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Abstract

The aim of this work is to elucidate the type of transitions that take place when the periodic

axisymmetric flows, which can set up at the onset of thermal convection in rotating fluid spheres,

lose stability, and to study the behavior of the new stable velocity fields until the flows become

temporally chaotic. The computations for Prandtl numbers Pr=0.715, 0.1 and 0.01 show that when

it decreases, the range of stability of these flows becomes narrower because the kinetic energy of the

axisymmetric periodic solutions increases very fast, favoring their instability. From the stability

analysis and direct 3D simulations it is found that the transition to stable quasiperiodic flows

through Neimark-Sacker bifurcations is supercritical when Pr≥ 0.01. For Pr=0.1 two branches of

stable periodic flows emerging from the conduction state have been found due to the proximity to

a double Hopf bifurcation. However, only the branches bifurcating from the azimuthal rotating

waves are stable at large Rayleigh numbers. Far from this bifurcation the stable flows keep the

influence of the axisymmetric dynamics up to large Rayleigh numbers. For small Pr they behave

as repeated transients of mixed dynamics, controlled by the azimuthal wavenumbers m = 0, m = 1

and m = 2.

PACS numbers: 47.15.-x, 47.20.-k

Keywords: Thermal convection, Time-dependent flows, Bifurcations, Symmetry breaking

∗ juan.j.sanchez@upc.edu
† marta.net@upc.edu

1



I. INTRODUCTION

The knowledge of how the thermal convection develops in rotating spherical geometry

is fundamental for the understanding of the dynamics of most of the fluid celestial bodies.

The type of transitions that take place near the onset influence the kinetics, heat transfer

and the generation of magnetic fields at the high supercritical regimes of planets and stars.

Aside seismological and space-probe observations, and laboratory experiments [1, 2] one of

the main sources of information continues to be numerical simulation. The list of numerical

studies and authors working on this subject, and on the generation of magnetic fields from the

seventies is so long that it is impossible to make a complete review in a few lines. Therefore,

only recent publications closely related with the present study or introducing new phenomena

to the most classic approach (Boussinesq approximation with perfectly conducting and non-

slip boundaries) will be mentioned here. Most of the simulations are carried out in spherical

shells with non-slip boundary conditions, motivated by the geometry of the Earth’s core,

focusing in the laminar and turbulent regimes [3–5]. The nonlinear numerical studies in

full fluid spheres internally heated, either in non-slip or stress-free boundary conditions, are

scarce [6–9] despite their interest in astrophysics. Much more unusual are the studies taking

into account the flattening of the sphere due to fast rotation rates [10–13], as happens in

some luminous stars.

For most of the parameter pairs (Prandtl, Pr, and Ekman, E, numbers) that can be chosen

to integrate the equations describing the thermal convection in rotating spherical geometry,

the onset of convection appears as an azimuthal rotating wave (ARW) [9, 14–16] because

the rotational invariance of the conduction state is broken at the first bifurcation. These

waves are symmetric with respect to the equator. However, in the region found in [8, 17–19]

the first bifurcation keeps the invariance by axial rotations, and the transition gives rise to

axisymmetric periodic (AP) oscillations, which are almost antisymmetric with respect to the

equator. At low Pr, the instability is due to the Coriolis force and, consequently, the angular

frequency of the oscillations is O(E−1). The range of parameters where these oscillations

can arise from rest was fully determined in [20]. Near the onset the AP oscillations consist

of a poloidal vortex, which fills the sphere and reverses its rotation every half period, and

an azimuthal motion with opposite velocities in each hemisphere, which also changes its

direction but with a phase shift relative to the poloidal field. When Ra increases this
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velocity field gives rise to a latitudinal transport of the kinetic energy on the surface of the

sphere in contrast to the ARWs. See Fig. 1 to visualize a typical periodic torsional flow.

(a) (b) (c) (d) (e) (f)

FIG. 1. Snapshots of the spherical, equatorial and meridional projections of (a)-(c) the perturbation

of the temperature with respect the conduction state, and (d)-(f) the kinetic energy density (contour

plots) together with the velocity field (arrows), for Ra = 7.34× 103 and Pr=0.01. The cut of each

section is indicated in the other two.

A recent study [21] of the dynamics of the torsional flows at very low Pr showed that,

when the axisymmetric flows bifurcated from the conduction state lose stability, the arising

quasiperiodic (QP) flows start to drift in the azimuthal direction due to the breaking of the

axisymmetry. Quasiperiodic oscillations were found at Pr=0.001 below the critical Rayleigh

number, Ra, but the bifurcations were so close to each other, and the temporal integration

transients were so long, that it was almost impossible to find out the nature of the bifurca-

tions, and the origin of the dynamics observed. Therefore that study was mainly centered

on the type of quasiperiodicity of the convective flows before temporal chaos arises. The

objective of this study is to integrate the equations at larger Pr to obtain more information

on the transitions between the large-scale flows of thermal convection, coming from periodic

axisymmetric velocity fields in rotating fluid spheres, and their dependence with Pr.

A goal of this study is to ratify that the onset of the axisymmetric convection is su-

percritical for any Pr [8, 19], and to show that for Pr≥ 0.01 the bifurcation leading to

quasiperiodicity is also supercritical. Moreover, it also shows that this transition introduces

the drift observed in the subsequent complex time dependent flows, and that it is not just

due to the stabilization of branches of quasiperiodic ARWs. Only for Pr close to 0.1 does

the drift of the flows at large Ra come from that of the periodic ARWs.

The rest of the article is organized as follows: After the introduction, Sec. II is devoted

to briefly introduce the mathematical model. Section III describes the bifurcation diagrams
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and dynamics of the flows obtained for three Pr< 1, and Sec. IV is a discussion and summary

of the content.

II. THE EQUATIONS

The dynamics in a rotating, self-gravitating, and internally and uniformly heated spher-

ical shell is studied numerically by integrating the Boussinesq approximation of the mass,

momentum, and energy equations. Constant rotation about the vertical axis, Ω = Ωk, and

radial gravity proportional to the position vector, g = −γr, are considered. The system is

written in spherical coordinates, (r, θ, ϕ), (θ being the colatitude and ϕ the longitude) in

the rotating frame of reference, and the centrifugal force is neglected because in many self-

gravitating bodies Ω2/γ ≪ 1. The length, time, and temperature are scaled with d = r∗o−r∗i ,

d2/ν, and ν2/γαd4, respectively. The dimensional quantities are the internal radius, r∗i , the

external, r∗o, the kinematic viscosity, ν, and the thermal expansions coefficient, α.

The resultant non-dimensional divergence-free velocity field is written in terms of toroidal,

Ψ, and poloidal, Φ, potentials as v = ∇× (Ψr) +∇×∇× (Φr) , and the energy equation

in terms of the temperature perturbation, Θ∗ = T∗ − T∗
c , from the temperature of the

conduction state T∗
c = A + B

r
+ Cr2. The symbol T∗ is used for full temperature. Since

an objective of the work is to obtain more information about the convection in the fluid

from the temporal integration of the equations in a shell of r∗i ≈ 0, and in the full sphere

regularity conditions at r = 0 imply B = 0, the approximation B = 0 is taken in the wide

shell. In this way the equations are written in both geometries for the same perturbation Θ∗

of the same conduction state, which is then given by v = 0 and Tc(r) = T0 − (Ra/2Pr)r2,

in non-dimensional form.

Then the system for Ψ, Φ and Θ becomes

(∂t −∆)L2Ψ = 2E−1(∂ϕΨ−QΦ)− r ·∇× (ω × v), (1)

(∂t −∆)L2∆Φ = 2E−1(∂ϕ∆Φ +QΨ)− L2Θ+ r ·∇×∇× (ω × v), (2)

(Pr ∂t −∆)Θ = RaL2Φ− Pr (v ·∇)Θ. (3)

The operators L2 and Q are defined as L2 ≡ −r2∆ + ∂r(r
2∂r), and Q ≡ r cos θ∆ − (L2 +

r∂r)(cos θ∂r − r−1 sin θ∂θ), and ω = ∇× v is the vorticity.
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The parameters of the system are the Prandtl, Rayleigh and Ekman numbers

Pr =
ν

κ
, Ra =

qγαd6

3cpκ2ν
, E =

ν

Ωd2
. (4)

The coefficients q, cp, and κ are the rate of internal heat generated per unit mass, the specific

heat at constant pressure, and the thermal diffusivity, respectively.

The stress-free, impenetrable (vr = 0), and perfect thermally conducting boundary con-

ditions, used here to close the problem, become

Φ = ∂2

rrΦ = ∂r(Ψ/r) = Θ = 0 at ri = η/(1− η) and ro = 1/(1− η), (5)

where ri and ro are the non-dimensional internal and external radii, respectively, and η =

ri/ro is the radii ratio, which will be taken very small. These boundary conditions require

enforcing the conservation of the angular momentum in the domain during the temporal

integration [8, 22, 23].

Details on some tests to check the accuracy of the temporal integrators can be found

in [21]. Just mentioning that the functions were expanded in spherical harmonics of order

m (azimuthal wavenumber) and degree l, Y m
l , on the sphere, with 0 ≤ |m| ≤ l ≤ L,

and a collocation method on a radial mesh of Nr + 1 Gauss-Lobatto points was used. All

the computations have been done with Nr = 48 and L = 64. To dealiase the products

the number of collocation nodes in longitude and colatitude are Nϕ = 196 and Nθ = 98,

respectively. This resolution is enough to give very low relative errors. For instance, at

Ra = 14000 and Pr=0.1, the averaged kinetic energy density (defined below) differs less

than 1.5% from that using Nr = 64, L = 80, Nϕ = 256 and Nθ = 128.

Equations (1)-(3) with boundary conditions (5) are SO(2)×Z2-equivariant, with SO(2)

generated by azimuthal rotations of an arbitrary angle ϕ0, and Z2 by reflections with respect

to the equatorial plane, i.e., the actions

Rϕ0
: (Ψ,Φ,Θ)(t, r, θ, ϕ) → (Ψ,Φ,Θ)(t, r, θ, ϕ+ ϕ0), and (6)

ζθ : (Ψ,Φ,Θ)(t, r, θ, ϕ) → (−Ψ,Φ,Θ)(t, r, π − θ, ϕ), (7)

leave the system invariant.

The dynamics of the flows is analyzed by monitoring the frequencies and global quantities

such as the mean zonal flow and some kinetic energy densities. The zonal flow is defined as

〈vϕ〉 =
1

2π

∫
2π

0

vϕ dϕ, (8)
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and the kinetic energy density k(t) = 1/2 (v(t) · v(t)) is averaged over the whole volume of

the sphere, V . This average, with the normalization of the spherical harmonics used, is

K(t) =
1

V

∫
V

k(t, r, θ, ϕ) dV =
3
√
2

4(r3o − r3i )

∫ ro

ri

r2[v2]0
0
(t, r) dr, (9)

where [v2]00 means the spherical harmonic coefficient of order and degree zero of v2. The

same expression can be used for computing the zonal (axisymmetric), Kz(t), and non-zonal

(non-axisymmetric), Knz(t), parts by replacing v by the corresponding component.

The temporal average of any of the above energies, K∗ and of the zonal flow 〈vϕ〉 over a
time interval ∆t are computed as

X =
1

∆t

∫
∆t

0

X dt. (10)

From now on, the time and space averaged quantities will be called ’mean’ for short.

The spectra of frequencies of the azimuthal component of the velocity field, vϕ(t, ro, π/6, 0),

shown in this study, were calculated using Fast Fourier Transforms (FFTs), and the fre-

quencies of highest amplitude also using Laskar’s NAFF method (numerical analysis of

fundamental frequencies) [24]. They were also computed for the values of some spherical

harmonic coefficients at a radial point for checking purposes. In addition, projections of

Poincaré sections, and a code giving any peak of the spectra of frequencies as the linear

combination of those selected as fundamental, up to a given error, were used to help to

distinguish the different types of solutions. Moreover, these relations are important since

they are a confirmation that the temporal integration is sufficiently accurate.

III. DESCRIPTION AND ANALYSIS OF THE RESULTS

In order to clarify the bifurcation diagrams near the onset of the periodic axisymmetric

convection, the nonlinear calculations were performed in a fluid shell of η = 0.001, with

selected pairs (Pr,E)=(0.715, 0.0475), (0.1, 0.01), and (10−2, 10−3) falling inside the region

of parameters where this type of convection appears [20]. The critical Rayleigh numbers

and frequencies given by the linear stability analysis of the conduction state in a shell of

the same η, using the techniques described in [17, 25], are Rac = 6.853× 103 with frequency

f1c = 1.774 for Pr=0.715, Rac = 6.218 × 103 with frequency f1c = 13.23 for Pr=0.1, and

Rac = 7.329 × 103 with frequency f1c = 141.34 for Pr=0.01. The frequencies f1c, and the
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corresponding eigenfunctions, agree very well with those given by the asymptotic analysis

in a fluid sphere [18, 19], but Rac is a 0.5% below the value given by the theory. The same

agreement in the critical frequencies and slight discrepancy in the critical Ra were already

observed numerically in [18], and in [21] for η = 0.01 and Pr=0.001.

As a previous step, and in order to compare the results obtained in this study with those

obtained for the fluid sphere (FS), and to recognize the second main frequency, f2, of the

quasiperiodic orbits bifurcated from the AP oscillations in the shell, the branches of AP solu-

tions were recomputed in the FS with a continuation method [8]. The frequency, f1
FS, of the

AP orbits, and in particular that at the point where they lose the stability, is f1
FS = 1/T FS,

where T FS is the period obtained from the continuation method. Moreover, preliminary

results on their stability against symmetry-breaking perturbations (those breaking the rota-

tional invariance) show that the AP orbits destabilize through Neimark-Sacker bifurcations

(Hopf bifurcation of periodic orbits, from now on NS). The critical frequencies f2
FS

c were

obtained from the first Floquet multiplier crossing the unit circle, which gives the rotation

number of the QP solution, ρ, and from the frequency of the orbit at the bifurcation point,

f1
FS, according to f2

FS

c = (ρ/2π)f1
FS. Roughly speaking, ρ is a measure of the averaged

angle rotated by the subsequent iterates of the Poincaré map. For a rigorous definition of

ρ see for instance [26]. Critical parameters RaFSc = 8.0465 × 103 with f2
FS

c = 0.3193 for

Pr=0.715, RaFSc = 6.7012×103 with f2
FS

c = 2.985 for Pr=0.1, and RaFSc = 7.4779×103 with

f2
FS

c = 29.197 for Pr=0.01 were obtained from the stability analysis. In any of the cases the

critical azimuthal wavenumber is mFS
c = 1, breaking the invariance by azimuthal rotation of

the AP orbits.

From now on, and for any sequence of bifurcations, subscript 1 refers to the frequency

of a periodic orbit, subscript 2 refers to the second main frequency of a two-frequency

quasiperiodic orbit, and subscript 3 refers to the third independent frequency of a three-

frequency quasiperiodic orbit. As above, the subscript ’c’ means the value at a critical

point, and only parameters and values with the superscript FS refer to the full sphere. The

symbol for the critical Rayleigh number for a second bifurcation on any branch of solutions

is written inside parentheses with a subscript 2. For instance, (RaFSc )
2
means the second

critical Ra computed on any branch in the case of a full sphere. Subscript 3 is used for

the third bifurcation on any branch. For instance, (Rac)3 means the third critical Ra on a

branch in the case of a shell.
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FIG. 2. (a) First fundamental frequency f1 of the solutions versus Ra (blue crosses). (b) Mean

kinetic energy density, K (blue crosses) for the same solutions. In both cases the solid black line

is the branch of AP orbits computed for the fluid sphere with the same parameter Pr=0.715.

A. Pr=0.715

At Pr=0.715, which is an example of the largest Pr for which axisymmetric convection

can set up as primary flow, the transitions are clearly separated, and it is relatively easy to

understand the bifurcation diagram. Figure 2(a) shows the main frequency of the solutions,

f1, versus Ra, and Fig. 2(b) the mean full kinetic energy density, K. The first (leftmost)

symbol denotes the bifurcation point given by the stability analysis of the conduction state,

mentioned before. The solid black line is the branch of AP orbits calculated by the continu-

ation method in a FS (also mentioned before) for the same parameters [8]. The last symbol

near the black solid branch indicates the point were the periodic orbits become unstable.

The agreement between the stable AP solutions in the FS and a shell of small η is very

good, as well as the critical points and frequencies where they lose stability.

The loss of stability of the AP orbits (solutions B1 in Fig. 2(a)) through a NS bifurcation

takes place for Ra ≈ 8.1 × 103. Then a new supercritical branch of QP solutions (B2) is

found. The bifurcation breaks the axisymmetry of the periodic orbits and the flow starts a

retrograde drift in the azimuthal direction. It also introduces a fast increase of the mean

non-zonal flow, Knz, while the mean zonal flow, Kz, undergoes a slight decrease near the

bifurcation point, and a moderate growth after (see Fig. 3).

To determine the frequency f2 of the QP flows, we have compared the frequencies of
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the Fourier spectra of the azimuthal component of the velocity field of these solutions at

r = 1.01, θ = π/6, and ϕ = 0, with that given by the stability analysis of the periodic orbit in

the FS (f2
FS

c = 0.3193 for Pr=0.715, given above). This frequency matches with the lowest

frequency of the spectrum of the QP solutions near the bifurcation point. For instance, at

Ra = 8.13× 103, f2 = 0.3865. However, the time 1/f2 is not observed in the animations of

the solutions projected on the equatorial plane as happen at very low Pr [21]. In this case

the flow drifts faster with frequency fD = 2.996. The frequency fD is the second highest

peak in the spectrum of the velocity field near the transition (see Fig. 4(a)). Moreover,

it has been checked that fD is the frequency of largest amplitude of the time evolution of

the spherical harmonic coefficient Φm=1

l=1
(r), and f2 the smallest and second in amplitude

(purple curve in Fig. 4(a)). When Ra increases, fD becomes soon the most important peak

of the spectra of the velocity field, and the dynamics is dominated by the azimuthal drift

with k(t) concentrated around the poles and the center of the sphere. Then, there is no

latitudinal transport of k(t) as for very low Pr [8, 19], but Θ displays the interchange of

the sign between hemispheres. The analysis of the frequencies of the Fourier spectrum of

Fig. 4(a) has been carried out to confirm that B2 bifurcates from B1, and that the drifting

does not stem from a second bifurcation from the conduction state. Since the QP orbit has

frequency f1 = 1.691 at Ra = 8.13× 103, it is clear that fD = 2f1 − f2 with a relative error

ε = 2 × 10−6. Consequently, the drifting frequency is related to the frequency of the AP

because f1 is 1.625 just before the bifurcation at Ra = 8.1× 103.

As can be seen in Fig. 4(b), all the Poincaré sections are closed curves, and then the flows

computed remain QP, and stable up to Ra ≈ 1.35× 104, where the invariant curve loses the

smoothness and breaks down. The black plus in Fig. 4(b) is the section of an AP orbit near

the bifurcation point to QP flows.

A jump to a new branch of QP solutions is found at Ra = 1.35×104 when Ra is increased.

This branch can be extended down to Ra ≈ 1.1× 104, where f1 = 1.889 and f2 = 0.521. As

can be seen from Figs. 2(b) and Fig. 3 it remains disconnected from the others branches,

and Knz quickly overcomes Kz.

The stability analysis of the AP orbits in the FS shows that a second pair of multipliers

crosses the unit circle at (RaFSc )
2
= 1.139× 104. At this point the frequency of the AP orbit

is f1
FS = 1.6492, and the frequency given by the second multiplier crossing the unit circle is

(f2
FS

c )2 = 0.4209. This frequency is close to f2 = 0.5208, corresponding to the second largest
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FIG. 3. Mean zonal, Kz, and non-zonal, Knz, kinetic energy densities versus Ra of the three

branches of solutions for Pr=0.715. Kz is hown in teal solid lines with pluses, and Knz in purple

dashed lines with crosses. The solid black line shows K on the branch of AP orbits for the fluid

sphere.

peak of the Fourier spectra of the velocity field of the QP orbits starting at Ra ≈ 1.1× 104

(see the black curve in Fig. 5(a)), and to the largest of the perturbation (see the purple

curve in the same figure). To understand the difference, it must be taken into account that

at Ra = 1.1 × 104 the branches B1 and B3 (see Fig. 2(a)) are at a certain distance and, in

addition, the frequencies are computed for slightly different geometries. Therefore, it seems

clear that the new branch comes from a second bifurcation on the branch of AP oscillations,

which should be subcritical. The new QP flows are initially unstable but they soon stabilize.

The slope of the curve B3 in Fig. 2 also points to this fact. Moreover, the second transition

is also a symmetry-breaking bifurcation. In this case, f2 approximates directly the frequency

of the slow retrograde drift of the solutions. For these flows the drift is superposed to the

latitudinal propagation of k(t) giving rise to the local spot of k(t), meandering on the surface

of the sphere [21]. (See the animations for Ra = 1.4×104 and a time interval 1/f2, Pr0.715-

E0.0475-Ra1.4e4-ptem.gif and Pr0.715-E0.0475-Ra1.4e4-ener.gif [27]). However, in contrast

to the flows of very low Pr, k(t) is less localized on the surface, and there is also a transport

of k(t) around and through the center the sphere.

Note that for Pr=0.715 there coexist fast and slow QP waves, the azimuthal drifting time

of the former being more than six times shorter than that of the latter. On the other hand,

details of the Poincaré projections of Figs. 4(b) and 5(b) and the linear combinations of
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FIG. 4. (a) Fourier spectrum of vϕ(1.01, π/6, 0) (black) and Φm=1
l=1

(0.85) (purple) for a QP solution

at Ra = 8130 for Pr=0.715, in logarithmic scale. (b) Projections of the Poincaré sections showing

vϕ(1.01, π/6, 0) versus vθ(0.26, π/6, 0) on the hyperplane vr(0.26, π/6, 0) = −1 for Ra = 8 × 103

(black plus), 8.2 × 103 (smallest purple curve), 9.3 × 103 (teal), 1.1 × 104 (blue), and 1.3 × 104

(largest brown curve).
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FIG. 5. (a) Idem Fig. 4(a) for Ra = 1.2 × 104 on the third branch, B3, of solutions. (b) Idem

Fig. 4(b) for Ra = 8× 103 (black plus), 1.1× 104 (smallest purple curve), 1.3× 104 (teal), 1.5× 104

(blue), and 1.7× 104 (largest brown curve).

the peaks of the Fourier spectra show that the flows may have either two or three main

frequencies or may be resonant (frequency-locked) along the branches of QP solutions, as it

happened in Ref. [21].
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FIG. 6. Idem Fig. 2 for Pr=0.1.

B. Pr=0.1

The stable flows found at Pr=0.1, shown in Figs. 6(a) and 6(b), differ substantially

from those of the previous case. Three different sequences of solutions labeled B1, B2, and

B3 were found. Each sequence has a different origin, and they are composed of solutions

with different temporal dependence. They bifurcate successively from one another and are

continuously connected, in each sequence. The term branch is only used when the solutions

of a piece of a sequence have the same type of temporal dependence.

The first sequence B1 starts with the primary branch of AP flows. When it loses stability

above Ra = 6.65 × 103, a branch of prograde slow drifting QP solutions is found, due to

the breaking of the axisymmetry. This transition is supercritical, and it is seen in the first

change of slope of B1 in Fig. 6(b). The new frequency f2 agrees very well with that given

by the stability analysis of the AP solutions in the FS. For instance, at Ra ≈ 6.8 × 103

it is f2 = 2.963. However, in contrast to what happen for Pr=0.715, the QP orbits soon

undergo a transition to complex flows with the appearance of new independent frequencies.

The new transition is also reflected in Fig. 6(b) with the second change of slope of B1, and

in the change of the zonal flow in Fig. 7. The last complex solution directly related with

the AP orbits was found at Ra = 7.75× 103. All these solutions maintain a small non-zonal

contribution to K (see Fig. 7).

The Poincaré sections of the solutions (see Fig. 8) were analyzed to clarify the temporal

dependence. It was found that at Ra = 7.2 × 103 the two-dimensional projection of the
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FIG. 7. (a) Idem Fig. 3 for Pr=0.1. (b) Detail of (a) at low Ra

Poincaré section is a closed curve, and at 7.25 × 103 it fills an area with a small frequency

f3 = 0.574. From 7.4 × 103 up to the end of the branch the trajectories become more

entangled but they maintain the three-frequency quasi-periodicity.

The contour plots of the solutions show the interchange of sign of the perturbation of the

temperature between the hemispheres, but notably modulated by the azimuthal wavenumber

m = 1 from the beginning. The kinetic energy displays the typical superposition of the

latitudinal motion and azimuthal drift of the torsional solutions at the breaking of the

axisymmetry, but k is concentrated at the poles and around the center of the sphere as

for Pr=0.715 at large Ra. The velocity field forms a strong jet pointing consecutively

northward and southward through the center in the meridional section. (See the animations

for Ra = 6.8× 103 and a time interval 1/f2, Pr0.1-E0.01-Ra6.8e3-ptem.gif and Pr0.1-E0.01-

Ra6.8e3-ener.gif [27]).

For larger parameter values a new sequence of solutions, B3, was detected. Periodic fast

azimuthal rotating waves (ARWs) of wavenumber m = 1 were found from Ra ≈ 8.0×103. At

this point the main frequency of the wave is f1 = 23.492, and it gives rise to a retrograde drift.

The new solutions are related to the ARWs that bifurcate from the conduction state, since

their frequency matches the second critical frequency, (f1c)2 = 22.423, given by the stability

analysis of the conduction state in the shell, at the second bifurcation point (Rac)2 = 6.467×
103, which is very close to the first. In this case the rotational invariance is broken from

the beginning by perturbations of azimuthal wavenumber m = 1, explaining the fast drift.

Before this second transition the first two eigenvalues in crossing the imaginary axis still
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FIG. 8. (a) Going from right to left, projections of the Poincaré section showing vϕ(0.76, π/6, 0)

versus vθ(0.26, π/6, 0) on the hyperplane vϕ(1.01, π/6, 0) = 0 for Ra = 6500 (red plus), 7000 (purple

curve), 7200 (teal curve), 7300 (blue area), 7500 (big purple curve), 7700 (teal), 7800 (blue), 7900

(brown), 8000 (black plus), 8500 (left small purple curve), 9000 (teal), 10500 (blue), and 11000

(black area). (b) Same projection as in (a) on the hyperplane vϕ(0.26, π/6, 0) = 1 for Ra = 7750.
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FIG. 9. Fourier spectra of the three types of two-frequency QP solutions found at Pr=0.1, in

logarithmic scale.

have positive real part, and therefore the branch arising from (Rac)2 is initially unstable. It

could be either sub or supercritical, but it is plausible that it stabilizes about Ra = 8.0×103.

The branch of periodic ARW undergoes a NS bifurcation before Ra = 8.4 × 103, and a

branch of QP flows is found (see the change of slope of the upper branch of blue crosses

in Fig. 6(b) and Fig. 7(a)). However, the frequency f1 remains almost constant. This
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bifurcation gives rise to the oscillation of the m = 0 spherical harmonic coefficients, which

were constant before. This fact allows the identification of the new independent frequency

f2 of the quasiperiodic ARWs by computing the Fourier spectrum of the coefficients. For

instance, at Ra = 8.5×103, shown in Fig. 9, f1 = 23.561 and f2 = 39.532. As a confirmation

that this f2 triggers the quasi-periodicity, it was checked that all the peaks in the frequency

spectrum may be written as linear combinations of f1 and f2. For instance, the peak of small

frequency in the spectrum of the solution is f = 2f1 − f2, with a relative error ε < 10−6.

The energy K of the ARWs and bifurcated QP orbits is much higher than that of the first

sequence B1. The main contribution is due to Knz, while that of Kz is almost negligible

(see Fig. 7(a)). Then, from the secondary transition K increases due to the increase in Knz

as in B1.

Concerning the dynamics of the QP flows, the velocity field on a meridional section has

two vortices with an oscillating horizontal jet through the center of the sphere. The maxima

of k remain concentrated at the center and poles, and they never travel in latitude. A

new low frequency f3 appears between 1.05 × 104 and 1.1 × 104 when Ra increases, which

generates three-frequency QP solutions. Finally, the flow becomes temporally chaotic when

Ra > 1.1× 104. Therefore the ARWs and bifurcated solutions, directly connected with the

conduction state, become the stable flows at large Ra.

For Pr=0.1 a third sequence of stable solutions between Ra ≈ 7.5×103 and 7.95×103 was

found by decreasing Ra from the periodic ARWs (B2 in Fig. 6(a)). The new flows have two

main frequencies, the first f1, whose value fits that of the ARWs, and which is also linked to

the retrograde azimuthal drift of the solution, and the second, f2, whose value matches that

of the AP oscillations (see Figs. 6(a) and 9). Therefore, B3 is probably bifurcated from these

waves. For instance, at Ra = 7.5×103, f1 = 22.774 and f2 = 13.836, with amplitudes of the

same order, but with f1 being always slightly higher. In addition, Fig. 7 shows that these

solutions have Kz and Knz of similar order at Ra ≈ 7.5×103, but Knz increases quickly with

Ra and Kz decreases, both energies approaching that of the ARWs when Ra ≈ 7.95× 103.

Moreover, the animations of k(t) (not included) show that the dynamics is very complex.

It is possible to distinguish the azimuthal and latitudinal traveling of the spots of k(t), but

in a random way. In addition, there is also a transfer of energy from the external surface to

the interior of the shell. The presence of both frequencies, the diagram of energies, and the

dynamics of the solutions seem to indicate that this is a mixed branch of solutions, linking
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those coming from the axisymmetric flows with the ARWs.

The differences among the three sequences found at low Ra and Pr=0.1 are shown in

Figs. 8 and 9. The former shows the Poincaré projections illustrating the evolution of the

solutions on each sequence. The small projections at right are those of the first sequence,

connected with the conduction state (B1). Figure 8(b) shows the same projection of a

different section of the last of these solutions, because with the previous it was difficult to

see that at Ra = 7.75× 103 the Poincaré section is still concentrated around a closed curve.

Those at left in Fig. 8(a) belong to the QP orbits bifurcated from the periodic ARWs, one

of them indicated by the black plus, and the large curves in the middle to the mixed branch

of QP orbits. Figure 9 shows the difference between the Fourier spectra of the three types

of stable two-frequency QP solutions found. The upper row of the panel corresponds to the

spectrum of a flow bifurcated from the AP orbits (B1). It is more complex than the others

despite the proximity to the onset of convection. That in the middle is the spectrum of a

QP rotating wave bifurcated from the periodic ARWs (B3), and the lower is that of a mixed

solution (B2), with the frequency f1 matching that of the ARWs, and f2 that of the AP

orbits.

C. Pr=0.01

At the lowest Pr explored, and like in the case of a FS (see black solid line in Fig. 10(b)),

the slope of K versus Ra is very steep, and the AP flows are stable in a tiny interval
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FIG. 11. (a) Fourier spectra of the QP solutions at Ra = 9500 (black) and 9600 (purple) for

Pr=0.01 in logarithmic scale. (b) Projections of the Poincaré section showing vϕ(0.76, π/6, 0)

versus vθ(0.26, π/6, 0) on the hyperplane vϕ(1.01, π/6, 0) = 0 for Ra = 7340 (red plus), 9500 (black

curve), 9600 (purple area), and 10500 (teal).

(B1). They lose stability in a NS bifurcation, breaking the rotational invariance, around

Ra = 7.45× 103. The branch of QP solutions, starting there with two frequencies, is shown

in the segment B2 of Fig. 10(a) and in Fig. 10(b). The second fundamental frequency, f2,

was obtained as before by comparing the Fourier spectra of frequencies with f2
FS

c , given by

the linear stability analysis of the AP orbits in the FS. For instance, the matching frequency

is f2 = 29.208 at Ra = 7.5×103, and it introduces a prograde azimuthal drift to the solution.

In this case 1/f2 gives the approximated drifting time observed on the equatorial plane.

The dynamics of these QP flows is very similar to that described in [21] for Pr=0.001,

keeping a clear torsional motion superposed to the azimuthal drift. Concerning the kinetic

energy, the transition to QP flows leads to a decrease of K up to a new transition to three-

frequency QP flows at Ra ≈ 9.6×103. The purple curve of Fig. 11(a) is the Fourier spectrum

of the solution very near to this point. The third linearly independent frequency is initially

f3 = 1.922. However, by comparing the spectra of the solutions before and after the change

(see the black spectrum on the same figure), an increase in the amplitude of the peak of

frequency f = 240.34 was found, passing from being small to the second in amplitude.

Moreover, to confirm the existence and the correct selection of the third independent fre-

quency, the linear combinations of the frequencies of the main peaks of the spectrum were

calculated. In particular, the relation f = f1 + 3f2 + f3, with f1 = 144.15, f2 = 31.419,

17



0

10

20

30

40

50

60

7 8 9 10 11 12 13 14

Pr = 0.01

Z

NZ

10
-2

K
10-3 Ra

FIG. 12. Idem Fig. 3 for Pr=0.01.

 0

 2

 4

 6

 8

 10

 12

 6  8  10  12  14  16

10
-3

K

(a)

Time

 0

 3

 6

 9

 12.2  12.4  12.6  12.8

10
-3

K
(b)

Time

FIG. 13. (a) Time evolution of the space-averaged energies of an intermittent solution: K(t) (black

highest curve), Kz(t) (lowest teal), and Knz(t) (middle purple) for Pr=0.01 and Ra = 12000. (b)

Detail of (a).

f3 = 1.922, and relative error ε = 10−5 was found for the peak of f = 240.34. Another confir-

mation of the three-frequency quasi-periodicity is given by the Poincaré section, which goes

from being a closed curve to fill an area around the curve in the transition (see Fig. 11(b)).

In the interval B3 the solutions have just three main frequencies. The growth of the weight

of the harmonics of order m = 1 in the flow is reflected in the fast increase of K due to the

increase of both Kz and Knz from the appearance of the third frequency (see Figs. 10(b)

and 12).

A stability analysis, computed for the shell, shows that the conduction state undergoes

a second Hopf bifurcation at (Rac)2 = 7.797 × 103 with frequency (f1c)2 = 238.55 for
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perturbations of azimuthal wavenumber m = 1. Then, according to [19] the growth of

the peak could be related with the initially unstable curve arising from the steady branch,

originating a curve of mixed solutions when intersecting the QP torsional branch. This curve

would be branch C in [19] despite the value of K differs in a factor. The difference is due

to the stress-free boundary conditions used, because K depends on the value of the angular

momentum at the beginning of the integration. Here it is set and maintained fixed to zero

at any time. However, stable periodic ARWs were not found for Pr=0.01 by decreasing

Ra. When it is increased the spectra of the solutions indicate that the growth of the above

mentioned peak goes on, and at Ra = 1.1× 104 it is already that of the highest amplitude.

The animations of the flows show a prograde drift on the surface of the sphere with

approximate frequency f2. However, the spot of k(t) elongates longitudinally and splits

during the motion; one of the spots disappears while the other goes forward at mid latitudes

following a parallel (see the animations at Ra = 1.1 × 104, Pr0.01-E0.001-Ra1.1e4-ptem.gif

and Pr0.01-E0.001-Ra1.1e4-ener.gif [27]).

When Ra is increased further, the appearance of smaller new frequencies about Ra =

1.14× 104 leads to a temporal complex dynamics consisting of oscillations that increase the

amplitude slowly and quasi-periodically, to recover suddenly the amplitude of the QP orbits

in a cyclic way (B4). When this happens there is a fast decrease of K (see Fig. 12), and

the time evolution of K(t) shows repeated transients that evolve with a superposed fast

low-amplitude oscillation (see Fig. 13). The total energy is not much larger than Knz(t)
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because the high amplitude oscillations of Kz(t) and Knz(t) are out of phase, indicating

an interchange between them. In any case, these large oscillations cancel out each other

and, consequently, they are absent in the total energy K(t). (see Fig. 13(b)). Moreover, K

depends on the integration interval considered because the transients are very irregular.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

FIG. 15. Snapshots of the spherical, equatorial and meridional projections of Θ (first three columns)

and of k(t) and v (second three columns) at: (a)-(f) t = 5.00, the azimuthal wavenumber m = 2 is

dominant, (g)-(l) t = 8.22, m = 1 is dominant, and (m)-(r) t = 12.65, m = 0 is dominant. In each

case the sections are taken to show the maxima clearly. Ra = 1.4× 104 and Pr=0.01.

The period of the transients becomes shorter as Ra grows and K decreases. Figures 14(a)-

(d), show the L2 norm of the solutions for several Ra. Finally, K starts to increase again at

about Ra = 1.25×104 (B5) (see Fig. 12), reaching the highest values at the end of the range

computed. This change matches with the growth of the frequencies of the spherical harmonic

m = 2, and it is clearly reflected in the behavior of the flow. For these solutions the peaks of

the Fourier spectra of the spherical harmonic coefficients of azimuthal wavenumbers m = 0,

m = 1 and m = 2 are of similar amplitude, being larger those of m = 2. The contour plots of

Θ and k in Fig. 15 show that these flows behave as dominated by one of these harmonics as
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time goes on, but most of the time by that of m = 2. However the influence of the torsional

motion is recognized in the animations by the latitudinal traveling of the spots of k(t). It

has been checked that the changes in the dynamics are also reflected in the curve of the

mean zonal flow, 〈vϕ〉, versus Ra (not shown). At Ra ≈ 1.1 × 104, |〈vϕ〉| starts to decrease

up to Ra ≈ 1.15× 104, while the dynamics displays the long transients of Fig. 14(a). When

they become shorter, |〈vϕ〉| increases, and finally, from Ra ≈ 1.25 × 104 it decreases again

when the dynamics of the flow shows the influence of the spherical harmonics of azimuthal

wavenumber m = 2.

Finally, the stability analysis of the conduction state for perturbations of m = 2 was

undertaken to try to find an explanation of their weight in the dynamics of the flows in

B5. It was found that the instability takes place at (Rac)3 = 1.253 × 104 with frequency

(f1c)3 = 194.04, which agrees well with the peak f = 192.54 of the harmonic m = 2 at

Ra = 1.25 × 104, so the final increase of K could be related with the interaction of the

branch B4 with the unstable branch of m = 2 ARWs, arising unstable from the basic steady

state, as could happen before with the m = 1 perturbations.

IV. DISCUSSION AND CONCLUSIONS

The thermal convection arising from AP flows (torsional) in a rotating wide spherical shell

of radius ratio η = 0.001, heated uniformly from the interior, has been studied for three val-

ues of Pr. They cover from gases to liquid metals, and fall in the region of parameters inside

which, according to [20], the onset of convection is to periodic axisymmetric oscillations.

This region was computed for a fluid sphere, also with stress-free velocity boundary con-

ditions, tracing the curves of double-Hopf points by continuation methods. It was found

that it is bounded by the double-Hopf curves for the simultaneous bifurcations to azimuthal

wavenumbers (m1, m2) = (0, 1) when Pr < 0.9, and (0, 2) close to Pr = 0.9. Moreover, it

was also seen there that at low Pr the condition for the onset of axisymmetric convection

fulfills very well the ratio Pr/E = O(10).

In this study, it is found that a shell of very small η approximates very well the critical

Ra and frequency of the onset of the axisymmetric oscillations in a fluid sphere, and also

the dynamics of the AP flows. It also gives a good approximation of the critical point

where these flows lose their stability. When Pr decreases, the region of stability of the AP
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flows becomes smaller because the kinetic energy grows very fast. In the cases studied, the

critical Ra of the primary and secondary bifurcations in both geometries differ less than 1%.

Moreover, if the secondary bifurcation is supercritical (as it happens in the cases studied)

the dynamics of the emerging QP flows in the full sphere can be inferred, close to their

onset, from that of the nonlinear solutions in the shell, and from the critical eigenfunction

at the secondary transitions in the fluid sphere. In the latter case, the QP orbits should be

a perturbation of the AP orbits, so the velocity field of a QP solution should be close to

vFS
QP = vFS

AP + ε vFS
eigen. From the animations of vFS

QP and vshellQP , we have seen that the shell

gives a good approximation of the QP dynamics, by selecting a suitable ε. However, below

some value Pr < 0.01, the transition from AP orbits to QP flows should be subcritical, since

stable QP flows of wavenumber m = 2 were found in [21] below the secondary transition,

and this argument cannot be applied.

The nonlinear QP and temporally chaotic dynamics, which arise when the AP flows lose

stability, was investigated for a liquid metal of Pr=0.001 in a rotating shell of η = 0.01 [21],

and also by setting Pr=0.01 and η = 0.001 [19], with the same configuration. Both studies

displayed a good agreement concerning the stability of the AP flows, but the purely torsional

QP solutions found in the former study were not found in the latter, and stable ARWs

found in the latter were not found in the former. The extreme low Pr used in the first

work implied to have very large relaxation times of integration that limited the number of

solutions computed, and, in addition, a large number of transitions between different types

of flows accumulated near the onset. The present study has analyzed the dynamics with

different Pr larger than 0.001 in order to try to understand these discrepancies, and to find

out in which range of parameters a dynamics influenced by the torsional motion at moderate

Ra (twice the critical value) is maintained.

The full sphere was approximated with a shell of η = 0.001 to have exactly the geometry

selected in [19]. The results indicate that the dynamics is extremely dependent on Pr,

since this parameter determines the distance of the first and second transitions from the

conduction state to a double-Hopf bifurcation point, from which simultaneous branches of

AP oscillations and ARWs arise. For Pr=0.01 the critical Rayleigh numbers of the two

first bifurcations from the conduction state are Rac = 7.329 × 103 giving rise to stable AP

oscillations (torsional motion), and (Rac)2 = 7.797 × 103 giving rise to unstable ARWs of

azimuthal wavenumber m = 1, since when the real part of the second pair of eigenvalues
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becomes positive, that of the first in crossing remains positive. It was checked that the

ARWs are unstable (at least around the critical point (Rac)2) by means of long temporal

integrations of system (1)-(3) with initial conditions satisfying Y m=1

l 6= 0 and Y m6=1

l = 0. The

fact that long integrations were needed to destabilize these waves is an indication that they

are only slightly unstable. However, since the solutions found in the temporal integration of

a nonlinear system are dependent on the initial conditions it is possible that they stabilize

at higher Ra, and they were found in [19], and not in this study. In any case, their influence

on the dynamics is seen at large Ra in the mixed solutions of the branch B3 in Fig. 2 and

C in [19].

For Pr=0.01 no sign of hysteresis was found by increasing and decreasing Ra (at least

with the increments of Ra used) when the slope of the curves changes. Moreover, the spectra

show continuity of the frequencies, and although from Ra > 1.1× 104 the main frequencies

of the spherical harmonic coefficients of m = 1 and m = 2 become as (or even more)

important as those of m = 0, the influence of the torsional dynamics can still be observed

in the movies. The temporal evolution of the contour plots of k(t) and Θ(t) at the largest

Ra studied show that the meandering motion of the spots on the surface of the sphere is

modified due to the interaction with other branches of non-axisymmetric solutions. This

interaction originates the generation and decay of new cells of convection, giving rise to a

complex temporal dependence, but maintaining the frequency, f2, of the drift. Since no hint

of nearby heteroclinic orbits is found, the solutions of temporal complex dynamics seem to

belong to mixed branches. This 3D complex flows with sudden variations of the velocity field

are very good candidates to generate strong bursting magnetic fields as those found in [28]

with an axisymmetric velocity field, although there the trajectory was a nearly heteroclinic

chain, approaching and moving away from two unstable periodic orbits.

For Pr=0.1 the distance between the AP and ARW branches of oscillations is smaller than

for Pr=0.01. The first bifurcation takes place at Rac = 6.218×103 and the second at Rac =

6.466× 103. The proximity of both transitions leads to an increase of the complexity of the

bifurcation diagram, and to the multiplicity of stable flows was found. In particular, stable

pure ARWs were also detected with our temporal integration, so fast and slow quasiperiodic

drifting waves coexist near the onset of convection. However, at large Ra only the flows

bifurcated from the ARWs remain stable. Consequently the velocity field is nearly symmetric

with respect to the equator and there is no latitudinal kinetic energy transport.
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When Pr= 0.715 the distance between the two bifurcations is also larger than for Pr=0.1,

and no hint of interaction of the two branches of oscillations was found. The first bifurcation

takes place at Rac = 6.852 × 103 and the second at Rac = 7.188 × 103. In this case, two

branches of QP solutions, both bifurcated from the AP orbits, coexist in a wide range of

Ra. Then at large Ra the observed flows come from transitions of the axisymmetric states.

However, the dynamics cannot be described like, in [21], as almost the composition of a

latitudinal oscillation and an azimuthal drift. The spot of kinetic energy on the surface of

the sphere (r = ro) is much less confined, and there is also a concentration of kinetic energy

around the center of the sphere (r = ri in this case).

The preceding results, and those previously found in [19, 21] indicate that far from

the double-Hopf bifurcation, giving rise simultaneously to branches of AP oscillations and

ARWs, the initial bifurcation to axisymmetric flows has a deep influence on the subsequent

dynamics at higher Ra. For large and low Pr the rotating flows bifurcated from the AP

oscillations drift much slowly than those which break the invariance by rotation of the con-

duction state from their onset, usually found when Pr/E 6= O(10) [25, 29], and than those

whose Pr is about 0.1, as seen in this study. The torsional dynamics is clear when Pr is

large, and a remnant of the latitudinal oscillations is already seen at small Pr. Moreover,

the comparison of the dynamics of the three Pr studied also shows that the concentration

of k(t) in the center of the sphere is larger when Pr is large, being nearly absent at very low

Pr. The influence of the primary latitudinal oscillations on the turbulent flows at very high

Ra remains to be analyzed.
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