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Abstract8

The linear stability of the periodic and axisymmetric solutions of the convection in rotating,9

internally heated, and self-gravitating fluid spheres is presented. The transition to quasiperiodic10

flows via Neimark-Sacker bifurcations of different azimuthal wave numbers, m, is studied using11

matrix-free continuation and Floquet theory. Several pairs of Ekman and Prandtl numbers are12

considered in the region where the first bifurcation from the conduction state gives rise to the13

axisymmetric solutions. It is shown that the azimuthal wave numbers m = 1 and m = 2 are14

preferred, and that, for small Ekman and Prandtl numbers, the secondary bifurcations to different15

m accumulate close to the onset of convection. This study confirms some results previously found16

just by direct simulations. The methods presented can be applied to systems of parabolic partial17

differential equations with O(2) or SO(2) symmetry group, when a periodic orbit, invariant under18

the group, loses stability through a Neimark-Sacker bifurcation.19
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I. INTRODUCTION23

The thermal convection in rotating, self-gravitating, internally heated fluid spheres or24

spherical shells is a classical problem in fluid mechanics, with clear applications to Astro-25

physics and Geophysics. It models the hydrodynamic behavior of the liquid or gaseous26

spherical objects, internal fluid cores or layers of planets or stars. The sources of internal27

heating can be thermonuclear reactions, as happen in the massive stars of the main sequence,28

or the secular cooling down of a liquid metallic core, as seems to happen, for instance, in29

Venus or Mars. The information obtained from such simplified models has been used to30

try to understand the origin of the patterns observed in the atmospheres of planets and the31

surface of the Sun, and the generation of magnetic fields by dynamo effect in the interior of32

celestial bodies.33

A first simplification consists in considering a single fluid, instead of a mixture, with34

homogeneous properties except in the term responsible of the buoyancy forces, in which the35

density is considered to be proportional to the temperature. This is the so called Boussi-36

nesq approximation. In this framework the system depends on three main non-dimensional37

parameters, the Prandtl number, Pr, which is the ratio of the momentum to the heat dif-38

fusion and characterizes the type of fluid, the Rayleigh number, Ra, which is proportional39

to the amount of heat released into the fluid per unit time and measures the intensity of40

the buoyancy forces driving the convection, and the Ekman number, Ek, which measures41

the ratio of the momentum diffusion to the Coriolis force. This inertial force appears when42

the equations are written in a rotating frame of reference moving with the bulk of the fluid.43

In the case of a shell the ratio of the inner to the outer radius, η = ri/ro, has also to be44

considered. In this article some references will be made to simulations for very low η, which45

mimic the full sphere, but this will not be one of the parameters taken into account because46

it focuses on spheres. Another parameter is the Froude number, Fr, which measures the47

ratio of the centrifugal to the gravitational forces. It is relevant to astrophysical problems48

when the rotation is so large that the spherical approximation is not valid and the fluid49

adopts the shape of an ellipsoid in hydrostatic equilibrium (see, for instance, [1]). It will not50

appear in our formulation because it is very small for most planets and stars.51

The values of some of the parameters in realistic conditions are extreme. Estimations of52

Ek for the outer Earth’s core, Jupiter’s atmosphere, and cold neutron stars, for instance,53
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are of order 10−15, 10−8, and 10−10, respectively [2, 3]. The estimated values of Pr go from54

moderate, O(10−1) ≤ Pr ≤ O(1), for gases to low, O(10−3) ≤ Pr ≤ O(10−1), for liquid55

metals. The extreme values of Ek give rise to large values of Ra. For instance, its critical56

value for the onset of the thermal Rossby waves, arising for moderate and large Pr, grows57

according to the power law Rac ∼ Ek−4/3 [4–6].58

Boundary conditions must be added to close the problem. For the velocity field a common59

assumption is considering the flow at rest at the boundaries in the frame rotating with the60

walls of the fluid (non-slip boundary conditions), for example in the case of a spherical shell61

in contact with an inner solid core and an outer solid or plastic layer (as in the outer Earth’s62

core, for instance). Another option is considering impenetrable walls (zero normal velocity),63

without tangential forces (stress-free boundary conditions). This is a first approximation of64

a free external surface (as in a gaseous star, for instance). For the temperature it is common65

to consider perfectly conducting walls at constant temperature, i.e., a Dirichlet condition.66

In this case the heat released to the exterior is proportional to the radial derivative of the67

temperature. It is also possible to enforce some kind of radiation condition with a heat flux68

proportional to the temperature (Robin condition) or to its fourth power (Stefan-Boltzmann69

law). In this article impenetrable, stress-free, and perfectly conducting boundary conditions70

will be used. With all the above settings there is always a solution of the Navier-Stokes71

and temperature equations, with the fluid being at rest in the rotating frame, and the72

temperature depending only on the radius. This is the so-called conduction state since the73

heat transport is due only to thermal conduction.74

Several approaches can be used to study the fluid flows in this setup. Direct numerical75

simulations (DNS), performing time integration of the evolution equations for the velocity76

and temperature (and eventually the magnetic field), allow obtaining the fully developed77

flows to compute statistics or averages of global properties, pictures of the patterns of con-78

vection, and the induced magnetic fields [7–13]. Realistic values of the parameters cannot79

be reached because of the computational cost. The estimation in [14] for the simulation of80

the geodynamo at Ek = 10−9, using very efficient spectral methods, predicts that it would81

take 13000 days using 54000 processors to integrate a unit of the magnetic diffusion time.82

The lowest Ek reached in simulations without the magnetic field are, for instance, 10−6
83

with Ra = O(109) and Pr = O(1) [15], or 10−8 with Ra = O(1010) and Pr = O(10−2) [9],84

although in the latter case hyperviscosity was used. Extrapolations to small Ek from the85
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simulations for feasible values have been performed in some of the articles cited. In any case86

the information obtained has been useful to the knowledge of the problem. On the other87

side, studying the onset of convection with time evolution codes can be very inefficient since88

large transients are present, and the multiplicity of nearby bifurcations for low Ek can make89

it very tricky.90

Another possibility is to study the transitions from the conduction state by means of91

double asymptotic limits (Ek ≪ 1 and Pr/Ek ≫ 1, or Ek ≪ 1 and Pr/Ek ≪ 1) or more92

recently just for Ek ≪ 1 under a few assumptions [4, 5, 16–21]. Scaling laws for the critical93

Ra at the onset of convection, the frequency and the preferred azimuthal wave number of94

the bifurcated longitudinal waves have been obtained in this way.95

A third way is to study the sequence of bifurcations from the conduction state to com-96

plex flows (quasiperiodic or temporally chaotic) using continuation techniques to find the97

dependence with the parameters of the solutions (steady or periodic), and checking their98

stability to find the subsequent transitions. This methodology based on using dynamical99

systems tools has been adopted here, and has been used in the past by many authors to100

track branches of equilibria, periodic orbits, loci of bifurcations of both objects, and even101

invariant tori and unstable manifolds of periodic orbits, in several problems in Fluid Me-102

chanics; in particular in the Taylor-Couette problem [22–25], and in convection is spheres103

and spherical shells [26–29]. See also [30–34].104

The solutions that appear when the conduction state loses stability can be classified105

in terms of their symmetries and temporal dependence. The system of partial differential106

equations (PDEs) governing the fluid is equivariant under the group SO(2)×Z2, generated by107

the rotations about the axis of the sphere and the equatorial reflection. Since the linearized108

problem about the conduction state is not self-adjoint, the first bifurcation leads generically109

to periodic regimes. In the most common case, first found in [4], the onset of convection gives110

rise to rotating azimuthal waves of a non-zero wave number, m, which are symmetric relative111

to the equatorial reflection. Since the problem depends on several parameters with wide112

ranges, the rest of possibilities can also be preferred. The transition to non-axisymmetric113

equatorially antisymmetric longitudinal waves, as was assumed in [17], was found in [35]114

for spherical shells with η = 0.4, Pr = 0.01, Ek < 10−5, and m between 14 and 16. The115

so-called torsional periodic modes of convection, axisymmetric (m = 0) and equatorially116

antisymmetric, were found numerically in the case of rotating fluid spheres for Pr ≪ 0.01 at117
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low Ek when Pr/Ek = O(10), and with isothermal and stress-free boundary conditions [36].118

Their existence was confirmed by using asymptotic methods [37]. It was also proved there119

that the torsional modes are never preferred with non-slip boundary conditions. After these120

results, the nonlinear dynamics of these flows was studied [38] for Pr = 0.01, Ek = 10−3,121

by means of time integration in a spherical shell of very small radius ratio η = 0.001,122

finding a latitudinal propagation of the patterns of convection, and the loss of stability of123

the axisymmetric solutions very close to their onset. The non-linear torsional solutions and124

the bifurcated quasiperiodic and chaotic regimes were also found when the axisymmetry125

is enforced [39]. Very recently a detailed study of the three-dimensional flows also in a126

spherical shell with η = 0.01, and for Pr = 10−3 and Ek = 10−4 was performed in [40] for a127

large range of Rayleigh numbers. Mixed dynamics in which nonlinear superpositions of the128

torsional solutions and azimuthal waves were observed. This leads to meandering motions129

of the spots of kinetic energy near the surface of the sphere. Different sequences of stable130

states of convection with different symmetries were identified and described from the onset131

of the oscillations to the temporally chaotic dynamics. It was seen that a remnant of it is132

present even at large Ra up to temporal chaos. It was also found, just by simulations, that133

the Neimark-Sacker bifurcation from the periodic torsional solutions leads to an azimuthal134

wave number m = 2. This happens very close to the onset of convection after very long135

transients, and therefore the exact value of the critical Ra was difficult to obtain. Moreover,136

since those computations were for a spherical shell with a very small core, it was not clear137

that the same instability was to be found in the case of the full sphere. In addition it was138

difficult to understand the sequence of bifurcations found there due to the proximity to each139

other.140

The aim of this article is to study the transitions to azimuthal dependence from the141

axisymmetric solutions of convection in a rotating fluid sphere, uniformly heated from the142

interior, and with isothermal and stress-free boundary conditions. Several pairs of parame-143

ters (Pr,Ek) are selected covering the full region, computed in [41], in which the torsional144

solutions are the preferred flows after the outset of convection from the conduction state. It145

includes from liquid metals to gases. In contrast to previous studies, the periodic solutions146

are calculated by using a continuation method, and their stability is analyzed. Consequently,147

the critical points where the quasiperiodic solutions arise are determined with a precision148

that it is impossible to achieve just with numerical simulations. The critical Ra, wave num-149
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ber, and new frequencies at the secondary bifurcation are computed, and some features of150

the eigenfunctions are described. As seen in this article, the transitions separate when Ek151

is greater than that used in [40], and it is expected that this will help to have a better view152

of the possible sequences of solutions leading to complex flows.153

The rest of the paper is organized as follows. The formulation of the problem is estab-154

lished in Section II, and the numerical methods used are briefly described in Section III.155

Section IV summarizes some previous results on the determination of the region where the156

torsional solutions are preferred, and Section V presents the main results on their continu-157

ation and stability to azimuthal dependence. Finally, Section VI includes some conclusions158

and remarks.159

II. FORMULATION OF THE PROBLEM160

The thermal convection of a rotating and uniformly internally heated fluid sphere is161

considered. A radial gravity g = −γr, with γ > 0, is assumed corresponding to a uniform162

density. The surface is supposed to be at a constant temperature To. The Boussinesq163

approximation of the mass, momentum and energy equations is written in the rotating164

frame of reference of the sphere. The centrifugal force is neglected since Ω2/γ ≪ 1 in the165

major planets and stars, Ω = Ωêz being the constant angular velocity. Moreover, the density166

is also considered as constant in the Coriolis term.167

To write the equations in non-dimensional form the following scales are considered: the168

radius of the sphere, ro, for the distance, a viscous time, r2o/ν, and ν2/γαr4o for the temper-169

ature. The physical constants in these expressions are the kinematic viscosity, ν, and the170

thermal expansion coefficient α.171

In the Boussinesq approximation the dependence of the density of the fluid with the172

temperature is only considered in the buoyancy term, and then the divergence-free velocity173

field can be written in terms of toroidal and poloidal scalar potentials [16], i.e.,174

v = ∇× (Ψr) +∇×∇× (Φr).175

The equations for Ψ and Φ are the radial components of the curl and double curl of the176

Navier-Stokes equations. That for the temperature is written for the perturbation of the177

conduction state v = 0 and Tc(r) = To + (q/6κcp)(r
2
o − r2), q being the rate of internal178
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heat generation per unit mass, cp the specific heat at constant pressure, and κ the thermal179

diffusivity. With the present formulation the conduction state is always a solution for any180

value of the parameters, although unstable for large enough Ra. The final equations are181

then182

(∂t −∆)L2Ψ = 2Ek−1 (∂ϕΨ−QΦ)− r ·∇× (ω × v), (1)183

(∂t −∆)L2∆Φ = 2Ek−1 (∂ϕ∆Φ+QΨ)− L2Θ+ r ·∇×∇× (ω × v), (2)184

(Pr∂t −∆)Θ = RaL2Φ− Pr(v ·∇Θ), (3)185

186

where r is the position vector, ω = ∇×v is the vorticity, Θ(r, θ, ϕ) = T(r, θ, ϕ)−Tc(r) is the187

temperature deviation from the conduction state and (r, θ, ϕ) are the spherical coordinates,188

θ measuring the colatitude and ϕ the longitude. The operators L2 and Q are defined as189

L2 = −r2∆+ ∂r(r
2∂r) and Q = r cos θ∆− (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ).190

The non-dimensional parameters are the Rayleigh, Prandtl and Ekman numbers, defined191

as192

Ra =
qγαr6o
3cpκ2ν

, Pr =
ν

κ
, and Ek =

ν

Ωr2o
, (4)193

respectively.194

Impenetrable, stress-free, and constant temperature boundary conditions are considered,195

i.e., Φ = ∂2
rrΦ = ∂r(Ψ/r) = 0, Θ = 0 at r = ro. At r = 0 just regularity conditions are196

required.197

The system (1)-(3) with the above boundary conditions is invariant under the group198

SO(2)×Z2 generated by the rotations about the axis of the sphere, Rϕ0
, and the equatorial199

reflection, Req, defined by200

Rϕ0
(vr, vθ, vϕ)(t, r, θ, ϕ) = (vr, vθ, vϕ)(t, r, θ, ϕ− ϕ0),201

Rϕ0
Θ(t, r, θ, ϕ) = Θ(t, r, θ, ϕ− ϕ0),202

Req(vr, vθ, vϕ)(t, r, θ, ϕ) = (vr,−vθ, vϕ)(t, r, π − θ, ϕ),203

ReqΘ(t, r, θ, ϕ) = Θ(t, r, π − θ, ϕ),204

205

if v = (vr, vθ, vϕ) in spherical coordinates.206
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III. NUMERICAL METHODS207

To obtain the numerical solutions, Φ, Ψ and Θ are expanded in a triangular truncated208

spherical harmonic series up to a maximum degree and order L as209

X(r, θ, t) =

L
∑

l=0

l
∑

m=−l

Xm
l (r, t)Y m

l (θ, ϕ),210

where X represents any of them, Y m
l being the spherical harmonics, normalized as211

Y m
l (θ, ϕ) =

√

2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ = P̃m

l (cos θ)eimϕ,212

for l ≥ 0 and −l ≤ m ≤ l, Pm
l (cos θ) being the associated Legendre functions of degree l213

and order m. The potentials are determined up to the addition of a radial function. This214

is solved by taking Φ0
0 = Ψ0

0 = 0. In order to find axisymmetric solutions, all the derivatives215

∂ϕ are taken as zero in all the equations, and the expansions are reduced to216

X(r, θ, t) =

L
∑

l=0

X0

l (r, t)P̃
0

l (cos θ).217

The equations for the amplitudes of the expansions in the general case, required to com-218

pute the stability of the axisymmetric flows, are219

∂tΨ
m
l = DlΨ

m
l +

1

l(l + 1)

[ 2

Ek
(imΨm

l − [QΦ]ml )− [r · ∇ × (ω × v)]ml

]

, (5)220

∂tDlΦ
m
l = D2

l Φ
m
l −Θm

l +
1

l(l + 1)

[ 2

Ek
(imDlΦ

m
l + [QΨ]ml )221

+ [r · ∇ × ∇× (ω × v)]ml

]

, (6)222

∂tΘ
m
l = Pr−1DlΘ

m
l + Pr−1l(l + 1)RaΦm

l − [v · ∇Θ]ml , (7)223

224

for 0 ≤ l ≤ L and −l ≤ m ≤ l, and where Dl = ∂2
rr + (2/r)∂r − (l(l + 1)/r2), and the225

symbol [f ]ml means the coefficient multiplying Y m
l in the spherical harmonic expansion of226

an arbitrary function f . The coupling between different degrees, l, is through the nonlinear227

terms and the linear operator Q since228

[Qf ]ml = −l(l + 2)cml+1D
+

l+2
fm
l+1 − (l − 1)(l + 1)cml D

+

1−lf
m
l−1,229

with D+

l f = ∂rf + lf/r, and cml = [(l2 −m2)/(4l2 − 1)]1/2. In the case of the order, m, it is230

only due to the quadratic terms (the rightmost in every equation).231
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The linearization of Eqs. (5)-(7) about an axisymmetric solution giving rise to a velocity232

field va, a vorticity ωa = ∇ × va, and a deviation of the temperature Θa consists only in233

replacing the three quadratic terms by234

[r · ∇ × (ωa × v + ω × va)]
m
l , (8)235

[r · ∇ × ∇× (ωa × v + ω × va)]
m
l , (9)236

[va · ∇Θ+ v · ∇Θa]
m
l , (10)237

238

respectively. Then the equations for different orders m are no longer coupled. In this way239

the study of the linear stability of an axisymmetric solution separates into a collection of240

problems, one for each azimuthal wave number m. This is always the case in systems having241

an O(2) or SO(2) group of symmetries in one of the coordinates, with an initial solution242

invariant under the group.243

The system of PDEs (5)-(7) is finally discretized in the radial direction to obtain a244

systems ordinary differential equations (ODEs). A collocation method on a Gauss-Lobatto245

mesh of N + 1 points is used. The regularity conditions imply (see for instance [42]) that246

Xm
l (r, t) = rlZm

l (r, t), with Zm
l (r, t) even in r and smooth. Therefore, if l > 0, Xm

l and its247

radial derivatives up to order l−1 must vanish at r = 0, but we only enforce Xm
l (r = 0) = 0248

if l > 0 in the discretized radial differential operators, which include the boundary conditions249

at r = r0. If l = 0 the only additional condition is ∂rX
0
0 (r = 0) = 0. This is only needed for250

the temperature since Φ0
l = Ψ0

l = 0. It was shown in [43] that imposing only these conditions251

is enough to obtain consistent results for the linear stability analysis of the conduction state,252

avoiding several types of spurious modes. It can be checked a posteriori that the amplitudes253

satisfy accurately all the regularity conditions.254

The system (5)-(7) for the axisymmetric solutions, i.e. only for the m = 0 amplitudes,255

and discretized also in r, will be written as256

u̇0 = L0u0 +N (u0,u0). (11)257

It is a set of real ODEs of dimension (3L+ 1)(N − 1). The vector u0 contains the value of258

the amplitudes at the internal collocation nodes. The linearized equations about u0 for a259

single azimuthal wave number m will be written as260

u̇m = Lmum +N (u0,um) +N (um,u0). (12)261
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It is a set of complex ODEs of dimension 3(L − m + 1)(N − 1). The vector um contains262

the amplitudes of order m of the spherical harmonic expansion at the internal collocation263

nodes.264

The linear parts Lm depend on the three nondimensional parameters (4), and have a265

block-tridiagonal shape due to the operator Q. The symbol N represents the quadratic op-266

erators coming from the advection terms in the equations. Due to the diffusion these systems267

of ODES are stiff, so they are integrated by means of the fully implicit LSODPK solver of the268

ODEPACK package [44] or by our own fifth-order semi-implicit method (IMEX), based on269

backward-differentiation-extrapolation formulas described, for instance in [45]. Since stress-270

free boundary conditions are applied, the three components of the angular momentum per271

unit mass, relative to an inertial frame of reference,272

L(t) =

∫

V

r × v(t, r)dr,273

V being to the volume occupied by the fluid, are constants of the movement, and the nu-274

merical methods must conserve them. This is done by adding a small body force correcting275

the possible deviations, as explained in the Appendix of [39]. This affects only the equa-276

tions for Ψ0
1 when m = 0, and the real and imaginary parts of Ψ1

1 when m = 1 (see, for277

instance, [46]). There are other ways to proceed, as for instance, modifying the boundary278

conditions for these three radial functions.279

The method to compute the periodic solutions of the system (11) was explained in [39].280

Matrix-free continuation techniques are applied to the set of equations281

u0 − φ0(T,u0, p) = 0 (13)282

g(u0, p) = 0 (14)283

284

for (T,u0, p), where T is the period, p is a parameter of the problem that for the present285

calculations will be p = Ra (the other two will be kept fixed to several pairs of values),286

φ0(t,u, p) is the solution of (11) with φ0(0,u0, p) = u0, and g(u0, p) = 0 is a phase con-287

dition to select just one point on each periodic orbit. It can be, for instance, the Poincaré288

condition g(u0, p) = u̇0,prev · (u − u0,prev) = 0, where u0,prev is the point obtained on the289

previous computed periodic orbit, and u̇0,prev its tangent. The torsional solutions, u0(t),290

are symmetric cycles, i.e., they satisfy u0(T/2) = Requ0(0). Therefore, this spatio-temporal291

symmetry can be used to halve the integration time in the calculation of u0.292
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The curves of torsional solutions were first found, as functions of Ra, for the pairs of293

values of (Pr,Ek) shown in Table I. The reason for choosing these values is explained later.294

Pr Ek Pr/Ek Pr Ek Pr/Ek

1.e-3 1.e-4 10.00 0.4 2.9498e-2 13.56

1.e-2 1.e-3 10.00 0.5 3.5304e-2 14.16

5.e-2 5.e-3 10.00 0.6 4.0796e-2 14.70

0.1 9.275e-3 10.78 0.7 4.6000e-2 15.21

0.2 1.6705e-2 11.97 0.8 5.1026e-2 18.62

0.3 2.3328e-2 12.86 0.9 5.5873e-2 16.10

TABLE I. Pairs of parameters (Pr,Ek) used in the calculations.

To study the stability, the branches of periodic orbits are post-processed. The Flo-295

quet multipliers corresponding to several wave numbers m are computed to detect either a296

Neimark-Sacker or other type of bifurcations. Since matrix-free Arnoldi or subspace methods297

are used, only the action of the monodromy matrix is required. This implies integrating the298

coupled systems (11), with initial condition u0, the solution of (13)–(14), and (12) with an299

arbitrary initial condition um(0). The leading (greater modulus) Floquet multipliers and the300

corresponding eigenfunctions are obtained. Details on these large-scale matrix-free meth-301

ods for the cycles and their stability can be found in [47] or in the review on continuation302

methods for PDEs [48]. The same computations for the pairs (Pr,Ek) = (10−2, 10−3) and303

(Pr,Ek) = (10−3, 10−4) were first reported in [39], but only the secondary bifurcations to304

axisymmetric flows were studied. The subsequent quasiperiodic and chaotic flows, keeping305

the rotational invariance, were also described there.306

The global data represented in the figures is the kinetic energy density, k(t, r, θ, ϕ) =307

(v · v)/2, averaged over the whole volume of the sphere, V , and over the period of the308

periodic orbits. The volume average, K(t), turns out to be309

K(t) =
1

V

∫

V

k(t, r, θ, ϕ) dV =
3
√
2

2r3o

∫ ro

0

r2k0

0(r, t) dr,310

where k0
0 is the coefficient of order and degree 0 of the expansion of k in spherical harmonics.311

Its time average is312

K =
1

T

∫ T

0

K(t) dt,313
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FIG. 1. (a) Surfaces of Hopf points corresponding to m = 0 (middle surface, in green), retrograde

m = 1 waves (lower surface at the right, in dark violet) and prograde m = 1 waves (upper surface

at the right, in light violet), close to (Pr,Ek) = (0, 0) in the three-dimensional parameter space.

The conduction state is stable below the three surfaces. Their intersections are small portions of

the double Hopf curves m01p, m01r (in red) and m1p1r (in green). They have also been projected

onto the plane Ra = 4 × 103. (b) Region inside which the first bifurcation is to axisymmetric

solutions in linear scale, and (c) in logarithmic scale. The line Pr/Ek = 10 is represented with a

dashed black line.

T being the period of the torsional solution. The time integral is approximated by the314

trapezoidal rule. From now K will be called mean energy, for simplicity.315

The truncation parameters used for the present calculations are (N,L) = (30, 50). It was316

checked in [39] that the relative error for several global quantities, including K, was below317

10−4 when the resolution was changed from (N,L) = (30, 50) to (N,L) = (40, 60), for values318

of Ra higher than those used here.319
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IV. SUMMARY OF PREVIOUS RESULTS.320

Figure 1 summarizes the main results obtained in [41], which explain the selection of the321

parameters of Table I for the calculations of this study. Figure 1(a) shows the transition322

surfaces from the trivial conduction state to periodic axisymmetric solutions (m = 0, surface323

in green), and to azimuthal traveling waves with wave number m = 1 (two surfaces in324

violet). For the values in this plot one of the latter corresponds to retrograde waves traveling325

westwards (dark violet), and the other to prograde waves traveling eastwards (light violet).326

The conduction state is stable below the envelope of the surfaces, and becomes unstable327

when it is crossed, generically at a Hopf bifurcation.328

The region in the Pr-Ek plane into which the first transition is to axisymmetric solutions,329

when Ra is increased, and Ek and Pr are kept fixed, is shown in Fig. 1(b), and will be330

described, for short, as the m = 0 region. It is bounded by the curves of double-Hopf331

points corresponding to simultaneous bifurcations from the conduction state to two different332

azimuthal wave numbers (m = 0, m = 1) or (m = 0, m = 2) (the surface for m = 2 is not333

represented in Fig. 1(a)). The limiting curves are the projections of intersections of the334

surfaces. They are shown in the plane Ra = 4 × 103 of Fig. 1(a), in Fig. 1(b), and in335

Fig. 1(c) in logarithmic scale. The latter shows that for any Pr near zero there is always a336

non-empty interval of Ek contained in the m = 0 region.337

There are two double-Hopf curves for (m = 0, m = 1) (in red in the figures and labeled338

as m01). Along the upper curve of Fig. 1(b) the transition to m = 1 gives rise to retrograde339

waves, while in the lower they are prograde if Pr < 0.7148 and retrograde if Pr > 0.7148.340

The system solved for the double-Hopf points (Eqs. (3.4)–(3.9) in [41]) gives the critical fre-341

quencies corresponding to the bifurcations to m = 0, which preserves the axisymmetry, and342

to m = 1, which breaks it. The sign of the second frequency determines if the corresponding343

azimuthal wave is prograde or retrograde. The upper and lower curves join at a turning344

point at Pr ≈ 1.18. This is not shown here because it happens out of the region of interest.345

The last bounding segment is part of the curve of double-Hopf bifurcations (m = 0, m = 2)346

(in blue and labeled as m02) (see more details in [41]).347

Along the intersection of the two m = 1 surfaces (in light green and labeled as m1p1r)348

two simultaneous Hopf bifurcations take place to waves traveling in opposite directions.349

This happens when the conduction state is already unstable to axisymmetric perturbations.350
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The projection of this curve onto the Pr-Ek plane is inside the m = 0 region and for this351

reason it has been used just as a reference to select the pairs of values of (Pr,Ek) used in the352

calculations. The black dots in Figs. 1(b) and 1(c) correspond to the values in Table I. Those353

of Pr were taken equally spaced from 0.1 to 0.9, and the cases Pr = 10−2 and Pr = 10−3,354

which were studied in the pure axisymmetric case in [41], were also included. The value355

Pr = 0.05 was also considered in order to have another point close to the transition to very356

low Pr. The associated values of Ek have been taken to have points very close to the m1p1r357

curve.358

The line Pr/Ek = 10 (dashed) has been added to Figs. 1(b) and 1(c). The computations359

in [36] and the theory in [37] predicted that along this line, and for low Pr, the first bifurcation360

of the conduction state leads to torsional solutions. It can be seen in Fig. 1(c) that this is361

the case below Pr ≈ 0.22.362

V. CONTINUATION AND STABILITY OF THE PERIODIC ORBITS.363

In order to compute the curves of periodic orbits parameterized by Ra, for the pairs of364

values of (Pr,Ek) in Table I, it is necessary to find approximate initial conditions satisfying365

Eqs. (13)-(14). The real part of the eigenvector associated to the Hopf bifurcation at the366

critical Ra for the onset of convection, multiplied by a suitable factor can be used as an367

initial condition for u0, and the period can be taken as T = 2π/ω, ω being the imaginary368

part of the eigenvalue. Another possibility is evolving Eq. 11 above, but close to the critical369

Ra, to reach a stable periodic orbit, and track the curve for lower and higher Ra. Both370

methods have been used here, but mainly the second for its simplicity. Figure 2(a) shows371

the continuations of periodic torsional solutions for constant values of Pr and Ek in red,372

solid when they are stable, and dashed after the first bifurcation. The mean energy, K, is373

represented versus Pr and Ra. It is scaled by Ek−2 to make all the curves approximately of374

the same height because K grows as Ek−2.375

The transverse curves in Fig. 2(a) correspond to the onset of the cycles and the bifurca-376

tions to azimuthal wave numbers m = 0, 1, 2 and 3. Only these are shown for two reasons.377

In previous works [38, 40] transitions to m = 1 and 2 were found for two pairs of small378

(Pr,Ek), so increasing values starting from m = 0 up to m = 4 have been studied. More-379

over, when the transition to the latter takes place (always above that for m = 3 and beyond380
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(c)
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✕
 1
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f1 at onset
f1 at second bif.
f2 at second bif.

m=0
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FIG. 2. (a) Curves of periodic orbits for the pairs of values of (Pr,Ek) of Table I (in red),

solid/dashed when they are stable/unstable, and curves corresponding to the onset of the cycles

(black, filled circles), and the bifurcations to m = 0 (blue, empty circles), m = 1 (green, filled

squares), m = 2 (brown, empty squares) and m = 3 (magenta, crosses). (b) Projection of the

bifurcation curves on the Pr-Ra plane. (c) Frequencies along the bifurcation curves of Fig. 2(b)

using the same colors and symbols. The points of the curves for m = 0 to 3 are not joined by lines

for clarity. The added black lines with crosses and empty squares are those of f1 and f2 at the

transition to azimuthal dependence, respectively. Their values are shown in Table II.

Ra = 18000), the periodic orbits have, at least, six unstable Floquet multipliers. Therefore,381

it is difficult that higher wave numbers be relevant to this analysis.382

It can be seen in Fig. 2(b) that the first bifurcation is to a wave number m = 2 for383

Pr ∈ [0.22, 0.69], approximately, and close to Pr = 10−3, and to m = 1 for Pr ∈ [10−2, 0.22]384

and close to Pr = 0.7. The transition to m = 2 for Pr = 10−3 and Ek = 10−4, giving rise385

to quasiperiodic flows, was found previously by time integration in the case of a spherical386

shell of a radius ratio η = 0.01 (see second row of Fig.5 in [40]). The results obtained here387
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FIG. 3. Curve of periodic orbits for Pr = 0.7 showing the decomposition of the kinetic energy into

its symmetric and antisymmetric parts relative to the equatorial reflection.

confirm that the quasiperiodic dynamics comes from this bifurcation, and that it is not388

related to having a small core. With the new information about the secondary critical Ra,389

it is now sure that this bifurcation is subcritical. When Pr goes to zero all the transitions390

to quasiperiodicity accumulate close to the first from the conduction state. For instance, for391

Pr = 10−3 the onset of convection occurs at Ra = 7637, and the bifurcations to m = 2, 1,392

3, and 0 at Ra = 7658, 7818, 7886 and 7920, respectively. This explains the quick change393

of dynamics found in [40] when moving parameters, and why it is so difficult trying to394

understand what happens near the onset just by numerical simulations.395

Table II displays some data relative to the bifurcations from the periodic torsional solu-396

tions. The columns contain the Pr and Ek numbers selected to do the computations (those397

of Table I), the critical Ra for the onset of the axisymmetric solutions, Ram=0
c , that for the398

transition to azimuthal dependence, Ram=mc

c , which can be to m = 1 or m = 2 as seen in399

Fig. 2 and it is indicated in the fifth column, the first frequency f1 = 1/T , T being the400

period of the periodic orbit u0(t), and the second frequency appearing at the transitions to401

three-dimensional solutions, f2.402

The critical eigenfunctions um(t) are solution of (12) that satisfy um(T ) = exp(±iρ)um(0)403

for some phase ρ. At a Neimark-Sacker bifurcation the linear stability analysis gives Floquet404

multipliers exp(±iρ), for some phase ρ ∈ (0, π). From Floquet theory it is known that405

um(t) = up
m(t) exp(2πif2t), with up

m(t) periodic of period T (and frequency f1), and f2406

being the second frequency we are interested in (see [49]). At t = T we have um(T ) =407

up
m(T ) exp(2πif2T ) = um(0) exp(2πif2T ). Therefore, ρ and 2πf2T might differ in a multiple408
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Pr Ek Ram=0
c Ram=mc

c mc f1 = 1/T f2

1.e-3 1.e-4 7637 7658 2 1423. 365.6

1.e-2 1.e-3 7366 7478 1 141.4 29.19

5.e-2 5.e-3 6722 6818 1 27.41 5.554

0.1 9.275e-3 6474 6772 1 14.24 3.039

0.2 1.6705e-2 6386 8037 1 7.263 1.994

0.3 2.3328e-2 6452 9010 2 4.735 1.049

0.4 2.9498e-2 6551 9263 2 3.433 0.5889

0.5 3.5304e-2 6663 9424 2 2.630 0.3219

0.6 4.0796e-2 6784 9536 2 2.097 0.1582

0.7 4.6000e-2 6911 9250 1 1.717 0.6270

0.8 5.1026e-2 7041 8388 2 1.370 0.5954

0.9 5.5873e-2 7172 7358 2 1.190 0.3123

TABLE II. Parameters Pr, Ek and critical Ra at the first two bifurcations, and frequencies at the

secondary bifurcation for m = 1 or m = 2.

of 2π, i.e., 2πf2T = ρ+2πn, for some integer n. From this expression f2 = (ρ/2π+n)f1. In409

Table II n has been taken as zero, and the only difference in f2 could be an integer multiple410

of f1. The two frequencies and their integer linear combinations should be approximately411

found in the frequency analysis of the simulations close, but above, the parameters shown,412

except probably in the subcritical cases, which cannot be predicted just by looking at the413

stability. It has been checked that this is so for simulations with Pr = 0.01, 0.1 and 0.715414

in the case of a shell of η = 0.001 to confirm that everything matches.415

Figure 2(c) shows all the frequencies along the transition curves of Fig. 2(b) scaled by416

Ek−1. Those of the periodic torsional solutions, f1 = 1/T , are presented in black curves,417

with full circles at the onset of the torsional solutions and with crosses at the transition to418

azimuthal dependence. The values on the latter are contained in column f1 of Table II. The419

second frequency, f2, appearing at this transition is shown with a black curve and empty420

square symbols (column f2 of Table II). As explained before, its points correspond to points421

on the curves m = 1 or m = 2. The rest of symbols for m = 0 to 3 correspond to the422

frequency f2, and have not been joined by lines for clarity. In the case of m = 0, f2 = 0423
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for Pr ≥ 0.2 indicating that the transition is not a Neimark-Sacker bifurcation, but another424

Hopf from an axisymmetric steady state or a pitchfork bifurcation of periodic orbits (see425

comments below to the cases Pr = 0.7, 0.8 and 0.9, and to Fig. 3).426

It is seen that all frequencies go essentially as f ∼ Ek−1, the product f1Ek decreases427

slightly and monotonically with Pr, and its range of variation from the first to the second428

bifurcations is relatively small. This scaling was selected because the first instability is429

due to the Coriolis term. The variation with Pr of f2Ek is more irregular. Two azimuthal430

wave numbers are involved. Moreover, it seems, by looking at Fig. 2(b), that the curves of431

transitions to m = 1 and 2 might be the envelopes of several curves. This also happens in432

the case of the bifurcation from the conduction state to azimuthal waves in the case of a433

shell [6]. This contributes to the more complicated behavior of f2.434

When the curves for m = 0 and 3 are reached, by increasing Ra, the torsional solutions435

are already unstable to perturbations to m = 1 and 2. Four Floquet multipliers are unstable.436

The wave numbers m = 0, 3, 4 are not preferred at the secondary transition and, in principle,437

solutions bifurcated form the torsional solutions with those azimuthal wave numbers would438

not be observed in simulations of the problem, because they would be unstable. They could439

be seen only if a time evolution approaches the unstable solutions. A trajectory might440

pass near several unstable objects (equilibria, periodic or quasiperiodic regimes) in a regular441

pattern. This has been observed before (see for instance Fig. 10 in [26]), and it is related442

to the existence of a heteroclinic chain, i.e., a closed sequence of trajectories joining the443

unstable objects. The computations presented in [40] reaching Ra = 14000 do not show the444

presence of dominant azimuthal wave numbers other that m = 1 or 2.445

The transition curves for m = 0 and m = 3 have gaps where the transition is above446

Ra = 18000, which is the limit of the computations, or because the continuation curves do447

not reach this limit and the periodic flow is stable to perturbations of the given m in all its448

interval of existence. For instance this is what happens for Pr = 0.7, 0.8, and 0.9 as can be449

seen in Fig. 2. In these cases the bifurcation tom = 0 above Ra = 14000 is a Hopf point from450

an unstable steady state, which is non-trivial and invariant under equatorial reflections (the451

curves of these equilibria are not shown here). Fig. 3 shows the decomposition of the kinetic452

energy into its symmetric and antisymmetric parts relative to the equatorial reflection for453

Pr = 0.7. It is one of the curves of fixed Pr in Fig. 2(a). The two endpoints at Ra = 6912454

and Ra = 17441 correspond to Hopf bifurcations, the left one from the conduction state,455
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and the right one from an unstable branch of equilibria. It has not been computed, but the456

periodic orbit at Ra = 17441 has a very small amplitude, which is not visible in a movie457

of the solution, and can be used to visualize the nearby equilibrium. As can be seen in458

Fig. 3, the antisymmetric part goes to zero at this point. Fig. 4 shows, Θ, k, and T for this459

steady solution. The flow can be seen as the superposition of two counter-rotating toroidal460

vortex, one in each hemisphere with the inflow at the equator, and an azimuthal velocity461

field, which depends on the radius and colatitude. It resembles two of the artificial velocity462

fields used by Dudley and James [50] to study the generation of magnetic fields by dynamo463

effect. The main difference is that the azimuthal component is more complex in our case.464

It must be stressed that these steady solutions are unstable to azimuthal perturbations, as465

the periodic orbits from which they bifurcate.466

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

FIG. 4. Contour plots of (a)-(c) Θ, (d)-(f) k, and (g)-(i) T. The velocity field projected on each

section is superposed in all plots. It is different over the spherical surfaces because the sections are

different. The dashed lines in each section indicate the position of the other two. In the case of

the energy the spherical section is very close to the outer surface. The parameters are Ra = 17440,

Pr = 0.7, and Ek = 0.046, very close to an unstable equilibrium.

Figure 5 (Multimedia view) shows several snapshots of the time evolution of a torsional467

solution at the beginning of the branch of Pr = 0.7 in Fig. 3 at Ra = 6912. Since the468
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(a)

t  = 0

(b) (c) (d)

t  = 0

(e) (f)

(a)

t  = T/4

(b) (c) (d)

t  = T/4

(e) (f)

(a)

t  = T/2

(b) (c) (d)

t  = T/2

(e) (f)

FIG. 5. Idem Fig. 4 only for (a)-(c) Θ and (d)-(f) k, for the fractions of the period, T = 0.535909,

indicated. The parameters are Ra = 6912, Pr = 0.7, and Ek = 0.046. (Multimedia view).

torsional periodic solutions are symmetric cycles, i.e.,469

vr(t+ T/2, r, θ, ϕ) = vr(t, r, π − θ, ϕ),470

vθ(t+ T/2, r, θ, ϕ) = −vθ(t, r, π − θ, ϕ),471

vϕ(t+ T/2, r, θ, ϕ) = vϕ(t, r, π − θ, ϕ),472

Θ(t+ T/2, r, θ, ϕ) = Θ(t, r, π − θ, ϕ),473

474

only half of the period is represented, the other half can be obtained by applying the above475

symmetries. Close to the onset, the symmetric part of the solution is very small (see Fig. 3),476

and it looks almost antisymmetric, as the eigenfunction at the bifurcation point. This is477

no longer the case when the symmetric part grows due to the quadratic terms of Navier-478

Stokes equations, as can be seen in Fig. 6 (Multimedia view) for Ra = 9286. This is the479

point at which there is a Neimark-Sacker bifurcation leading to azimuthal dependence with480

longitudinal wave number m = 1. In both cases the perturbation of the temperature fills the481
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(a)

t  = 0

(b) (c) (d)

t  = 0

(e) (f)

(a)

t  = T/4

(b) (c) (d)

t  = T/4

(e) (f)

(a)

t  = T/2

(b) (c) (d)

t  = T/2

(e) (f)

FIG. 6. Contour plots of (a)-(c) Θ and (d)-(f) k, and velocity field projected on each section, for

the fractions of the period, T = 0.582003, indicated. The parameters are Ra = 9286, Pr = 0.7,

and Ek = 0.046. (Multimedia view).

full domain. However, for Ra = 6912, k is concentrated at the surface when the longitudinal482

circulation reaches a maximum, or at the axis when the meridional circulation grows (see483

the vector fields). For Ra = 9286 both effects occur without a clear quarter-period time lag484

due to the growth of the symmetric part. Figure 7 shows the time evolution of k, and its485

decomposition into its symmetric and antisymmetric components relative to the equatorial486

symmetry, for both solutions. The symmetric part is very small for Ra = 6912, and therefore487

the antisymmetric part and the total k are almost the same. For Ra = 9286 both components488

are of the same order.489

Figures 8 (Multimedia view) and 9 (Multimedia view) show, as representative of what is490

observed for the rest of large values of Pr, the contour plots and velocity fields corresponding491

to the critical eigenfunctions at the bifurcations to azimuthal wave number m = 1 at Ra =492

9286, and to m = 2 at Ra = 9566 along the branch of Pr = 0.7 (see Fig. 2(b)). The493
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10
-10

10
-8

10
-6

10
-4

 0  0.1  0.2  0.3  0.4  0.5  0.6

(a)

K
 ✕

 E
k2 ✕

 1
02

t 

Total
Sym. part

Antisym. part

10
0

10
1

 0  0.1  0.2  0.3  0.4  0.5  0.6

(b)

K
 ✕

 E
k2 ✕

 1
02

t 

Total
Sym. part

Antisym. part

FIG. 7. Time evolution of K(t), and its decomposition into the symmetric and antisymmetric parts

for Pr = 0.7, Ek = 0.046. (a) Ra = 6912 and (b) Ra = 9286.

snapshots correspond to the fractions of the period of the base periodic orbit indicated.494

The transitions give rise to the appearance of a new frequency and hence to quasiperiodic495

regimes, which include an azimuthal drift and a latitudinal modulation of the torsional flows.496

At the bifurcation to azimuthal wave number m = 1 the frequencies mentioned previously497

are (f1, f2) = (1.717, 0.6270), and at that to m = 2 they are (f1, f2) = (0.1726, 0.01536).498

The animation, close to the bifurcation to azimuthal wave number m = 2 for Pr = 10−3,499

showing the superposition u0(t) + εum(t), with a suitable amplitude of the perturbation, ε,500

resembles the quasiperiodic solutions obtained in [40]. The position of the first bifurcation501

to the torsional solutions is almost the same, and was found to be supercritical in [39]. The502

second transition to azimuthal dependence is subcritical, since the modulated solutions were503

found for values below the Ra of the onset of the axisymmetric solutions [40]. Obtaining504

this information just by simulations is very difficult since, as said before, the transitions to505

different longitudinal wave numbers are very close together, and very long transients have506

to be computed to separate the different states.507

There is a significant difference between the cases Pr = 0.7 and Pr = 10−3. While in508

both cases the Neimark-Sacker bifurcation introduces an azimuthal drift with wave number509

m = 2, the latitudinal oscillation of the temperature perturbation of the eigenfunction um(t)510

is much larger for Pr = 0.7. This makes the superposition for Pr = 10−3 to look very close511

to a linear combination of the torsional solution and a longitudinal wave. For Pr = 0.7 the512

drift is masked by the latitudinal oscillations, giving rise to a direction reversing wave in the513
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t  = 0

(a) (b) (c)

t  = 0

(d) (e) (f)

t  = T/4

(a) (b) (c)

t  = T/4

(d) (e) (f)

t  = T/2

(a) (b) (c)

t  = T/2

(d) (e) (f)

FIG. 8. Contour plots of (a)-(c) Θ and (d)-(f) k, and velocity field, for the eigenfunction of

azimuthal wave number m = 1 at the Neimark-Sacker bifurcation, at the same times as its base

periodic orbit shown in Fig. 6. In this case the eigenfunction is no longer periodic. The parameters

are Ra = 9286, Pr = 0.7, and Ek = 0.046. The top row in each animation corresponds to

the periodic orbit plus a multiple of the eigenfunction to see the effect of the bifurcation. The

superposition is quasiperiodic and therefore it does not close after the two periods of the periodic

orbit shown. The second row is a movie just of the eigenfunction. (Multimedia view).

equator. Then the global drift is better seen in the spherical projections.514

VI. CONCLUSIONS AND CLOSING REMARKS515

The stability of the axisymmetric periodic solutions of thermal convection in rotating fluid516

spheres has been studied, in the range of parameters for which they are the preferred pattern517

at the onset. The Neimark-Sacker bifurcations give rise to quasiperiodic flows of azimuthal518
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t  = 0

(a) (b) (c)

t  = 0

(d) (e) (f)

t  = T/4

(a) (b) (c)

t  = T/4

(d) (e) (f)

t  = T/2

(a) (b) (c)

t  = T/2

(d) (e) (f)

FIG. 9. Contour plots of (a)-(c) Θ and (d)-(f) k, and velocity field, for the eigenfunction of m = 2

at Ra = 9566, at the fractions of the period of the periodic orbit, T = 0.579350, indicated. See the

description of what is shown in the movies in the caption of Fig. 8 (Multimedia view).

wave numbers m = 1 or m = 2. They introduce a longitudinal drift, and a latitudinal519

modulation, which is very small for low Pr. The transitions to higher wave numbers appear520

only at much larger Ra except for very low Pr and Ek numbers. In this case the bifurcations521

accumulate close to the onset of convection, and consequently a complex spatio-temporal522

dynamics should be expected at low Ra.523

The results agree with previous studies obtained by direct numerical simulations, and524

confirm that the quasiperiodic orbits of azimuthal wave number m = 2 found in [40] come525

from the Neimark-Sacker bifurcation of the torsional solutions. On the other hand, the526

astrophysical problems for which this research could be relevant, concern the latitudinal527

migrations of large-scale spots in the surface of celestial bodies as, for instance, in the Sun.528

The symmetry breaking transitions from axisymmetric periodic orbits to quasiperiodic flows529

24

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
2
2
1
4
6



Accepted to Phys. Fluids 10.1063/5.0122146

for Pr < 0.93 supply mechanisms for the transport of large-scale spots of energy in latitude530

and longitude, and for the interchange of energy between the center and the surface of the531

sphere.532

Dynamical systems tools, based on Newton-Krylov methods to find the periodic solutions,533

and Arnoldi or subspace methods to find the leading Floquet multipliers, have been used.534

They allow a more efficient study than using only numerical simulations, especially for535

periodic flows and close to the bifurcations where the transients are very long. However,536

the two ways complement each other. Although it is possible to track curves of generic537

quasiperiodic flows [30, 51], it is quite expensive for three-dimensional problems, and not538

much justified when the interval of the parameter in which this is useful is very small539

because there are nearby transitions to chaotic regimes. More efficient particular techniques540

can be used when the quasiperiodic regimes are modulated waves. Their computation can541

be reduced to that of periodic orbits in a frame of reference in which the original waves542

become steady flows. The prediction of the transitions from waves to modulated waves was543

developed in [52], and the reduction to cycles was applied, for instance, in [53] for the plane544

Poiseuille flow, and in [29] in the thermal convection in rotating spherical shells. For the545

present problem the quasiperiodic regimes are not bifurcated from rotating waves, and the546

perturbations are not just longitudinal waves, they include also latitudinal modulations.547

Then that techniques cannot be applied. The solutions will be always seen as quasiperiodic548

in any rotating frame of reference. This has been checked to be the case for spherical shells549

with a small inner radius in some regimes with low Pr.550

There are many other fluid mechanics or reaction-diffusion problems for which the tools551

used here can be applied. In particular, when a periodic spatial direction is present, the552

separation of the stability problem of the periodic solutions, invariant along this direction,553

into the different wave numbers is an important simplification.554
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