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Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves which arise at
the onset of convection of a fluid contained in a rotating spherical shell, and their stability, are
studied. For this purpose, Newton-Krylov continuation techniques are applied. Non-slip boundary
conditions, an Ekman number E = 10−4, and a low Prandtl number fluid σ = 0.1 in a moderately
thick shell of radius ratio η = 0.35, differentially heated, are considered. The MRW are obtained
as periodic orbits by rewriting the equations of motion in the rotating frame of reference where the
rotating waves become steady states. Newton-Krylov continuation allows to obtain unstable MRW
that cannot be found by using only time integrations, and identify regions of multistability. For
instance, unstable MRW without any azimuthal symmetry have been computed. It is shown how
they become stable in a small Rayleigh-number interval, in which two branches of traveling waves
are also stable. The study of the stability of the MRW helps to locate and classify the large sequence
of bifurcations which takes place in the range analyzed. In particular, tertiary Hopf bifurcations
giving rise to three-frequency stable solutions are accurately determined.

I. INTRODUCTION

The study of thermal convection in rotating spherical
geometries is important for understanding the dynam-
ics of astrophysical and geophysical phenomena such as
the transport of energy in the interior of planets and
stars or the differential rotation observed in the atmo-
spheres of the major planets. In addition, magnetic fields
of cosmic bodies are generated by convection of elec-
trically conducting fluids in their interiors. In the last
decades, many experimental, theoretical and numerical
studies (see for instance [3, 5, 17, 20, 23, 28]), devoted
to improve the understanding of the basic mechanisms
which govern the convection and dynamo action in spher-
ical geometry, have appeared. Good reviews can be found
in the literature, see for instance [16] and [26].

Most of the set-ups of laboratory experiments are not
well suited for measurements of flows near the onset of
convection at small E and σ, so it is difficult to find
a description of periodic flows, observed experimentally,
in this range of parameters. From the analytical point of
view the nonlinear nature of the equations and the spher-
ical geometry of the domain lead to mathematical issues
of very difficult treatment. For this reason, the devel-
opment and improvement of the numerical techniques is
basic to go deeply into the study of weakly supercritical
nonlinear flows.

In problems having SO(2) symmetry, convection takes
the form of waves traveling in the azimuthal direction
(thermal Rossby waves for σ = 0.1), i.e. of rotating
waves (RW), when the axisymmetry of the basic con-
duction state is broken. A secondary Hopf bifurcation
gives rise to MRW, which may have different types of
spatio-temporal symmetries [14, 29]. In [14] several ex-
amples in which rotating waves can exist, such as the

Taylor-Couette system or the meandering spiral waves
in the Belousov-Zhabotinsky reaction, among others, are
described. In the case of rotating spheres, RW and MRW
were studied mainly with the help of direct numerical
simulations (see [1, 2, 6, 36, 37, 43], among many oth-
ers). When the azimuthal symmetry of the equations is
constrained, time integrations allow to obtain some un-
stable MRW and their bifurcation diagrams [11]. How-
ever, the only use of time integrations is not sufficient to
provide a complete picture of the dynamics. Specifically,
time integration methods are unable to obtain unstable
oscillatory solutions when all the symmetries of the flow
are broken. These solutions might be relevant in organiz-
ing the global dynamics [18]. To find them and provide a
deeper description of the phase space, continuation meth-
ods [19, 25, 32, 34] must be used.

In the fluid dynamics context numerical bifurcation
analysis has been successfully applied during the last
years to a great variety of problems [4, 18, 40–42]. Com-
putations based on continuation of periodic orbits of non-
trivial time dependence [39] and even tori [33, 35] or other
invariant objects [38] have provided useful information to
clarify the dynamics. In the case of rotating spherical ge-
ometries the bifurcation diagrams and the stability of the
RW in the slowly rotating regime, for σ = 1, were stud-
ied in [21] with non-slip boundary conditions by means
of Newton’s method. At lower E and σ, and for a radius
ratio η = 0.35 corresponding to the estimated Earth’s
outer core, Newton-Krylov continuation techniques and
Arnoldi methods were applied successfully in [31] to ex-
plain the coexistence of stable RW due to the presence of
a double-Hopf bifurcation, and to understand the exis-
tence of amplitude and shape MRW from the symmetry
breaking of the eigenfunctions at the secondary bifurca-
tions.
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Aside from the use of non-slip boundary conditions
and low σ = 0.1 and E = 10−4 values, the main novelty
of this study is to obtain branches of MRW bifurcated
from the RW previously studied in [31], using continu-
ation techniques and to perform a stability analysis of
these waves to study bifurcations to more complex flows
such as three-frequency waves. The MRW are obtained
as periodic orbits by rewriting the equations of motion
in the rotating frame of reference in which the RW are
steady solutions.
The paper is organized as follows. In Sec. II we intro-

duce the formulation of the problem, and briefly describe
the numerical method used to obtain and integrate the
discretized equations. In Sec. III preceding results con-
cerning the calculation of the RW are summarized. In
Sec. IV the equations for the MRW, and the continuation
and stability analysis methods are explained. The bifur-
cation diagrams as a function of the Rayleigh number,
Ra, and the patterns of convection are shown in Sec. V,
focusing mainly on the results that cannot be studied
with just time integrations. Finally, in Sec. VI the paper
ends with a brief summary of the results obtained.

II. THE MODEL AND THE EQUATIONS

We consider the thermal convection of a fluid filling the
gap between two concentric spheres differentially heated,
rotating about an axis of symmetry with constant an-
gular velocity Ω = Ωk, and subject to radial gravity
g = −γr, where γ is constant and r the position vector.
The mass, momentum and energy equations are writ-
ten in the rotating frame of reference. The units are
d = ro − ri for the distance , ν2/γαd4 for the tempera-
ture, and d2/ν for the time. In the previous definitions
ri and ro are the inner and outer radii, respectively, ν
the kinematic viscosity, and α the thermal expansion co-
efficient.
We use the Boussinesq approximation and the

solenoidal velocity field is expressed in terms of toroidal,
Ψ, and poloidal, Φ, potentials

v = ∇× (Ψr) +∇×∇× (Φr) . (1)

Consequently, the equations for both potentials, and the
temperature perturbation, Θ = T − Tc, from the con-
duction state v = 0, T = Tc(r), with r = |r| and
Tc(r) = T0 +Raη/σ(1− η)2r, are

[

(∂t −∇2)L2 − 2E−1 ∂ϕ
]

Ψ = − 2E−1QΦ −

− r ·∇× (ω × v), (2)
[

(∂t −∇2)L2 − 2E−1 ∂ϕ
]

∇2Φ+ L2Θ = 2E−1QΨ +

+ r ·∇×∇× (ω × v), (3)
(

σ∂t −∇2
)

Θ−Raη (1− η)−2r−3L2Φ =

− σ(v ·∇)Θ, (4)

where ω = ∇× v is the vorticity.

The parameters of the problem are the Rayleigh num-
ber Ra, the Prandtl number σ, the Ekman number E,
and the radius ratio η. They are defined by

Ra =
γα∆Td4

κν
, E =

ν

Ωd2
, σ =

ν

κ
, η =

ri
ro

, (5)

where κ is the thermal diffusivity, and ∆T > 0 the differ-
ence in temperature between the inner and outer bound-
aries.
The operators L2 and Q are defined by L2 ≡ −r2∇2+

∂r(r
2∂r), Q ≡ r cos θ∇2−(L2+r∂r)(cos θ∂r−r−1 sin θ∂θ),

(r, θ, ϕ) being the spherical coordinates, with θ measuring
the colatitude, and ϕ the longitude. Non-slip perfect
thermally conducting boundaries are used

Φ = ∂rΦ = Ψ = Θ = 0 at r = ri, ro. (6)

The equations are discretized and integrated as de-
scribed in [10] and references therein. The potentials and
the temperature perturbation are expanded in spherical
harmonics in the angular coordinates, truncated at de-
gree Lmax. In the radial direction a collocation method
on a Gauss-Lobatto mesh of nr + 1 points is used. The
code is parallelized in the spectral and physical spaces
by using OpenMP directives (see [9]). We use optimized
libraries (FFTW3 [7]) for the FFTs in ϕ and matrix-
matrix products (DGEMM GOTO [15]) for the Legendre
transforms in θ when computing the nonlinear terms.
For the time integration high order implicit-explicit

backward differentiation formulas (IMEX–BDF) [10] are
used. In the IMEX method we treat the nonlinear terms
explicitly in order to avoid solving nonlinear equations
at each time step. The Coriolis term is treated fully im-
plicitly to allow larger time steps. The use of matrix-free
Krylov methods (GMRES in our case) for the linear sys-
tems facilitates the implementation of a suitable order
and time step-size control.

III. COMPUTATION AND STABILITY OF THE

ROTATING WAVES

In this section some background necessary to follow
easily Secs. IV and V is included.
The discretization of equations (2-4) leads to a system

of n = (3L2
max+6Lmax+1)(nr − 1) ordinary differential

equations (ODE) of the form

L0∂tu = Lu+B(u, u), (7)

where u = (Ψm
l (ri),Φ

m
l (ri),Θ

m
l (ri)) is the vector con-

taining the values of the spherical harmonic coefficients
at the inner radial collocation points, and L0 and L are
linear operators which include the boundary conditions.
The former is invertible. It is the identity acting on Ψm

l

and Θm
l , and the operator Dl acting on Φm

l (see [31] for
details). The operator L includes all the linear terms and
depends on the parameters of the problem, in particular
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on the Rayleigh number Ra, that will be the control pa-
rameter of this study. The rest of parameters are fixed
to η = 0.35, E = 10−4 and σ = 0.1. Therefore, p = Ra
and L = L(p). The bilinear operator B only contains the
non-linear (quadratic) terms.
The system is SO(2) × Z2-equivariant, SO(2) gener-

ated by azimuthal rotations, and Z2 by reflections with
respect to the equatorial plane. According to bifurcation
theory, the first bifurcation, which breaks the axisymme-
try of the conductive state, is a Hopf bifurcation giving
rise to RW. In the linear stability analysis of [12] and [31],
critical values p = p1, at which there are vectors vc and
precession frequencies ωc satisfying iωcL0vc = Lvc, were
obtained as a function of E and η, respectively. With
σ = 0.1, η = 0.35 and E = 10−4 the preferred eigen-
fuctions are symmetric with respect to the equator. The
precession frequencies ωc are negative, namely the drift-
ing velocities c = −ωc/m are positive, thus the waves
travel in the prograde direction. Moreover, they consist
in quasi-geostrophic convective columns attached to the
inner sphere of mean radius rc ≪ d.
Rotating waves, u(r, θ, ϕ − ωt) = ũ(r, θ, ϕ̃), with ϕ̃ =

ϕ−ωt, were obtained in [31] by Newton-Krylov continua-
tion methods as steady solutions of the system (omitting
the tildes)

F (u, ω, p) ≡ L(p)u+B(u, u) + ωL0∂ϕu = 0, (8)

by using a suitable preconditioner to accelerate the con-
vergence of the linear solver. Their stability was studied
by considering a perturbation v(t, r, θ, ϕ̃) of u(r, θ, ϕ̃) and
linearizing Eq. (8). The leading eigenvalues of the matrix
L−1
0 DuF (u) were computed using the ARPACK pack-

age [22], based on Arnoldi algorithms, and shift-invert
strategies [24].
The bifurcation diagrams were calculated for the values

of the parameters above mentioned, i.e. for E = 10−4,
σ = 0.1, control parameter p = Ra, and different values
of the radius ratio η, around the vicinity of a double-Hopf
bifurcation.
Figures 1(a,b), taken from [31], show the L2-norm of

the RW and the drifting frequency, ω, respectively, ver-
sus Ra for η = 0.35. The horizontal axis in Fig. 1(a)
corresponds to the basic conductive state ‖u‖2 = 0. In
these figures, solid and dashed lines indicate stable and
unstable solutions, respectively. The preferred mode at
the onset of convection (Rac = 1.856 × 105), has a six-
fold rotational symmetry. At the bifurcation point a
branch of supercritical stable RW keeping this symmetry
emerges. Other branches bifurcated from the conduc-
tion state at higher Ra, invariant under 2π/m rotations
(m = 5, 7, 8, 4, · · · ), are unstable. However that with the
five-fold symmetry stabilizes after a Hopf bifurcation at
Ra = 2.043428× 105 which breaks the five-fold symme-
try. An unstable branch of MRW without any azimuthal
symmetry is born at this point. This behavior was re-
lated with the existence of a double-Hopf bifurcation at a
slightly different value of η (0.3308), involving the modes
of azimuthal wave numbers m = 5 and m = 6. The

branches of five- or six-fold symmetric RW lose their sta-
bility via new Hopf bifurcations at Ra = 2.584388× 105

and Ra = 2.738518×105, giving rise to branches of stable
MRW, which keep the symmetry of the RW.

IV. COMPUTATION AND STABILITY OF THE

MODULATED ROTATING WAVES

As said before, the RW undergo secondary Hopf bi-
furcations at critical values p, giving rise to branches of
MRW. These are solutions for which there exist a mini-
mal time τ > 0 and a rotating frequency ω such that

u(τ + t, r, θ, ϕ) = u(t, r, θ, ϕ− ωτ) ∀t. (9)

The time τ is the period of the modulation in the frame of
reference at which only the oscillations due to the modu-
lation are observed, and ω is the angular velocity of this
frame of reference (relative to the rotating spheres).
Let us define u(t, r, θ, ϕ) = ũ(t, r, θ, ϕ̃), with ϕ̃ = ϕ−ωt

and ω a rotating frequency. If ũ is a τ -periodic function,
then u is a MRW because

u(t+ τ, r, θ, ϕ)
1
= ũ(t+ τ, r, θ, ϕ− ω(t+ τ))

2
=

2
= ũ(t, r, θ, ϕ− ωt− ωτ)

3
= u(t, r, θ, ϕ− ωτ).

Identities 1 and 3 are due to the definition of ũ, while
equality 2 is because ũ is a τ periodic function.
Taking into account that ∂tu = ∂tũ−ω∂ϕ̃ũ and Eq. (7),

the equations for ũ(t, r, θ, ϕ̃) are deduced. By omitting
the tildes, they are

∂tu = L−1
0

(

L(p)u+B(u, u)
)

+ ω∂ϕu. (10)

The periodic orbits of this system are MRW of Eq (7),
and its fixed points correspond to RW of Eq (7).

Continuation of the MRW

To study the dependence of the MRW on the param-
eter p = Ra, pseudo-arclength continuation methods
are used. They allow to obtain the curve of solutions
x(s) = (u(s), τ(s), ω(s), p(s)) ∈ R

n+3, s being the ar-
clength parameter, by adding the pseudo-arclength con-
dition

m(u, τ, ω, p) ≡ 〈w, x − x0〉 = 0, (11)

x0 = (u0, τ0, ω0, p0) and w = (wu, wτ , wω , wp) being the
predicted point and the tangent to the curve of solutions,
respectively, obtained by extrapolation of the previous
points along the curve.
The system which determines a single solution, x =

(u, τ, ω, p) is

H(u, τ, ω, p) =







u− φ(τ, u, ω, p)
g(u)
h(u)

m(u, τ, ω, p)






= 0, (12)
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FIG. 1. Bifurcation diagram (taken from [31]) showing (a) the L2-norm of the RW and (b) the drifting frequency, ω, both
versus Ra.

where φ(τ, u, ω, p) is solution of Eq. (10) at time t = τ
with initial condition u at t = 0, and for fixed ω and p.
The conditions g(u) = 0 and h(u) = 0 are selected to
fix the two undetermined phases of the MRW. We use
g(u) = 〈u, ∂ϕuc〉 = 0 and h(u) = 〈u, ∂3

ϕuc〉 = 0, where
uc is a reference solution (the eigenvector, uc = vc, at
p = p2, a previously computed solution, or the extrap-
olated value of u at the first iteration). The former is
a necessary condition for ‖u − uc‖

2
2 to be minimal with

respect to the phase (see [31]), and the latter is selected
to ensure h(uc) = 0. For the computation of the inner
products 〈·, ·〉 between two functions expanded in spher-
ical harmonics we use the definitions of [31].
To solve the large non-linear system defined by Eq. (12)

we use Newton-Krylov methods. They are matrix-free
methods that do not require the explicit computation of
the jacobian D(u,τ,ω,p)H(u, τ, ω, p), but only its action
on a given vector. For the linear systems we use GM-
RES [30]. Due to the particular form of the spectrum
of D(u,τ,ω,p)H(u, τ, ω, p) for dissipative systems, GMRES
does not need preconditioning (see [34] for details).
The action of the Jacobian D(u,τ,ω,p)H(u, τ, ω, p) on

δx = (δu, δτ, δω, δp) ∈ R
n+3 is







δu− v(τ) − ż(τ)δτ
Dug(u)δu
Duh(u)δu
Dxm(x)δx






∈ R

n+3. (13)

Here z(τ), v(τ) ∈ R
n are the solutions, at time t = τ , of

the system

∂tz = L−1
0 (L(p)z +B(z, z)) + ω∂ϕz, (14)

∂tv = L−1
0 (L(p)v +B(z, v) +B(v, z))+

+ ω∂ϕv + δω∂ϕz + δpL−1
0 L(2)z, (15)

with initial conditions z(0) = u and v(0) = δu, with
fixed ω and p. The dependence of L on p, of the form
L(p) = L(1) + pL(2) has been used. Each GMRES itera-
tion will require one evaluation of the jacobian, therefore

most of the computational cost is consumed in the inte-
gration over one tentative modulation period of a large
ODE system of dimension 2n. Thus, an efficient time
integration is mandatory.
Notice that the RW can be obtained with the code

written to compute MRW by omitting the term ω∂ϕu in
Eq. (10), and the dependence of ω and the phase condi-
tion h(u) of Eq. (12). In this case τ means the period of
the RW. However, the time integration can be reduced
by a factor m due to their m-fold spatial symmetries.
Moreover, since the fixed points of system (10) are RW
of system (7), they can also be computed with the same
code by removing the dependence on τ and one phase
condition in Eq. (12). Now the flying time τ appear-
ing in the first component of Eq. (12) is no longer an
unknown but a fixed characteristic time. It should be
small to avoid long time integrations but large enough
to have a fast convergence of the linear solver. We have
used these tricks to check the new code for the computa-
tion of MRW by comparing with previous results. These
calculations are more demanding than those used in [31]
because they involve time integrations of 2n equations,
but they are easier to implement, if a time-stepper code is
available, because GMRES does not need precondition-
ing in contrast to what happened in [31].

Stability of the MRW

Suppose a MRW (u, τ, ω, p) ∈ R
n+3 has been found.

To study the stability of this periodic solution, Floquet
theory is applied. Handling the full Jacobian matrix
Duφ(τ, u, ω, p), φ(τ, u, ω, p) being the solution of Eq. (10)
at time t = τ with initial condition u at t = 0 and for
fixed ω and p, would require a prohibitive amount of
memory due the high resolutions employed in the present
study. It is enough to compute the leading eigenvalues
and eigenvectors of the map δu −→ Duφ(τ, u, ω, p)δu =
v(τ), v(τ) being the solution of the first variational equa-
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tion obtained by integrating the system

∂tz = L−1
0 (L(p)z +B(z, z)) + ω∂ϕz,

∂tv = L−1
0 (L(p)v +B(z, v) +B(v, z)) + ω∂ϕv

of dimension 2n, with initial conditions z(0) = u and
v(0) = δu, over a modulation period τ , with fixed ω and
p.
The leading eigenvalues of the map, which correspond

to the leading Floquet multipliers, are computed by using
the ARPACK package. MRW with leading Floquet mul-
tipliers with modulus larger (smaller) than +1 are unsta-
ble (stable). Notice that in this problem, for any value
of p, there are two marginal (+1) Floquet multipliers
due to the invariance under azimuthal rotations and time
translations, with associated eigenfunctions v1 = ∂tu and
v2 = ∂ϕu. To avoid unnecessary computations they can
be deflated by computing the eigenvalues of the map
δu −→ v(τ)−〈v(τ), v1〉 v1−〈v(τ), v2〉 v2. This method to
determine the stability of the solutions is very robust but
computationally expensive because it requires the time
integration of and ODE system of dimension 2n over one
period of the modulation. Since the solution is a periodic
orbit of Eq. (10) there is no cheaper alternative to this
procedure.

V. RESULTS

A. Branches of modulated waves

The eigenfunctions at the bifurcation points of Fig. 1
were used to identify the azimuthal symmetries of the
MRW and in this way to build initial conditions to
start their continuation. The modulation periods τmi =
2π/ Im(λm

i ) of the branches of MRW at the critical pa-
rameters pmi are obtained from the leading eigenvalues,
λm
i , at the Hopf bifurcations. The initial drifting fre-

quencies ωm
i are those of the RW, (um

i , ωm
i , pmi ), at the

bifurcation points. All the results shown in this section
(otherwise mentioned) are obtained with truncation pa-
rameters nr = 32 and Lmax = 60.
Figure 2(a) and their blowups in Figs. 2(b,c,d) display

the drifting frequency, ω, versus Ra for the RW with
five- or six-fold rotational symmetry (in red) and for the
MRW without any azimuthal symmetry (m = 1 MRW
from now on) and those with five- or six-fold rotational
symmetries (in blue). The meaning of dashes and sym-
bols can be seen in the figure caption. While for the
RW the frequency ω always decreases monotonically, for
the five- or six-fold symmetric MRW it increases at the
beginning of the branch but starts to decrease soon. In
contrast, the behavior of m = 1 MRW is more complex.
On average, ω decreases, but it increases in the regions
where saddle-node bifurcations are present (see Figs. 2(b)
and 2(d)).
As said before, the unstable m = 1 branch of MRW

arises from the five-fold symmetric branch of RW (see

fig. 2(b)). At a saddle-node bifurcation at Ra11 =
2.15713×105 it becomes stable down to Ra12 = 2.15690×
105, where a Hopf bifurcation occurs. This interval of
stability is very small, as shows the detail of Fig. 2(b),
so it would be nearly impossible to capture it with di-
rect simulations. The stability analysis of the solutions
along this branch has allowed to identify several bifurca-
tions. The detail of most of the saddle points is shown in
fig. 2(d). Notice that in the latter figure some of the bi-
furcations are very close, therefore if a second parameter
is varied (for instance E or σ) codimension two bifurca-
tions (Hopf–saddle-node, double-Hopf, period-doubling–
saddle-node) could be located. Finally, the branch of
m = 1 MRW ends at a Hopf bifurcation again on the
five-fold symmetric branch of RW (see right-bottom cor-
ner of fig. 2(d)).

In contrast to the m = 1 branch of MRW, the re-
gions of stability of the 6, 5-fold MRW are sufficiently
large (see Fig. 2(c)) as to capture these solutions by time
integration [8]. We have identified the bifurcations on
these branches and checked that the MRW starting at
the first period-doubling bifurcation found correspond
to the solutions computed in [11] by using azimuthal-
symmetry-constrained time integration. In the latter
work, in agreement with Feigembaum’s theory, up to
three period-doublings leading to chaotic solutions were
found.

The bifurcation diagrams of the time-averaged Nusselt
number, Nu and kinetic energy density, K, both defined
as in [13], are shown in Fig. 2(e) and Fig. 2(f), respec-
tively. The curves of RW are very smooth and Nu and K
increase monotonically with increasing Ra. In contrast,
the curves of MRW are not monotonous and the m = 1
branch has a marked loop. Note that at Ra = 4.1× 105

there are five unstable solutions without azimuthal sym-
metries and very different values of Nu and K. The
m = 1 branch of MRW has the larger Nu, with the
maximum very near from a Hopf–saddle-node bifurca-
tion (the saddle-node at Ra112 = 4.43366 × 105 and the
Hopf point at Ra111 = 4.43358× 105). This solution has
also large values of K comparable to those of the five-fold
symmetric MRW around Ra = 5.8× 105.

In Fig. 3(a) the modulation period τ for the three
branches of MRW shown in Fig. 2 is plotted versus Ra,
with a detail in Fig. 3(b) of the double-loop where the
m = 1 branch undergoes several bifurcations. Each
branch of Fig. 3(a) starts with a modulation period τ
given by the stability analysis of the RW at the corre-
sponding bifurcation point. It is worth noticing that the
theoretically predicted τ could not be minimal in the
sense that there might exist another modulation period
τ ′ = τ/k with k ∈ N, and another drifting frequency
ω′ = ω − 2π/τ such that (u, τ ′, ω′, p) is also a MRW
(see [29]). For the five- or six-fold branches the modula-
tion period τ obtained from the stability analysis is min-
imal. However, for the m = 1 MRW the minimal period
is τ ′ = τ/5. Detecting τ ′ is important to avoid unnec-
essary time integrations which are the most expensive
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FIG. 2. Bifurcation diagrams: (a) Drifting frequency, ω, versus Ra. (b) Detail corresponding to the square drawn in Fig. 2(a).
(c) Detail containing the regions of stable RW and MRW. (d) Detail showing the loops on the m = 1 branch of MWR and
the five-fold branch of RW. (e) Time-averaged Nusselt number, Nu, and (f) time-averaged kinetic energy density, K, both
versus Ra. Solid (dashed) lines indicate stable (unstable) solutions. The symbols mean the types of bifurcations: (•) Hopf, (×)
saddle-node and (◦) period-doubling.

computational task. An algorithm to obtain τ ′ and ω′

directly from an observable of an experiment with O(2)
symmetry was presented in [27]. The modulation pe-
riod is obtained from the period of the time series of a
volume-averaged quantity. This also applies to our prob-
lem because volume-averaged quantities are invariant un-
der azimuthal rotations.

Figure 4, showing the modulus of the two leading Flo-
quet multipliers, |µ1| ≥ |µ2|, plotted versus the Rayleigh
number, helps to illustrate how the m = 1 branch of
MRW gains and loses stability in the double-fold of
Fig. 2(b). The modulus of µ1 is plotted in solid line
and |µ2| in dashed line. The symbol • signals the val-
ues of |µ1| and |µ2| at the starting point, and the arrows
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branch. The type of dash and symbols mean the same as in Fig. 2
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FIG. 4. (a) Modulus of the two leading Floquet multipliers versus Ra, for the solutions shown in the detail of Fig. 2(b). (b)
Leading Floquet multipliers of the last solution calculated on the m = 1 branch. The closed curve is the unit circle.

indicate the path followed along the curve. The cross-
ings through the horizontal line placed at |µ| = 1 mark
the three bifurcation points along the curve. At the be-
ginning both multipliers are real. When the first crosses
the unit circle it stabilizes the fluid at the first saddle-
node bifurcation. Afterwards, it collapses with the sec-
ond forming a complex conjugated pair of |µ| < 1 that
crosses again the unit circle. This is the Hopf bifurca-
tion that destabilizes the m = 1 branch of MRW. Finally
the pair separates after colliding on the real axis. The
first real multiplier increases its modulus and the second
crosses again the unit circle at the second saddle-node
bifurcation.

Figure 4(b) displays the twenty first leading Floquet
multipliers for the last solution computed on the m = 1
branch of MRW, which ends again on the five-fold RW.
There are nine complex conjugated pairs, eight of them

outside the unit circle, and two real, so close to each
other, that are indistinguishable in the figure. One of
them is outside the unit circle. This means that sev-
eral of the bifurcations detected along this branch (as
much as 29) are due to multipliers entering to the unit
circle. Except in the three Hopf bifurcations where
the stable MRW lose their stability, any other Hopf
or period-doubling bifurcations gives rise to unstable
three-frequency solutions or period-doubled MRW, re-
spectively. For instance, twenty branches of unstable
objects are born along only the m = 1 branch. Thus
the phase space of this problem is so complex that it
is almost impossible to unfold a small part of the full
bifurcation diagram. However in some cases, as in [31],
chaotic finite-amplitude solutions at this range of param-
eters can be understood as trajectories which visit in a
random way the stable RW and MRW, pointing out the
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FIG. 5. Poincaré section at Θ((ro+ri)/2, 0, 3π/8) = 0 of the azimuthal component of the velocity field vϕ(ri+(ro−ri)/7, 0, 3π/8)
plotted versus Θ at the same point. (a) Stable m = 1 MRW at Ra = 2.15701 × 105. (b) Stable three-tori bifurcated from the
m = 1 MRW at Ra = 2.15685 × 105.

interest of the computation of unstable solutions by con-
tinuation methods.
When the MRW lose their stability via Hopf bifurca-

tions, branches of three-frequency solutions (three-tori)
of Eq. (7) or two-frequency RW (two-tori) of Eq. (10)
arise at the bifurcation points. By means of time in-
tegration of Eq. (7), the three stable three-tori bifur-
cated from the five- or six-fold MRW and the m =
1 MRW have been found. The Poincaré section at
Θ((ro + ri)/2, 0, 3π/8) = 0 of the azimuthal component
of the velocity field vϕ(ri + (ro − ri)/7, 0, 3π/8) plotted
versus Θ at the same point, for a stable m = 1 MRW at
Ra = 2.15701×105, is displayed in Fig. 5(a). Figure 5(b)
shows the same Poincaré section but for the stable three-
tori at Ra = 2.15685× 105, bifurcated from the m = 1
MRW. In this case the section is no longer a curve but
a band. It is worth to notice that both type of oscilla-
tory solutions are obtained from initial conditions given
by the continuation code. Although they are stable near
Rac, their stability interval is very short, and the basin
of atraction of the stable five- or six-fold symmetric RW
is much larger than that of the m = 1 MRW and three-
tori of Eq. (7), then it would be almost impossible to get
them by chance with time integrations.
The flow patterns along the m = 1 branch of MRW

are shown in Fig. 6. It shows, from top to bottom, a
sequence of solutions at Ra = 2.04612 × 105, 2.20259 ×
105, 3.23559×105, 4.31323×105, 4.87302×105. Three pro-
jections of the temperature perturbation are displayed in
the left group of plots. The radius of the spherical sur-
faces ranges from r = ri+0.22d to r = ri+0.3d, although
they are represented with the same size as the other sec-
tions. They correspond approximately to the location
where the columns of Θ get the maximum. The middle
projections are taken on the equatorial plane, and the
right ones on a meridional section that cuts the equato-
rial cell of Θ by its maximum. The scale of colors is the

same in each solution, with blue meaning cold fluid. The
same projections are taken for the kinetic energy density
K (right group of plots), but with the spherical projec-
tions taken close to the outer boundary at r = ri+0.975d,
where it reaches its maximum at high latitudes, and with
the spherical surface seen from the pole.
The meridional sections show the typical patterns of

convection in a regime where rotation plays a dominant
role in the dynamics: the z-dependence of the flow is
weak, and outside a columnar region the fluid is nearly
stagnant. The cells of convection are symmetric with
respect to the equatorial plane and attached to the inner
sphere. The equatorial sections of K display a double-
layered pattern of spiraling vortices. The solutions close
to the five-fold RW have the symmetry weakly broken
and the five convective cells have similar size (see first and
last rows of Fig. 6). In contrast, far away the bifurcation
points, the number of convective cells diminishes, some
of them are significantly smaller than the others and the
convection is localized in patches whose intensity grows
and decays while the full pattern is rotating.
Contour plots along the five-fold branch of MRW at

Ra = 2.73868×105, 3.32581×105, 4.00390×105, 5.22800×
105, 5.82313×105 are shown in Fig. 7. The patterns of the
first solution resemble those of the five-fold RW at the bi-
furcation point. As the Rayleigh number is increased, the
cells of hot fluid spiral and expand to the outer boundary,
confining the cold fluid in small cells near the interior. In
addition, the vortices of K become connected near the
inner boundary indicating that there are strong internal
mean zonal circulations in this region of parameters (see
for instance the third row at Ra = 4.00390× 105). The
same behavior was found when the six-fold MRW were
analized.
Figure 8, 9 and 10 display, respectively, the contour

plots of Θ and K for the m = 1 MRW, the five- or six-
fold MRW at the Hopf bifurcation points where they lose
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FIG. 6. The left column of three plots contains the contour plots of Θ on a sphere, on the equatorial plane, and on a meridional
section, for solutions lying on the m = 1 branch of MRW at Ra = 2.04612 × 105, 2.20259 × 105, 3.23559 × 105, 4.31323 ×

105, 4.87302 × 105 (from top to bottom). The right column corresponds to K for the solution and same Ra.

stability, and the corresponding real and imaginary parts
of the critical eigenfunction. At the bifurcation the sym-
metry of the five- or six-fold MRW is broken, but as can
be seen in the second and third rows of Fig. 10 the eigen-
fuction of the six-fold MRW is invariant under a rotation
of π. Therefore the three-frequency of waves emerging at
this point retains a two-fold rotational symmetry.

Finally, to check the sensibility of the bifurcation
points with the spatial resolution, the variation of Ra,
τ , ω and the argument of the leading eigenvalue, Arg(λ),
is studied for the four bifurcations where the MRW be-
come stable or unstable. The results are included in ta-
ble I. We have changed both, the number of radial collo-
cation points, nr, and the spherical harmonics truncation

parameter, Lmax. The computation of the five- or six-
fold symmetric branches is performed applying symmetry
constrains to reduce the size of the systems, n, required to
obtain them. In contrast, all the modes must be retained
when computing the branch without rotational symme-
try. The values of n range from 57692 up to 1061977.
When analyzing the stability of the solutions no symme-
try constraints are imposed. In this case the number of
discretization points range from 345991 up to 1061977.
The determination of the critical point was performed in
each case by inverse interpolation.

As can be seen in the table the accuracy of the results is
very good. Even with the lower resolutions used at least
three significant figures are obtained for Arg(λ) and four
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FIG. 7. Same contour plots as in Fig. 6 for five-fold symmetric solutions at Ra = 2.73868 × 105, 3.32581 × 105, 4.00390 ×

105, 5.22800 × 105, 5.82313 × 105 (from top to bottom).

or more for the other quantities.

VI. SUMMARY

Modulated thermal Rossby waves and their stability
have been computed in rotating spherical geometry for
parameter values of σ and η of geophysical relevance.
The MRW have been obtained as periodic orbits in the

rotating frame of reference where only the period of the
modulation is observed. Newton-Krylov continuation al-
lows to obtain unstable RW and MRW that cannot be
found by only using time integrations. The use matrix-
free linear solvers for the Newton iterations avoid the
storage of the Jacobian matrix allowing to tackle high

resolutions needed for low Ekman and Prandtl number
flows. In this way we have been able to compute sta-
ble MRW stabilized at a saddle-node bifurcation of an
unstable branch of MRW.

To find a single MRW up to relative tolerance 10−8 the
Newton-Krylov method typically converges in 4 Newton
iterations. Each of them requires an evaluation of the
function, i.e, one time integration of an ODE system of
dimension n = O(105 − 106) plus an average of 15 GM-
RES iterations, i.e, 15 additional time integrations of an
ODE system of dimension 2n are needed. Close to the bi-
furcation points the convergence slows down, so efficient
and accurate (high-order) time integration is essential.

We have performed an exhaustive stability analysis to
detect and classify the large sequence of bifurcations that
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FIG. 8. Same type of contour plots as in Fig. 6. The first row corresponds to Θ and K for the solution at the first Hopf
bifurcation point (Ra1

2 = 2.15690 × 105) on the m = 1 branch, the next two rows show the real and imaginary parts of the
leading eigenfunction at the same point.

                  

                  

                  

FIG. 9. Same contour plots as in Fig. 8 for the solution and the real and imaginary parts of the leading eigenfunction at the
first Hopf bifurcation point (Ra5

1 = 2.86197 × 105) on the five-fold branch.

takes place along these branches. In contrast to what
happens with the RW, we have found that the range of
Ra in which the MRW are stable is very small. This

is specially true in the case of the m = 1 MRW, stable
very close to the onset at Ra/Rac = 1.16. The stability
regions of the RW andMRW overlap giving rise to regions
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FIG. 10. Same contour plots as in Fig. 9 for the solution and the real and imaginary parts of the leading eigenfunction at the
first Hopf bifurcation point (Ra6

1 = 2.60701 × 105) on the six-fold branch.

nr m Lmax

m
n Rc τ ω Arg(λ)

32 1 60 345991 215713.2 0.0709448 90.6995 0
40 1 72 623415 215716.7 0.0709454 90.6989 0
50 1 84 1061977 215716.7 0.0709454 90.6989 0

32 1 60 345991 215689.7 0.0706949 90.7367 0.0388974
40 1 72 623415 215692.4 0.0706954 90.7363 0.0389272
50 1 84 1061977 215692.4 0.0706953 90.7363 0.0389286

32 5 12 69223 286197.3 0.0361569 80.7386 2.47680
40 5 14 117975 286203.6 0.0361561 80.7383 2.47700
50 5 16 192913 286203.8 0.0361561 80.7384 2.47701

32 6 10 57691 260700.8 0.0378892 63.2709 1.13710
40 6 12 103935 260703.5 0.0378885 63.2706 1.13703
50 6 14 177037 260703.4 0.0378885 63.2706 1.13704

TABLE I. Variation of the critical parameters of the MRW
at the Hopf bifurcations where they change the stability with
the resolution.

of multistability of two and three different types of waves.

The five- or six-fold and m = 1 MRW lose their
stability via tertiary Hopf bifurcations, giving rise to
three-frequency stable solutions. In addition, we have
found more than 50 Hopf and period-doubling bifurca-
tions along the branches of RW and MRW studied. These
bifurcations give rise to branches of unstable modulated
and three-frequency waves which configure the skeleton
of the phase space. To have the tools to compute them
is important because the study of the unstable branches
of solutions could explain the origin of stable temporally-
chaotic flows observed experimentally in the same range
of parameters or computed from uncontroled initial con-
ditions.

VII. ACKNOWLEDGMENTS

This research has been supported by MEC-
DGICT/FEDER project FIS2013-40674-P and AGAUR-
GENCAT project 2014-SGR-1145.

[1] M. Ardes, F. H. Busse, and J. Wicht. Thermal convection
in rotating spherical shells. Phys. Earth Planet. Inter.,
99:55–67, 1997.

[2] U.R. Christensen. Zonal flow driven by strongly super-
critical convection in rotating spherical shells. J. Fluid

Mech., 470:115–133, 2002.
[3] P. A. Davidson. Scaling laws for planetary dynamos.

Geophys. J. Inter., 195:67–74, 2013.
[4] H. A. Dijkstra, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F.

Dragomirescu, B. Eckhardt, A. Y. Gelfat, A. L. Hazel,



13

V. Lucarini, A. G. Salinger, E. T. Phipps, J. Sánchez-
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ant tori by Newton-Krylov methods in large-scale dissi-
pative systems. Physica D, 239:123–133, 2010.

[36] R. Simitev and F. H. Busse. Patterns of convection in ro-
tating spherical shells. New J. Phys, 5:97.1–97.20, 2003.

[37] A. Tilgner and F.H. Busse. Finite amplitude convection
in rotating spherical fluid shells. J. Fluid Mech., 332:359–
376, 1997.

[38] L. van Veen, G. Kawahara, and M. Atsushi. On matrix-
free computation of 2D unstable manifolds. SIAM J. Sci.

Comput., 33(25), 2011.
[39] D. Viswanath. Recurrent motions within plane Couette

turbulence. J. Fluid Mech., 580(2):339–358, 2007.
[40] T. Watanabe, K. Toyabe, M. Iima, and Y. Nishiura.

Time-periodic traveling solutions of localized convection
cells and their collision in binary fluid mixture. In APS



14

Division of Fluid Dynamics Meeting Abstracts, page H7,
November 2010.

[41] I. C. Waugh, S. J. Illingworth, and M. P. Juniper. Matrix-
free continuation of limit cicles for bifurcation analy-
sis of large thermoacoustic systems. J. Comput. Phys.,
240:225–247, 2013.

[42] I. C. Waugh, K. Kashinath, and M. P. Juniper. Matrix-
free continuation of limit cycles and their bifurcations for
a ducted premixed flame. J. Fluid Mech., 759:1–27, 2014.

[43] K. K. Zhang. Convection in a rapidly rotating spherical
shell at infinite Prandtl number: transition to vacillating
flows. Phys. Earth Planet. Inter., 72:236–248, 1992.


