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Abstract

A mechanism for the cyclic generation of bursts of magnetic fields by nonlinear torsional flows

of complex time dependence but very simple spatial structure is described. These flows were

obtained numerically as axisymmetric solutions of convection in internally heated rotating fluid

spheres in the Boussinesq approximation. They behave as repeated transients, which start with

nearly periodic oscillations of the velocity field of slowly increasing amplitude. This regime is

followed by a chaotic fast increase and a final decrease of the amplitude of, at least, one order of

magnitude. The magnetic field decays due to the magnetic diffusion during the regular oscillations,

but it grows in the form of bursts during the intervals of irregular time dependence of the velocity.

The magnetic field is strongly localized in spirals, with spatial- and temporal-dependent intensity.
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I. INTRODUCTION

The generation of magnetic fields by thermal convection is a fundamental subject of study

in astrophysics and geophysics. Many efforts have concentrated in studying dynamos driven

by thermal Rossby waves and bifurcated flows at moderate Prandtl numbers, Pr, because

these waves were the stable solutions visualized experimentally and found from direct nu-

merical simulations (DNSs) in rotating heated spheres and spherical shells (see Refs. [1–11]

among many others). Most of them use the Boussinesq or anelastic approximations. These

flows are axially non-symmetric and their velocity, v, and temperature, T , fields are sym-

metric or almost symmetric by reflections with respect to the equator, i.e., they fulfill or

closely fulfill (vr, vθ, vϕ)(r, θ, ϕ) = (vr,−vθ, vϕ)(r, π − θ, ϕ) and T (r, θ, ϕ) = T (r, π − θ, ϕ), θ

and ϕ being, respectively, the colatitude and the longitude. The efficiency of these dynamos

at low Reynolds number depends on the generation of mean zonal flows. The magnetic fields

have, in general, a large-scale dipolar or multipolar structure like those observed in several

planets. Simultaneously, other studies (see Refs. [12–19] among many others) focus on un-

derstanding the magnetic fields observed in stars, mainly in the photosphere of the Sun, and

in the inter-stellar medium. These fields are associated with the turbulent motions of plas-

mas at high Reynolds numbers, and therefore they lack any symmetry. Their study requires

adding hyperdiffusivities to the equations or the development of tailored models [20, 21].

There are several recent reviews [22–24] and books [25–28] covering the current knowledge

of astrophysical and geophysical dynamos, under any point of view, i.e., focusing either on

direct observations and laboratory experiments or on DNSs and theoretical models. In any

case two fundamental points are to understand the transfer and dissipation of magnetic

energy from large to small scales, and from the small magnetic scales to the small kinetic

scales by means of reversed dynamos [19].

Large-scale dynamos driven by turbulent flows are studied through mean-field theories.

They usually assume that the small scales generated by the turbulent velocity field originate

in the shredding of the large magnetic field lines, and that they disappear when the mean field

vanishes (see, e.g., Refs. [22, 28]). On the other hand, homogeneous and isotropic turbulence

can generate directly self-sustained small-scale magnetic fields by means of random stretching

and folding of the small field lines (see, e.g., [28, 29]).

Recently Sánchez et al. [30], Zhang et al. [31], and Kong et al. [32] found that axially
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axisymmetric time-periodic flows, with prevailing equatorial antisymmetric velocity and

temperature fields (torsional flows) can also be preferred at the onset of convection. At

low Ekman number, Ek (defined below as the inverse of the rotation rate in viscous time

units), this holds for small Pr fluids, like that of the liquid metals for which Pr . 0.1

under different temperature and pressure conditions (see, e.g., estimations in Refs. [33–35]).

The flows bifurcated from these solutions are three-dimensional, but they retain a large

antisymmetric and torsional part satisfying (var , v
a
θ , v

a
ϕ)(r, θ, ϕ) = (−var , v

a
θ ,−vaϕ)(r, π − θ, ϕ),

and T a(r, θ, ϕ) = −T a(r, π−θ, ϕ). Then it is important to know if the torsional velocity fields

are able of driving dynamos, and if so, what is the structure of the generated magnetic fields.

This paper is mainly devoted to solving a fundamental problem of magnetohydrodynamics

(MHD): to find out if nearly heteroclinic cycles with these latter symmetry properties are

able to generate and sustain magnetic fields by a purely kinematic action. The flows were

found by DNSs as solutions of the axisymmetric Navier-Stokes equation for an internally

heated rotating fluid sphere with stress-free conditions at the boundary [36].

Kinematic dynamos driven by convective flows of complex time dependence have been

studied recently in Refs. [37] and [38]. Calkins et al. [37] focused on dynamos driven by

velocity fields ranging from laminar flows to geostrophic turbulence. The flows were obtained

by integrating a quasigeostrophic asymptotic model based on the anisotropic structure of

the convection in a plane three-dimensional (3D) layer. They found a weak influence of the

velocity field on the spatial characteristics of the large-scale magnetic field, but the behavior

of the small-scale magnetic field showed important variations when the type of forcing was

changed. Currie and Tobias [38] considered a convective dynamo model in a Cartesian

domain, in which the shear of a two-dimensional flow is generated self-consistently by a

horizontal temperature gradient and a rotation vector oblique to gravity. They found this

system is a good dynamo even at high magnetic Reynolds number, for which other models

pointed to a decrease of the efficiency of convection to sustain magnetic fields. However

these flows act only as small-scale dynamos.

In a full MHD problem, the evolution of a magnetic field, B, from a weak seed can be

divided in two stages: a kinematic phase, in which there is an exponential growth of B

and the Lorentz force is unimportant, and the nonlinear saturation phase, in which B is

able to change the flow and stop the growth. The spatial scale of B, which will depend on

the parameters of the problem, is selected during the first phase, but it may change in the
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second [13]. In contrast, a kinematic dynamo problem (like that studied in this article) is

linear in B, uncoupled from the origin of the forcing velocity field. It is in fact an eigenvalue

problem for steady and periodic flows. Therefore, in spherical geometry the azimuthal

wave number, m, of B can be selected in advance by expanding it in spherical harmonics.

The solution provides a growth rate for any magnetic Prandtl number, Prm, also fixed

in advance, and the corresponding leading eigenfunction, which gives the structure of the

magnetic field. In the case of periodic flows, the hydrodynamic equation must be integrated

together with the induction equation, unless the time dependence is trivial (for instance

if it is harmonic). The same holds for temporally chaotic or turbulent velocity fields. The

information obtained is then the average growth or decay of B, and its time evolution. Since

the different azimuthal wave numbers are uncoupled, studying the interchange of magnetic

energy between them or possible energy cascades does not make sense.

Dynamos driven by heteroclinic cycles were studied from the late 1980s mainly in plane

layers [39] or even in spherical geometry [40]. In the first work, the authors showed that

structurally stable heteroclinic cycles can be destabilized transversely by applying very small

amounts of noise, even when the individual fixed points of the cycle are stable to transverse

modes. As an example they simulated a convectively driven dynamo in a plane layer, in

which the magnetic field strength acted as the transverse coordinate. The equilibrium points

consisted of rolls with different symmetries, which could not lead separately to dynamo

instability. However, these flows were able to increase the magnetic energy from an initial

weak seed for a finite time before magnetic diffusion led to exponential decay. Gog et al. [39]

integrated the equations adding at each time-step a normally distributed noise. They showed

that the instability mechanism depended on constructive interactions between transiently

growing solutions. Consequently, non-normality of the transverse dynamics favored the

instability. In Refs. [40, 41] the states making up the cycle were themselves unstable to

dynamo action.

In this article, the equations and their numerical treatment are discussed in Sec. II,

which includes some tests to check the code of the induction equation. In Sec. III the

thermal convective flows computed in rotating fluid spheres at low Pr are briefly introduced.

Section IV contains the description of the bursting magnetic fields generated by kinematic

dynamo action, and some tests to check the robustness of the calculations. The paper

concludes in Sec. V with some remarks on the results obtained.
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II. EQUATIONS AND NUMERICAL METHODS

To study a kinematic dynamo generated by complex time-dependent velocity fields, v, in

a fluid sphere, the induction equation

∂tB = Prm
−1∆B +∇× (v ×B), (1)

for the magnetic field B must be time evolved together with the equations that supply v,

responsible for the dynamo effect.

Equation (1) has been written in nondimensional form by using the radius of the sphere,

ro, as length scale and tν = r2o/ν as timescale, ν being the kinematic viscosity. The magnetic

Prandtl number is Prm = ν/η, η = 1/σµ0 being the magnetic diffusivity. The coefficient

σ is the conductivity of the fluid and µ0 is its magnetic permeability. It represents the

ratio of the magnetic to the viscous timescales, therefore the magnetic timescale is given

by tη = Prmtν . The critical Prm is the value above which the magnetic field generated by

dynamo effect can be sustained. The results obtained will be shown versus the viscous time

scale.

The outer space is considered a homogeneous dielectric, of permeability µo, extending to

infinity. The boundary conditions of B between a conductor (i) and an insulator (o) are

r̂ · (Bo − Bi) = 0, and r̂ × (Bo − Bi) = 0 if µo ≈ µ0. The unit vector r̂ is normal to

the boundary of the sphere pointing outwards. Then the components of B are continuous

across the boundary, Bo
r = Bi

r, B
o
θ = Bi

θ, B
o
ϕ = Bi

ϕ.

The axisymmetric velocity field, v, is obtained from numerical simulations of the thermal

convection of a self-gravitating (g = −γr) fluid sphere, subject to internal uniform heating,

with stress-free boundary conditions. The flow is inertial at low Ek, so by neglecting the

Lorentz force the magnetic fields obtained will be different from those in magnetostrophic

balance, being close to flows with Elsasser numbers much lower than one.

The magnetic field is split into toroidal, G, and poloidal, H , components, and treated

numerically as the velocity field v(r, θ, t) = ∇ × (Ψ(r, θ, t)r) + ∇ × ∇ × (Φ(r, θ, t)r) in

Ref. [36], where the physical and dynamical properties of v were studied. Then

B(r, θ, ϕ, t) = ∇× (G(r, θ, ϕ, t)r) +∇×∇× (H(r, θ, ϕ, t)r). (2)

The magnetic potentials are expanded in spherical harmonic series. Since Eq. (1) is linear,

the problem decouples for the azimuthal order. Therefore the expansion for a fixed order,
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m, up to degree L is

X(r, θ, ϕ, t) =
L
∑

l=m

Xm
l (r, t)Pm

l (cos θ) exp(imϕ), (3)

where X = (G,H), and Pm
l (cos θ) are the normalized associated Legendre functions defined

as

Pm
l (cos θ) =

√

2l + 1

2

(l −m)!

(l +m)!
P̃m
l (cos θ), for l ≥ 0, and 0 ≤ m ≤ l, (4)

where P̃m
l (cos θ) are the standard Legendre functions. Finally, collocation in a radial Gauss-

Lobatto mesh of Nr points is used. Then Eq. (1) splits into the scalar equations

(∂t − Prm
−1∆)L2G = r ·∇×∇× (v ×B) (5)

(∂t − Prm
−1∆)L2H = r ·∇× (v ×B). (6)

The boundary conditions of B at r = ro become

Gm
l = 0 and

l + 1

ro
Hm

l +
dHm

l

dr
= 0, (7)

in terms of the amplitudes of the potentials. At r = 0 only regularity conditions are required.

The linearity of Eq. (1) for the kinematic dynamo has several implications. When the

forcing velocity field is axisymmetric, as is the case of this article, Eq. (1) can be separated,

as stated in the introduction, into a system of uncoupled equations, one for each azimuthal

wave number m. They can therefore be studied separately. It also implies that B does

not saturate. Its norm can, on average, grow or decay exponentially. Consequently, an

interpolation method is used here to approximate the critical parameter for the generation

of magnetic fields by complex time-dependent flows. The parameters of nearby solutions, of

increasing and decreasing growth rates obtained by time evolution, allow us to determine an

approximation of the critical value, and the structure of the most unstable eigenfunction.

The velocity field, v, is calculated by integrating the Boussinesq approximation of the

Navier-Stokes and energy equations, written in terms of the potentials Ψ and Φ,

(∂t −∆)L2Ψ = −2Ek−1
QΦ− r ·∇× (ω × v), (8)

(∂t −∆)L2∆Φ = 2Ek−1
QΨ− L2Θ+ r ·∇×∇× (ω × v), (9)

(Pr∂t −∆)Θ = RaL2Φ− Pr(v ·∇Θ), (10)
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together with the induction equation.

In Eqs. (8)-(10) and (5) and (6) the operator L2 is defined as L2 = −r2∆ + ∂r(r
2∂r),

and Q as Q = r cos θ∆ − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ) in Eqs. (8) and (9). Moreover,

ω = ∇ × v is the vorticity, and Θ(r, θ) = T (r, θ) − Tc(r) is the temperature perturbation

from the conduction state, Tc(r), in ν2γαr4o units

The nondimensional parameters of the convective system are the Rayleigh, Prandtl, and

Ekman numbers, defined as

Ra =
Sγαr6o
3κ2ν

, Pr =
ν

κ
and Ek =

ν

Ωr2o
, (11)

respectively. The coefficient κ is the thermal diffusivity, α the thermal expansion coefficient,

Ω the angular velocity, and S accounts for the internal heat generation. It appears in Eq. (10)

in the term RaL2Φ through the Rayleigh number.

The stress-free and perfectly conducting boundary conditions become

Φ = ∂2

rrΦ = ∂r(Ψ/r) = Θ = 0 at r = ro. (12)

Since stress-free boundary conditions are applied, the conservation of the z component of

the angular momentum is achieved in the way explained in Sánchez Umbŕıa and Net [36].

At r = 0 only regularity conditions are required.

The functions Φ, Ψ, and Θ are expanded in spherical harmonic series of order 0 and

degree up to L as

Z(r, θ, t) =

L
∑

l=0

Z0

l (r, t)P
0

l (cos θ),

where Z = (Φ,Ψ,Θ). The indeterminacy of Φ and Ψ is solved by taking Φ0

0
= Ψ0

0
= 0.

In order to check the new time integration code for the system (5)-(6) with boundary

conditions (7) using a radial pseudo-spectral method, the steady axisymmetric velocity field

u(r, θ) = ∇× (t0
1
(r)Y 0

1
(θ) r̂) +∇×∇× (εs0

1
(r)Y 0

1
(θ) r̂), (13)

with t0
1
(r) = s0

1
(r) = r sin(πr) and ε = 0.17, proposed by Dudley and James (DJ) [42],

was used. This field was modified to take into account our different decomposition of the

velocity in toroidal and poloidal components, and the different normalization of the Legendre

polynomials. Specifically, t0
1
(r) = s0

1
(r) =

√

2/3 sin(πr) were defined because we have an

extra factor r in the definition of B (see Eq. (2)), and the different normalization introduces
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the factor
√

(2l + 1)/2. Then (Y m
l )SN(θ, ϕ) =

√

(2l + 1)/2(Y m
l )DJ(θ, ϕ). Moreover, due to

the different scales taken by the authors, the relation between our magnetic Prandtl number

and their magnetic Reynolds number is PrSN
m

= ReDJ
m

, and that between the timescales

is tSN = PrmtDJ , which gives the relation between the eigenvalues of the problem λSN =

Pr−1

m
λDJ . The resulting velocity field u(r) consists of a single vortex, symmetric with respect

to the equator. The same field was also used by Li et al. [43] to test their very accurate

Galerkin scheme to solve the kinematic dynamo problem in a full sphere. They got as leading

eigenvalue, in DJ units, (λr, λi) = (0.313151589, 34.843592723), for m = 1, ReDJ

m
= 160,

and N = L = 35, N being the number radial functions of their approximation. In our case,

the leading eigenvalues of Eq. (1), for the same steady field and parameter Prm = 160, were

calculated from the multipliers of the map B → ϕ(τ, v, p)B by using the ARPACK package

based on Arnoldi algorithm [44], ϕ(τ, v, p) being the flow of Eq. (1) at a fixed time τ , v the

DJ velocity field, and p = Prm (see Ref. [45] for more details).

Several of the time integrators compared in Ref. [46], for the pure hydrodynamic problem,

were tested for the integration of the coupled system of Eqs. (5), (6), (8)-(10). It turned

out that the subroutine DLSODPK of the ODEPACK package [47] was the most efficient,

because there are very different timescales in the problem. It is a fully implicit variable step

size and variable order (VSVO) method, based on backward differentiation formulas (BDF)

of orders up to six. This means to control simultaneously the order and the time step to

keep the local error of the integration below a given tolerance, using the largest possible

time step.

Tests were done for several truncation numbers Nr and L. An initial condition was first

obtained by integrating the induction equation, from a random seed, the time needed to filter

the fast decaying modes. Then Arnoldi’s iterations were started using an integration time

τ = 0.1 for the map ϕ(τ, v, p). The results (taking into account the different normalization of

the spherical harmonics and scales) agree very well with those of Ref. [43] even with the lower

resolution used, with negligible differences between them. For instance, with Nr = L = 35,

(λr, λi) = (0.31315335, 34.84359343) was obtained.

Following the same method we have solved the eigenvalue problem for the time-periodic

axisymmetric solutions of Eqs. (8)-(10) with boundary conditions (12). We have been un-

able to find a self-sustained B driven by pure periodic torsional oscillations. When Prm

is increased the modulus of the leading Floquet multiplier tends to 1, never reaching this
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FIG. 1. Radial component of the velocity at a point of the sphere (oscillatory curve, black online)

and norm of the magnetic field (curve with the fast growth at t = 0.810, blue online) showing the

timescale of the temporally chaotic motion. The parameters are Ek = 10−4, Pr = 10−3, Ra = 104

and Prm = 75.

value. As will be seen in the next section the periodic orbits play the role of the equilibria

in Ref. [39].

III. THE VELOCITY FIELDS

The velocity and magnetic fields were calculated by discretizing Eqs. (5), (6) and (8-10),

together with boundary conditions (12) and (7), with a maximum resolution of Nr × L =

150×80 in order to confirm the validity of the results. This corresponds to Nθ = 124 points

in colatitude because aliasing is removed in this coordinate (see Ref. [48]). The finer meshes

are only needed to resolve the smallest spatial scales of the magnetic field. The velocity field

is smoother and can be represented with lower resolutions. The next section includes a test

with different resolutions for the magnetic field in a temporally chaotic regime.

Two velocity fields of different and complex time dependence are used in the study.

Both are temporally chaotic, and correspond, respectively, to Pr = 10−3, Ek = 10−4 and

Ra = 10000, and Pr = 10−2, Ek = 10−3 and Ra = 21250. These low Prandtl numbers have

been selected because they fulfill the relation Pr/E ≈ 10 that, according to [31], guarantees

the existence of flows with a dominant antisymmetric component with respect to the equator,
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FIG. 2. Potentials of the velocity field [(a), (b)] at t = 1.071 during the regular oscillations, and

[(c), (d)] at t = 1.2836 during the irregular motion. The parameters are Ek = 10−4, Pr = 10−3,

Ra = 104, and Prm = 62. The times indicated correspond to Fig. 3(c).

and approximate the hydrodynamic Prandtl number of liquid metals and solar plasmas [35].

The velocity fields of the solutions corresponding to Pr = 10−3 and Ek = 10−4 behave as

repeated transients, which start with nearly periodic oscillations of the velocity field of slow

increasing amplitude. This regime is followed by a chaotic fast increase and decrease of the

amplitude. The frequency of the transients corresponds to the frequency appearing at the

third Hopf bifurcation of the flow from the conduction state, when the axisymmetry is kept.

This behavior was identified in Sánchez Umbŕıa and Net [36] as a global dynamics in which

the trajectories remain for a long time close to the unstable manifold of a periodic orbit,

which is close to the stable manifold of another more unstable cycle. When the trajectories

approach the second orbit they are repelled along its unstable manifold, and they are sent

back quickly to the vicinity of the first periodic orbit, moving close to what it is known as

a heteroclinic cycle [see Figs. 13(a) and 13(b) in Ref. [36] to visualize this dynamics]. The

plots of v and Θ in the θ−ϕ, r−ϕ and r−θ sections look like those of the periodic solutions

shown for instance in Fig. 5 of Ref. [36], during the normal oscillations. They look irregular

during the chaotic motion, with increasing and decreasing intensity. When the norm of v
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increases, the flow intensifies mainly near the axis. Animations of this dynamics can be seen

in the Supplemental Material [49] for this paper.

The first animation illustrates the variation of the velocity field and the temperature

perturbation during the chaotic motion, in the sections indicated by dashed lines. The

parameters are those of Fig. 1, and the time interval, (0.801, 0.816), is contained in that

shown there. It includes an initial part in which the amplitude of the oscillations is still

growing, followed by an irregular increase and decay (see the time in the movie). The length

of the arrows and the intensity of the color are scaled with respect to the maximum over

the full sphere and over the time interval considered, to allow seeing the growth and decay

of v. In the second animation the contour plots correspond to the kinetic energy density.

In this case, the intensity of the color is scaled at each snapshot taking the maximum only

over the full sphere. Therefore red corresponds to the maximal kinetic energy at each time

instant. In this way it is easier to see where are the maxima. Both animations show that

during the chaotic motion the spatial scale of the structures is still large.

Figures 2(a) and 2(b) show that when the trajectory remains on the unstable manifold

of the first periodic orbit the velocity potentials can be described with just three associated

Legendre functions, P 0

1
, P 0

2
and P 0

3
, while in the short fast transient up to fifteen functions

must be taken into account [Figs. 2(c) and 2(d)]. In the first case the kinetic energy of the

fluid is concentrated close to the surface of the fluid sphere, while in the second it moves to

the poles and to the center.

The second velocity field considered corresponds to a temporally chaotic flow at Ra =

21250. It appears after three Hopf bifurcations from the conduction state (see also Ref. [36]).

In contrast to the preceding case this sequence of bifurcations does not lead to a global

heteroclinic dynamics. The maximum value of the norm of this solution of system (8-10) has

a strong variation (around 33%). The velocity field must be described by several Legendre

polynomials at any time instant [as happens in the case illustrated with Figs. 2(c) and 2(d)],

and the kinetic energy is always concentrated near the rotation axis and the center of the

sphere (see [36] for more details).
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IV. THE MAGNETIC FIELDS

Figure 3 shows the influence of the dynamics of the chaotic flows found at Ek = 10−4

and Ra = 104 on the kinematic generation of B. According to Refs. [50, 51], among others,

the growth rate of the m = 1 azimuthal mode is the first in becoming positive as Prm is

increased, so, after checking this point in a few cases, expansion (3) was restricted to m = 1

in the calculations. The left axis label denotes the Euclidean norm of the potentials of B,

defined as

‖B‖2 =

[

L
∑

l=m

[

‖Gm
l ‖

2

2
+ ‖Hm

l ‖2
2

]

]1/2

, (14)

which, in principle, depends on the grid. The number of radial points taken to compute the

figures showing norms was always the same, and the amplitudes of the Legendre polynomials

of highest degree, l, were always negligible in the cases explored, either for B or v. Moreover

Eq. (1) is linear in B, and therefore only the relative values of the amplitudes of B in Fig. 3

make sense. The right axis label indicates the scale of the radial component of v, in this

way the lower curve of Fig. 3(a) shows the variations of the amplitude of the flow.

The upper curve of Fig. 3(a), and those of Figs. 3(b)–3(d) represent, in logarithmic scale,

the bursting magnetic field generated by the torsional chaotic flow. The first corresponds

to Prm = 150, far from the critical value. The bursts are extremely vigorous. The norm of

B increases several orders of magnitude, and the magnetic diffusion is unable to dissipate,

during the long time interval of small-amplitude oscillations between bursts, all the energy

injected by the velocity field during the bursts. In this way after each burst the intensity ofB

is higher, as happens, for instance, in Figs. 3(a) and 3(b). Between bursts the oscillations are

nearly periodic with the frequency of the periodic torsional solutions, i.e., of order Ek. When

Prm is decreased the bursting phenomenon continues, but for values under the critical, the

magnetic dissipation is able to reduce the magnetic field until its extinction [see Fig. 3(d)].

However, some estimations show that even in this case the complete annihilation of B could

take millions of years for astrophysical objects. For a value near the critical there is a time-

averaged balance (from burst to burst) between the magnetic energy dissipated and that

supplied by v. Then, after a burst, B nearly recovers the mean amplitude it had before, as

can be seen approximately in Fig. 3(c), calculated for a value very near the critical. In this

case the transient until reaching the monotonous regime takes a long time because of the
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FIG. 3. (a-d) Time evolution of the l2-norm of the potentials of the magnetic field for Prm =

150, 75, 62, 50 in logarithmic scale. In (a) also time evolution of vr(ro/3, π/6, ϕ) (right axis). The

other parameters are Ek = 10−4, Pr = 10−3 andRa = 104.

proximity to the bifurcation.

Although it can seem from Fig. 3 that the jumps are quite abrupt, a meticulous inspection

of the time evolution shows that there are very short time-scale fluctuations. Figure 4

contains some details of Fig. 3(b) in several time intervals. The first, Fig. 4(a), displays the

regular oscillations between two bursts. The period of these oscillations is that of the forcing

velocity, 7 × 10−4 viscous units. During this regime the time step taken by DLSODPK is

of the order of 5 × 10−7. However, in order to save storage space, the results of the time

integration are written only every 6 × 10−6 time units. This means that the oscillations

are smoother than what is seen in Fig. 4. The second plot is a blowup of the third burst,

showing that it spans about 0.02 time units. In this case the time step is shorter, of the

order of 2 × 10−7 time units. Figures 4(d) and 4(e) are details of the same burst when

B increases, and when it reaches the maximum value. They illustrate that the averaged

timescale of the fluctuations of the magnetic field is below 10−4. Figures 4(c) and 4(f) show

the loss and the gain of regularity of the oscillations at the beginning and at the end of the
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FIG. 4. (a-f) Details of Fig. 3(b). Panels (a), (c), and (f) are plotted in linear scale.

burst, respectively.

The magnetic field B was initially calculated with Nr×L = 60×60, 100×50 and 150×80,

and different values of the parameters, to select an adequate discretization. Figure 5 shows

three simulations for Ra = 104 and Prm = 75. They were started from different initial

conditions with random B to check that the dynamics found is robust. The temporal

sequences in Fig. 5 were shifted in time and scaled vertically to a similar level at t = 0.4,

i.e., at the beginning of the first burst, to facilitate the comparison. In addition, the initial

transients were removed. This can be done because the induction equation is linear and
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there is always an undetermined multiplicative factor on B.

The dynamics including the bursts is chaotic. Changes in the initial conditions give

rise to different trajectories which separate exponentially. The same holds when comparing

solutions corresponding to different truncation parameters, even if the initial conditions

are interpolated from the same solution. Therefore it is not possible to make a complete

quantitative numerical study of the convergence of the solutions with the resolution in this

regime. Since it is chaotic the width, height, and fluctuations of the bursts, and the relative

jump between consecutive plateaus away from the bursts, change, even for a same trajectory.

In any case it was checked that, for any of the three resolutions, the time distance between

bursts, T2, is given by the period of the repeated transients of the velocity field, and that

the period of the almost regular oscillations between bursts is that of the forcing, i.e., that

of the inertial oscillations, T1. These magnitudes are independent of the truncation (from a

threshold of the resolution) because they depend on the regular oscillations of the velocity

field, while the trajectories are spiraling close to the unstable manifold of one of the periodic

orbits driving the dynamics. In contrast the shape of the bursts depends on the chaotic part

of the trajectory of the velocity field outside the mentioned manifold, and they can differ

from one resolution to another.

Table I summarizes an approximate quantification of the results. They agree quite well,

but the width of the bursts, WB, defined as the time distance from their starting point to

the beginning of the regularization of the oscillations, is wider for the lower resolution than

for the others. For this reason, since T1 and T2 are approximately the same for the higher

resolutions, and in order to save computational time, Nr ×L = 100× 50, with Nθ = 76, was

usually used in the computations.

Figure 6 shows the contour plots of the largest component ofB, Bϕ, on a spherical surface,

the equatorial plane, and a meridional section, at different times. The location of the sections

is indicated in the pictures, and the gray scale (color online) is normalized over the full sphere

for each snapshot (group of three plots). The sections in the first and third columns pass

through the maximum value of Bϕ, so the radius of the spherical section is different at each

t. The arrows are the projections of B on each surface. The spatial structure of B is much

more complicated than that of v. In this case many spherical harmonics contribute to the

solution even during the transients between bursts. The components of B spiral from the

interior of the sphere to its surface with variable intensity, giving rise to bands of nonzero
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FIG. 5. Time sequences for the resolutions Nr × L = 60 × 60 (middle curve at t = 1.1, magenta

online), 100× 50 (lower curve at t = 1.1, black online) and 150 × 80 (upper curve at t = 1.1, blue

online) for Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 75.

Nr × L Nθ 10−4 T1 T2 WB Wo

60× 60 92 7.14 0.44 0.08 ≪ 10−4

100× 50 76 7.14 0.41 0.023 ≪ 10−4

150× 80 124 7.14 0.41 0.017 ≪ 10−4

TABLE I. Comparison of the timescales of B for different resolutions. T1 is the period of the

regular oscillations, T2 the period of the bursts, WB the width of the bursts in time units and Wo

an approximation of the timescale of the fast fluctuations during the bursts. The parameters are

Pr = 10−3, Ek = 10−4, Prm = 75, and Ra = 104.

B at different constant radii. In a colatitudinal section, and during the oscillations between

bursts, the bands behave as very localized spots, most of the time concentrated near the

outer surface at different latitudes, as in Figs. 6(a)–6(c) and Figs. 6(p)–6(r). Their position

has a strong variation over time and between bursts, and can give rise to hemispherical

magnetic fields in agreement with Ref. [52]. Preceding each burst these spots move towards

the polar regions [see Fig. 6(d)–6(f)], and during the eruption they concentrate around the

rotation axis and close to the center of the sphere. [see Figs. 6(g)–6(i) and Figs. 6(j)–6(l)].

In order to compare the above magnetic fields with those generated by the flows that

appear after a sequence of Hopf bifurcations giving rise to local dynamics, the temporally

chaotic v shown in the lower plot of Fig. 7 was considered. The time evolution of the
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FIG. 6. Contour plots of Bϕ on a spherical surface taken at r > 0.9 in (a), (d), (m), and (p), and

at r = 0.02 in (g) and (f). Equatorial sections in the second column, and meridional planes in the

third, indicated by dashed lines. In (a)-(c) t = 1.4746, (d)-(f) t = 1.6741, (g)-(i) t = 1.6873, (j)-(l)

t = 1.6947, (m)-(o) t = 1.7925, and (p)-(r) 1.8697. The arrows are the projections of B on each

section. The parameters are Ek = 10−4, Pr = 10−3, Ra = 104, and Prm = 62.

norm of B, after removing the initial transient, is shown in the upper part in logarithmic

scale. The magnetic Prandtl number is 27. The almost horizontal line is the exponential

fit ‖B‖ = 2.34 exp(−0.19t), indicating that Prm is only slightly below the critical value. In

fact, Prm = 28 already gives a positive growth rate. Once again, the generation of magnetic

field is correlated with the increase of the amplitude of the oscillations of v, but the flow

never reaches a regime of almost periodic oscillations, in which there is a clear decay of B

due to their regularity. The structure of the magnetic field is also very localized, like that

shown in the contour plots of Figs. 6, spiraling from the interior to the surface and forming

thin bands on the spherical projections. The main difference is that the density of the spots

in the meridional sections near the rotation axis and the interior of the sphere is significant

at any time.
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FIG. 7. Time evolution of the l2-norm of the potentials of the magnetic field for Prm = 27. The

other parameters are E = 10−3, Pr = 0.01 and Ra = 21250. The horizontal line (blue online) is

the exponential fit of the solution.

V. DISCUSSION AND CONCLUSIONS

This work is close to those presented at the beginning of the introduction in the sense

that it studies convection-driven kinematic dynamos with large-scale velocity fields obtained

through DNSs, but at very low Pr and with predominantly equatorial antisymmetric oscilla-

tory flows. Moreover, these torsional velocity fields need to develop a mean flow to generate

magnetic fields, as happens in the case of the large-scale thermal waves. However in this

case the simulations show that the long-sustained spiral field in the outer surface between

bursts comes from the stretching of the strong B confined in the interior of the sphere during

the bursts. In this way the initial small azimuthal scale of B elongates, retaining a small

latitudinal scale.

In agreement with Ref. [53], it has been found that periodic axisymmetric torsional ve-

locity fields are unable to sustain magnetic fields. The asymptotic theory of Zhang et al.

[31] shows that periodic torsional convection is dominated at first order by inertial periodic

oscillations, while buoyancy forces appear only at next order to overcome the viscous dissi-

pation. These flows cannot generate mean flow since the Reynolds stresses related to them

are zero. On the other hand, the theory of Herreman and Lesaffre [53] shows that simple

inertial waves cannot drive dynamos at leading order because the Stokes drift, which acts as

a mean flow, is zero. Moreover, one of the applications studied there is the inertial flow in a

rotating sphere. Consequently, the above numerical results seem to confirm that this theory

could be applied to the pure periodic case and during the long transients between bursts,
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but not when the trajectory leaves the manifold connecting the unstable periodic solutions.

Torsional flows, like that of Fig. 3(a), can be seen as a perturbation of the thermal-inertial

solutions throughout the long time of regular oscillations. In this case they are very well

represented by three Legendre functions without generation of mean flow, and B tends to

decay. However, out of the manifold connecting the unstable orbits, the temporal depen-

dence of v, illustrated in Fig. 3(a), involves several Legendre functions [see Figs. 2(b) and

2(c)], generating mean flow and consequently magnetic field.

Although it is already known that the periodic torsional solutions bifurcate to 3D flows,

our recent calculations show that the transition can take place through a bifurcation that

breaks the axisymmetric invariance and leads the flow to drift azimuthally, as it is well known

that that happens when the axisymmetry of a steady flows is broken (see, e.g., Ref. [54]).

Then the quasiperiodic flow consists of a torsional dynamics precessing azimuthally. Subse-

quent Hopf bifurcations could either give rise to a global dynamics similar to that described

in Ref. [36] with a superposed drift, or to a sequence of local bifurcations, in any case

generating mean zonal flow and maintaining the torsional oscillations. However, an impor-

tant open problem is to find out in a next step how the Lorentz force and the saturation

of the magnetic field would affect the bursting phenomenon and the structure of B. One

should expect that during the bursts the balance of forces of the momentum equation will

be modified. Cattaneo and Tobias [15] studied how dynamos saturate from a full MHD

system (rotating plane layer) and from a turbulent shell model. Two magnetic fields were

considered: one, B1, coupled with the velocity via the Lorentz term, and another, B2 uncou-

pled. They concluded that a saturated velocity satisfying the full MHD system, remains a

source of kinematic dynamos for any initial condition of B2 not aligned with B1. Livermore

et al. [55] analyzed the differences between a kinematic and a dynamic dynamo driven by a

nonaxisymmetric helical flow in spherical geometry without rotation. They found that the

nonlinear interactions enlarge the scale of B generating a significant mean component. The

forcing of the kinematic dynamo studied in the present work is a predominant equatorial

antisymmetric inertial flow and requires further attention. On the other hand, the unlikely

preferred instability of higher azimuthal wave-number modes in some regions of the param-

eter space would not change the conclusions of this work. It would only lower the critical

value at which the instability takes place, and it would increase the number of arms of the

spirals of B.
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The dynamics found in this study shows two important differences with the study of Gog

et al. [39] mentioned in the introduction, aside from the existence of rotation in our model.

The states organizing the nearly heteroclinic cycle are unstable periodic orbits, and no noise

is added to the system to sustain the dynamo. An initial perturbation of the zero magnetic

field is enough to drive the kinematic dynamo, above the critical parameter. Although the

parameters of this work are far from astrophysical and geophysical values, the velocity fields

taken into account are real solutions of a thermal convection problem in internally heated

rotating fluid spheres. Then the cyclic generation of B in the form of bursts, each one

followed by a long interval of almost constant energy and a subsequent decay, can provide

some insight for the development of theoretical models explaining observations of cyclic

phenomena. The periodicity should depend on the time spent by the trajectories spiraling

close to the manifold that connects the periodic orbits. The duration and height of the

bursts should depend on the time spent by the trajectory outside this manifold and how far

it arrives, respectively.

Intermittent bursts of strong magnetic activity were described by Sweet et al. [56] when

they investigated the dynamo action of a 3D chaotic v, solution of the MHD equations in

three dimensions with periodic boundary conditions. They found that the transition from

B = 0 to bursts takes place when a Lyapunov exponent becomes positive for perturbations

transverse to the invariant manifold B = 0, which contained an already chaotic v for

parameter values under the critical. However, as far as we know the cyclic generation of

bursts of magnetic field has not been reported before in MHD, but bursting and spiking

behavior is well known in other fields as nonlinear optics [57], mathematical models of

excitable neurons [58], and, in general, in the presence of excitable media [59]. Despite these

spikes and trains of spikes are very narrow, they grow exponentially in a very short timescale

compared with the time between them.

Although the velocity fields used as dynamo generators were obtained from a thermal

convection problem of a pure fluid in spherical geometry, a global dynamics similar to that

described here is shared by many other systems in fluid dynamics. For instance, in Ref. [60]

the presence of concentration gradients gives rise to heteroclinic chains connecting different

objects. Consequently, the global mechanism of generation of B in the form of bursts is

probably a general phenomenon due to this dynamics, although the structure of B will

change in each problem.
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