, φ) with r = 1.246, and φ = φ0 − π/5, φ0 + π/5 and φ0.

Summarizing, as in the previous sub-sections, we have explained how the
dynamics correspond to an approximately standing, slowly modulated, seem-
ingly quasi-periodic oscillation that approximately (but not exactly) exhibits a
three-fold symmetry. In addition, we have derived semi-analytic descriptions of
both the considered particular dynamics and the densely covered torus. Finally,
we have shown that the torus is invariant under a reflection symmetry.

4. Noisy quasiperiodic flow

In the former section, the indexes in the application of the spatial and tem-
poral DMD methods involved in the STKD method (see Section 2) were both
equal to 1, namely dx = dt = 1. This was because the amount of spatio-temporal
data was very large and the data was very clean.

Let us add some noise to the quasiperiodic thermal data considered in Section
3.3. To this end, we consider the associated snapshot tensor (depending on
three indexes), denoted in this section as the clean tensor, Θclean(ri, φj , tk), for
i = 1, . . . , I, j = 1, . . . , J , and t = 1, . . . ,K, with I = 33, J = 101, andK = 667.

Now, we define a noisy tensor as

Θnoisy = Θclean +Noise, (4.1)

where, using the MATLAB command ‘rand’, the I×J×K-noise tensor is defined
as

Noise = 0.02[rand(I, J,K)− 0.5]. (4.2)

Using these, the relative RMS difference between the clean and noisy tensors
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turns out to be

RRMS error ≡ ‖Θnoisy −Θclean‖2
‖Θclean‖2

= 0.035, (4.3)

where ‖ · ‖2 is the Frobenius norm.
Let us now apply the truncated HOSVD method to the noisy tensor, which

reads

Θ(yi, xj , tk) =

P1
∑

p1=1

P2
∑

p2=1

P3
∑

p3=1

Sp1p2p3
v1
yip1

v2xjp2
v3tkp3

. (4.4)

Here, we retain all modes, namely we set P1 = I, P2 = J , and P3 = K. The
resulting HOSVD singular values are plotted in Fig.15, where it is easily seen a
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Figure 15: HOSVD singular values along the radial (red), azimuthal (blue), and temporal
(green) directions.

change of tendency in the singular values along the three directions. A careful
inspection at the blow up in Fig.15 shows that the change of tendency occurs
at P1 = 10, P2 = 26, and P3 = 25 along the radial, azimuthal, and temporal
directions, respectively. Retaining precisely these numbers of modes in (4.4),
the resulting truncated tensor is denoted as Θtrunc.. Now, we apply the STKD
method to this truncated tensor using the following thresholds

ε1 = 4 · 10−4 and ε2 = 10−4 (4.5)

for dimension reduction and mode truncation, respectively, and the following
indexes for the DMD-d along the azimuthal and temporal directions

dφ = 5 and dt = 200, (4.6)

respectively. These parameters are chosen after some slight calibration. The
resulting reconstructed tensor, denoted as Θreconst. uses 3315 spatio-temporal
modes and gives a relative RMS error

RRMS error ≡ ‖Θreconst. −Θclean‖2
‖Θclean‖2

= 0.0055, (4.7)
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which is more than six times smaller than its counterpart for the noisy tensor
(see eq.(4.3)). Thus, the ability of the STKD method for noise filtration has
been illustrated. On the other hand, if standard DMD is used to apply the
STKD method in both space and time, namely if the values in (4.6) for the
spatial and temporal indexes are replaced by

dφ = dt = 1, (4.8)

then the counterpart of (4.7) for the reconstruction turns out to be

RRMS error ≡ ‖Θreconst. −Θclean‖2
‖Θclean‖2

= 0.045, (4.9)

which is even larger than its counterpart for the noisy tensor, as comparison
with (4.3) shows. In other words, using standard DMD to apply the STKD
method does not filter errors in the present case.

5. Conclusions

The SKTD has been used to analyze periodic and quasi-periodic solutions
obtained by numerical simulation of a discretized set of partial differential equa-
tions. It has been shown that it is a very efficient method for this purpose. In
the present case, because the amount of data is very large, the combination of
the STKD method with standard DMD has given good results when using clean
data (as provided by the numerical solver). However, it has been shown that for
noisy data, in order to filter noise, the STKD method must be combined with
the strictly HODMD method, namely with the algorithm DMD-d with d > 1.

The first important point is that the method is valid for any type of dis-
cretization. Here, the azimuthal direction was discretized with Fourier expan-
sions, but the snapshots used in the analysis were written at a mesh of equally-
spaced azimuthal collocation points, then with a mesh of finite elements or finite
differences the results would had been the same.

STKD techniques exhibit several advantages compared to other methods
of analysis, specially for quasi-periodic dynamics. For instance, they are able
to provide accurate dispersion relations of the solution with snapshots in a
time interval of about 1.5 times t2 = 2π/ω2, while good frequency spectra via
FFTs requires very long integration times, which for 3D solutions is always very
computationally expensive. One of the reasons is that the FFTs are usually
applied to representative scalars of the fields, while SKTD uses information
from all spatial points contained in the snapshots simultaneously. For the same
reason, if spatial or spatio-temporal symmetries are present, they are obtained
as a byproduct, by just looking at the relations between the computed modes.
It is possible then to find a splitting of the solutions into their symmetric and
antisymmetric parts. This fact facilitates constructing ad hoc simple models to
reduce the cost of the study.

In the particular applications considered above, the periodic or quasi-periodic
solutions exhibited some exact or approximate instantaneous or spatio-temporal
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symmetries, which were very precisely identified by the method. Also, for quasi-
periodic solutions, the return time was seen to be very large, which ensures that,
if present, the underlying resonance is very weak. Note that such resonances
(resulting from, e.g., Arnold tongues, [25]) cannot be distinguished from genuine
quasi-periodic dynamics with finite precision computations.

The expansions obtained by the SKTD are valid for any value of time and
any value of the spatial points. Therefore, in the case of quasi-periodic solutions,
the same expansion provides not only a semi-analytic approximation of the par-
ticular trajectory, which is dense in a torus, but also a similar semi-analytic
expression for the full invariant torus, no matter the number of retained inde-
pendent frequencies. In the case considered in this paper, the quasi-periodic
solution was associated with a 2-torus, but the method would obviously be
appropriate to deal with higher dimension tori.
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Appendix: Approximation of irrational numbers by irreducible

fractions

Given an irrational number ρ (or an approximation of ρ with machine error,
also denoted as ρ), an algorithm to find rational approximations p/q of ρ using
Haros–Farey fractions [26] proceeds as follows. Let b/d and a/c be two initial
irreducible fractions such that b/d < ρ < a/c). They can be, for instance,
int(ρ)/1 and (int(ρ) + 1)/1, where int(ρ) denotes the integer part of ρ. The
interval is narrowed at each step by computing the mediant of the two fractions
(a+b)/(c+d) (which is also irreducible) and deciding which of the two intervals
[b/d, (a+ b)/(c + d)], [(a + b)/(c+ d), a/c] contains ρ. The process is repeated
until the distance |(a+ b)/(c+ d) − ρ| is small enough. By taking at each step
the limit of the interval closest to ρ, a sequence of irreducible rational number
is obtained, which converges to ρ with monotonically decreasing error.

Table 2 shows the sequence of approximations when the algorithm is applied
to ρ = ω2/ω1 = 0.1137097060783770 (with ω1 and ω2 as given by the STKD
method retaining all significant figures, in spite of the fact that only seven
significant figures are expected to be exact), with their corresponding error. If
p/q = 141/1240 = 0.11370968 the error is ∼ 0.3× 10−7. Note that beyond this
error value, the table contains slightly better approximating fractions, but with
much larger (about ten times larger) values of p and q. This is consistent with
our anticipated statement that the values of ω1 and ω2 (and thus the value of
ρ) provided by the STKD method are exact with seven significant figures.
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p q |ω2/ω1 − p/q| p q |ω2/ω1 − p/q|

0 1 0.114×10
0

29 255 0.158×10
−4

1 1 0.886×10
0

34 299 0.267×10
−5

1 5 0.863×10
−1

73 642 0.254×10
−5

1 6 0.530×10
−1

107 941 0.886×10
−6

1 7 0.291×10
−1

141 1240 0.287×10
−7

1 8 0.113×10
−1

1 9 0.260×10
−2

1726 15179 0.245×10
−7

3 26 0.167×10
−2

1867 16419 0.205×10
−7

4 35 0.576×10
−3

2008 17659 0.170×10
−7

5 44 0.733×10
−4

2149 18899 0.140×10
−7

19 167 0.627×10
−4

2290 20139 0.114×10
−7

24 211 0.344×10
−4

2431 21379 0.906×10
−8

Table 2: Fractions p/q approximating the ratio ω2/ω1 and the associated errors, |ω2/ω1−p/q|.
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