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Abstract

This article analyzes the influence of laterally enforced solutal gradients on the steady and

bifurcated periodic dynamics in binary fluids contained in horizontally heated slots, taking into

account the Soret and Dufour effects. Numerical Newton-Krylov continuation techniques to follow

the primary and secondary branches of steady solutions and periodic orbits are applied. The

stability of all these branches is also analyzed. A great variety of stable steady and periodic

states is found, depending on the ratio of the thermal and solutal gradients. The proximity to

parameters that balance the buoyancy forces delays the onset of center-symmetric oscillations to

very large values of the thermal Rayleigh number, while large solutal gradients tend to restabilize

the steady flows after the onset of center-symmetric oscillations, and to give rise to spatio-temporal

symmetric waves of broken center symmetry at larger thermal Rayleigh number. The work done by

the thermal buoyancy force is essential for the restabilization of the steady states and the change

of the ulterior dynamics. It is also shown that the transition to temporal chaos depends strongly

on the absence or the intensity of the solutal gradients.
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I. INTRODUCTION

Thermosolutal and binary fluid convection has long been studied because of its relevance

in natural phenomena concerning oceanography, astrophysics, geophysics, geology, etc., and

in a large amount of industrial applications; among them crystal growth and metal manu-

facturing processes, storage of nuclear wastes, etc. Different features involving this problem

have been analyzed for decades, however most of them without considering real gases with

non-negligible Soret and Dufour interactions.

Convection problems involving large amounts of mass transfer are often studied theoret-

ically and also numerically by considering permeable boundaries of constant concentration

of the solute. The differential concentration generates vertical or horizontal gradients either

in the direction of the thermal gradients or opposed to them, depending on the geometry of

the problem. Some studies focus on the case in which the buoyancy forces due to the ther-

mal and solutal gradients are equal and opposite, both gradients being parallel and normal

to gravity [from now on balanced buoyancy case (BBC)]. In this situation there is a basic

conduction state even in vertical channels, slots, and rectangular cavities in general [1–6].

The first instability of this state is due to the difference of diffusivities [1, 7]. The dynamics

arising from this double-diffusive instability is much richer than far from the BBC because

the primary instability is subcritical [1, 2]. It can give rise to center-symmetric extended and

localized steady states [4–6] and symmetry-broken steady flows with the vortices confined

near the boundaries [1], depending on the length of the cavity, boundary conditions, and

parameter values. Localized states were also found in the finger regime [7], but not in porous

media governed by the Darcy’s law [3].

Other publications [8–10] on double-diffusive convection determined the region of stability

of a steady flow in a vertical channel of isothermal and impermeable lateral boundaries (see

also a review in [11]). The basic flow consisted in a cubic vertical velocity field with linear

distributions of the temperature and the concentration, whose amplitude may depend on

the separation ratio, Se, when the Soret effect is included in the problem. They considered

periodic wave perturbations traveling in the channel direction, and they mainly studied

the dependence of the Grashof number on Se, on the Prandtl number, Pr, and on the

wavenumber. Thermal, solutal and hydrodynamic instabilities were found in liquid mixtures

of Pr = 6.7, but only the third type of instability was detected in gaseous mixtures of Pr
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and Lewis, Le, numbers of O(1) [9]. On the other hand, the dependence of the thermal

waves on Pr and positive Se in liquids of low Le is complex. For Se < 0.2 and Le ≪ 1 there

is a threshold of Pr above which they can exist, while for 0.27 < Se < 0.28 there is a gap of

Pr < 1 where the steady flows remain stable [10]. The stability of gaseous and liquid steady

flows of low Pr, in a finite slot of non-slip, impermeable and adiabatic horizontal boundaries

was analyzed in [12], including the Soret coupling. The periodic flows arising from them

were also computed by means of the Newton-Krylov method described in the same paper.

In this case all the instabilities found were of hydrodynamic type.

The goal of the present article is to study the dynamics of a mixture of H2-Xe generated by

parallel gradients normal to the gravity in vertical slots, but taking into account the Soret

and Dufour effects. The separation ratio and the Dufour coefficient have been obtained

from experimental measures [13]. To ascertain the value of these coefficients is complex.

Liu and Ahlers determined them for six binary-gas mixtures by using a combination of data

from the literature, molecular-theory calculations, and thermal conductivity measurements.

They concluded that the Dufour effect was weak for the mixtures analyzed [13]. The two

effects were neglected in most studies (the above mentioned between them) because they

are usually considered small in front of the externally imposed solutal gradients. However,

the strong influence of those gradients on the temperature fluctuation in gas mixtures was

already highlighted in [14] in a system where a solutal gradient instead of a temperature

gradient was applied.

The importance of the Soret and Dufour effects on the bifurcation properties and patterns

of convection in horizontal fluid layers heated from below has been studied since decades [15–

17]. The role of the Dufour effect on the onset of convection in gases was analyzed in

the first reference. The other two focus on the study of the change of the bifurcation

topology at the onset of convection in liquids and gases with negative Soret couplings, and

on the competition between the extended steady states and traveling waves arising below the

subcritical bifurcations. In contrast, Barten et al. investigated the structure and dynamics

of the localized traveling waves in ethanol-water mixtures with strong and weak negative

Soret coupling [18]. The presence of both types of traveling waves reflected the decisive role

played by the induced solutal and temperature gradients. For positive Soret couplings there

is no oscillatory instability of the basic state [16].

The thermal convection in liquid binary mixtures of 3He-4He including the Soret cou-
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pling was also studied in detail in rectangular containers of large aspect ratio heated from

below [19] in the range of negative separation ratios used experimentally by Kolodner [20].

They found numerically subcritical one- (waves traveling from the center of the cavity to

the lateral sides), two- (blinking states), and three-frequency flows (repeated transients)

from the onset of convection; the second and the third in quantitative agreement with the

experiments. These flows owe their existence to the presence of the walls.

The combined effects of the Soret and Dufour coupling on binary fluid convection in a

Brinkman porous horizontal layer subject to vertical fluxes of heat and mass was studied

under the assumption of the existence of a basic flow parallel to the layer [21]. The study

showed that the buoyancy ratio-Dufour parameter plane is divided into up to six regions,

whose extension is controlled by the Soret and Dufour numbers. The influence of both effects

on the Nusselt and Sherwood numbers in a porous medium was analyzed in trapezoidal

geometry for different boundary conditions [22].

The critical parameters and structure of the onset of thermosolutal convection in a com-

pressible C2H6-CO2 mixture near the critical points for increasing vertical stratification was

studied by Hu and Zhang [23]. In this case a thin concentration boundary layer forms along

the bottom wall, which expands upwards acting as a piston and leading to a homogeneous

heating of the whole fluid. The instability originates from the difference of the diffusion

rates of heat and mass as in double-diffusive convection.

In the remaining of the paper, the equations and their numerical treatment are discussed

in Sec. II, including the variational equations to compute stationary and periodic orbits by

continuation methods, and some tests of the codes. It has been well accepted since a long

time that the Dufour coupling is negligible in liquids [24], however, the existence of externally

applied solutal gradients could be able to change the temperature field. Consequently, as a

previous step, the products of parameters appearing in the equations for various mixtures

found in the literature are evaluated to guess the need of considering these effect in the

numerical models. Sec. III contains a study of the influence of the solutal gradients on the

onset of the oscillatory convection in the above mentioned gas mixture. The stability of the

flows is analyzed in any case, determining the bifurcation points where the periodic flows

arise and the path to complex dynamics. After the discussion on the instabilities leading to

periodic flows and a comparison with preceding results in Sec. IV, the paper concludes in

Sec. V with a brief summary of the new dynamics observed.
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II. MATHEMATICAL FORMULATION

The dynamics of binary mixtures filling a rectangular domain, Ω, of width d, height h,

and aspect ratio Γ = h/d is numerically studied. It will be assumed that the lateral sides

can diffuse mass at negligible velocity (as it can happen in rigid permeable membranes), in

addition to heat. The domain is heated from the left side, and the solutal gradient is also

horizontal. The top and bottom boundaries are taken impermeable and insulating. The

fluid is subject to a constant vertical gravity, g = −gj, j being the unit vector pointing

upwards. Diverse experimental setups have been used to constrain constant temperature

and concentration at both lateral boundaries, see for instance those in Refs. [25, 26].

The Boussinesq approximation of the mass, momentum and energy equations is extended

to that of the concentration for the denser component of the mixture. Accordingly, the

density in the buoyancy force is taken as

ρ(T∗,C∗) = ρ
(

1− α(T∗
− T∗) + β(C∗

− C∗)
)

, (1)

α and β being the thermal and the solutal expansion coefficients, respectively, measured at

the averaged temperature T∗ and concentration C∗ at which the mean density is ρ. They

are defined as

α = −
1

ρ

(

∂ρ

∂T∗

)

T∗

and β =
1

ρ

(

∂ρ

∂C∗

)

C∗

, (2)

where the asterisks denote dimensional quantities. In these conditions the general equations

should include the generation of internal solutal gradients due to the thermal gradients

(Soret effect) and the generation of internal thermal gradients due to those of the solute

(Dufour effect).

Let x and y be the horizontal and vertical coordinates, respectively. The system is written

by splitting the dimensional temperature and concentration as

T∗(x, y, t) = (d− x∗)
∆T∗

d
+ T∗

R +Θ∗(x, y, t), and (3)

C∗(x, y, t) = (d− x∗)
∆C∗

d
+ C∗

R + Σ∗(x, y, t), (4)

in order to have homogeneous boundary conditions on the vertical sides. Here ∆T∗ > 0 and

∆C∗ are the differences of temperature and concentration between the left and right sides,

respectively, and T∗
R and C∗

R are the temperature and concentration on the right boundary.
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The equations are nondimensionalized by taking d as longitude scale, ∆T∗ as temperature

scale, and d2/κ as time scale, κ being the thermal diffusivity. In addition, the concentration

is rescaled with ∆C∗, which can be greater or less than zero. Its sign determines the dynamics

of the system. The nondimensional equations are

∇ · v = 0. (5)

(∂t + v ·∇)v = −∇π + Pr∆v − RaT Pr(x−Θ) j+ RaCLe(x− Σ) j, (6)

(∂t + v ·∇)Θ = (1 + LeQSe2)∆Θ +
Le2QSe

NPr
∆Σ+ u, (7)

(∂t + v ·∇)Σ = Le∆Σ + (Pr SeN)∆Θ + u, (8)

where, v = (u, v) is the velocity field, N = RaT/RaC is the Rayleigh numbers ratio, ∆ means

the two-dimensional Laplacian and π is the modified pressure including terms coming from

the dependence of ρ on T and C, and on the splitting of these magnitudes. The problem

depends on six physical parameters, the thermal Rayleigh number, RaT, the solutal Rayleigh

number, RaC, the Prandtl number, Pr, the Lewis number, Le, the separation ratio, Se, and

the Dufour number, Q, defined as

RaT =
αg∆T∗d3

νκ
, RaC =

βg∆C∗d3

Dκ
, Pr =

ν

κ
, Le =

D

κ
, Se =

βKT

αT∗
, Q =

T∗α2

cpβ2

(

∂µ

∂C∗

)

p∗,T∗

,

(9)

where ν accounts for the kinematic viscosity, D for the mass diffusion coefficient, KT for the

thermal diffusion ratio, cp is the specific heat at constant pressure, and µ is the chemical

potential. The Rayleigh numbers will be the control continuation parameters.

In non-dimensional units Ω = [0, 1] × [0,Γ], and the boundary conditions can finally be

written as

u = v = 0 on ∂Ω (10)

Θ = 0 on x = 0, 1 and ∂yΘ = 0 on y = 0,Γ, (11)

Σ = 0 on x = 0, 1 and ∂yΣ = 0 on y = 0,Γ. (12)

Equations (5)-(12) are rewritten in terms of the streamfunction, ψ, related with the
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velocity field by v = (∂yψ,−∂xψ). They become

∂t∆ψ + J(∆ψ, ψ) = Pr∆2ψ + RaT Pr (1− ∂xΘ)− RaCLe (1− ∂xΣ), (13)

∂tΘ+ J(Θ, ψ) = (1 + LeQSe2)∆Θ +
Le2QSe

NPr
∆Σ + ∂yψ, (14)

∂tΣ+ J(Σ, ψ) = Le∆Σ + Pr SeN∆Θ+ ∂yψ, (15)

where J(f, h) = ∂xf∂yh− ∂yf∂xh. In this way the incompressibility condition is identically

fulfilled, and the number of unknowns is reduced. The boundary conditions for u and v

translate into

ψ = ∂nψ = 0 on ∂Ω, (16)

where n indicates the normal direction to the boundary.

Equations (13)-(15) together with boundary conditions (11), (12), and (16) are Z2 equiv-

ariant, i.e., they remain invariant under the center symmetry

S : (t, x, y, ψ,Θ,Σ) → (t, 1− x,Γ− y, ψ,−Θ,−Σ). (17)

Equations (7)-(8) show that the relevance of the Soret and Dufour effects depends on the

solutal gradient in inverse form, i.e., large solutal gradients could enhance the Dufour and

weaken the Soret effects for a fixed differential thermal gradient (see parameter N in the

equations). An estimation of the contribution of the Dufour and Soret coefficients to the

dynamics of several fluids through the coefficients Le2QSe/NPr and Pr SeN, respectively,

can be seen in Table I. The data on the mixtures were extracted from several sources,

despite it is difficult to find complete sets of physical coefficients for liquid mixtures in the

literature. The Dufour and Soret effects also give an additional contribution to the heat

diffusion via LeQSe2, which is independent of the buoyancies. Despite it is well known

that Q is usually very small in liquids, the product of the coefficients is calculated to see if

large externally applied solutal gradients could be able to change the transport properties of

the liquid mixtures and to increase their influence in gases. Three main conclusions can be

extracted a priori from the table. The enhance of the diffusion of the temperature (LeQSe2)

is only important in gases, for which Q can be large. Moreover, the Dufour effect appears

to be important for liquid metals in extreme conditions as those that exist in the Earth’s

liquid core at very large Lewis numbers (see last row of the table). On the other hand, the
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TABLE I. Values of the parameters taken from experimental works or estimated from physical

coefficients extracted from different sources when possible, and the products which appear in the

terms of Eqs. (14) and (15). Realistic values taken ad-hoc, and based on the corresponding source

are printed in bold format. The Dufour coefficients are taken 10−5 in order to compare the products

when Q is neglected in the literature, then the coefficient could be underestimated. In the first

two rows BGM means binary gas model. The four last rows correspond to liquid metals at high

pressure and temperature. The concentrations vary in each mixture.

Source Mixture Pr Le Se Q N Pr SeN Le2QSe/NPr LeQSe2

[17] BGM 1. 1. −0.5 10 1 −0.5 −5.0 2.5

[17] BGM 1. 1. −0.5 10 0.25 −0.125 −20.0 2.5

[13] Ar-CO2 0.683 1.085 0.0032 37.82 1 2.186 × 10−3 2.086 × 10−1 4.202 × 10−4

[13] Ar-CO2 0.683 1.085 0.0032 37.84 0.25 5.464 × 10−4 8.344 × 10−1 4.202 × 10−4

[13] H2-Xe 0.168 1.238 0.232 0.357 1 3.898 × 10−2 7.556 × 10−1 2.379 × 10−2

[13] H2-Xe 0.168 1.238 0.232 0.357 0.25 9.744 × 10−3 3.0224 2.379 × 10−2

[15] C2H6O-H2O 7. 0.01 −0.25 0.1 1 −1.75 −3.571 × 10−7 6.25× 10−5

[15] C2H6O-H2O 7. 0.01 −0.25 0.1 0.25 −4.375 × 10−1 −1.429 × 10−6 6.25× 10−5

[27] DNA-H2O 10 10−4
−0.01 10−5 1 1.0× 10−1 −1.0× 10−16 1.0× 10−13

[27] DNA-H2O 10 10−4
−0.01 10−5 0.25 −2.5× 10−2 −4.0× 10−16 1.0× 10−13

[28] C2H6O-H2O 30.97 0.0049 0.2 10−5 1 6.194 1.551 × 10−12 1.960 × 10−9

[28] C2H6O-H2O 30.97 0.0049 0.2 10−5 0.25 1.549 6.202 × 10−12 1.960 × 10−9

[29] 3He-4He 0.707 0.076 −0.098 10−5 1 −6.929 × 10−2 −8.006 × 10−9 7.299 × 10−9

[29] 3He-4He 0.707 0.076 −0.098 10−5 0.25 −1.732 × 10−2 −3.203 × 10−8 7.299 × 10−9

[30] Fe-Si-O 0.046 300 10−3 10−5 1 4.6× 10−5 1.9565 × 10−2 3.000 × 10−9

[30] Fe-Si-O 0.046 300 10−3 10−5 0.25 1.15 × 10−5 7.826 × 10−2 3.000 × 10−9

dilute organic or inorganic mixtures in water give negligible Dufour and extra diffusion term

effects. They could only be relevant with extremely high values of N.

To obtain the numerical solutions, the functions ψ, Θ and Σ were approximated by

a pseudo-spectral collocation method on a mesh of nx × ny Gauss-Lobatto points. The

system was discretized by transforming the spatial operators into matrices acting on the

values of the functions at the collocation mesh points. The momentum equation was solved
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following the algorithm for the vorticity-streamfunction formulation described in Ref. [31].

The stiff system of ODEs obtained after the spatial discretization is integrated by means of

an implicit-explicit (IMEX) fifth-order BDF-extrapolation method.

The computation of stationary and periodic orbits by continuation methods and the

stability of the flows [12, 32–34] requires solving the first variational equations of system (13-

15), which depend on the parameter, p, used in the continuation. The methods and the

advantages of their use are described in detail in [12]. Only the parameter p = RaT is used

in this study, then these equations for the perturbations (ψ1,Θ1,Σ1), and δRa
T are

∂t∆ψ1 + J(∆ψ1, ψ) + J(∆ψ, ψ1) =Pr∆2ψ1 − RaTPr ∂xΘ1 − RaCLe ∂xΣ1+

+ δRaTPr(1− ∂xΘ) (18)

∂tΘ1 + J(Θ1, ψ) + J(Θ, ψ1) =(1 + LeQSe2)∆Θ1 +
Le2QSe

NPr
∆Σ1−

− δRaT
Le2QSe

RaTNPr
∆Σ + ∂yψ1, (19)

∂tΣ1 + J(Σ1, ψ) + J(Σ, ψ1) =Le∆Σ1 +NPr Se∆Θ1 + δRaT
Pr Se

RaC
∆Θ + ∂yψ1, (20)

with boundary conditions

ψ1 = ∂nψ1 = 0 on ∂Ω. (21)

Θ1 = 0 on x = 0, 1 and ∂yΘ1 = 0 on y = 0,Γ, (22)

Σ1 = 0 on x = 0, 1 and ∂yΣ1 = 0 on y = 0,Γ. (23)

The variational equations for other parameters are included in the Appendix.

Some preliminary calculations to decide the resolution used in the computations have

been done. Table II shows the leading eigenvalue, λ1, or multiplier, µ1, the period, T , the

averaged kinetic energy, K, the Nusselt, ∂xT, and Sherwood, ∂xC, numbers calculated at

x = 1, obtained from the numerical calculation of some steady states (SS) and periodic

orbits (PO), and their stability. The averages are defined as

∂xT =
1

Γ

∫ t+T

t

∫ Γ

0

∂xT dy dt, and ∂xC =
1

Γ

∫ t+T

t

∫ Γ

0

∂xC dy dt, , (24)

and

K =
1

2Ω

∫ t+T

t

∫

Ω

v · v dΩ dt. (25)
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TABLE II. Comparison of the real and imaginary parts of the leading eigenvalue λ1 or multiplier

µ1 of the spectrum, the period, the averaged kinetic energy density, and the averaged heat and

mass transfer for steady states (SS) and periodic orbits (PO). The rest of parameters are Pr = 0.1,

Le = 0.05, Se = −0.05, Q = 0, and Γ = 8.

nx × ny Type RaT RaC ℜ(λ1) ℑ(λ1) T K ∂xT ∂xC

32× 128 SS 3000 1500 0.09326 ±6.8267 −− 31.52452 1.27922 3.25614

32× 128 SS 13500 −13500 −0.6412 0 −− 209.2510 1.97451 −5.4444

40× 150 SS 3000 1500 0.09295 ±6.8271 −− 31.52445 1.27922 3.25612

40× 150 SS 13500 −13500 −0.6735 0 −− 209.2763 1.97459 −5.4452

50× 200 SS 3000 1500 0.09298 ±6.8270 −− 31.52447 1.27922 3.25612

50× 200 SS 13500 −13500 −0.6606 0 −− 209.1953 1.97458 −5.44742

nx × ny Type RaT RaC ℜ(µ1) ℑ(µ1) T K ∂xT ∂xC

32× 128 PO 3500 −7000 0.72878 0 0.607692 85.1235 1.37477 −4.15034

32× 128 PO 4500 2250 0.65904 0 0.713853 50.0377 1.39613 3.65151

40× 150 PO 3500 −7000 0.72894 0 0.607694 85.1230 1.37476 −4.15037

40× 150 PO 4500 2250 0.65947 0 0.713827 50.0388 1.39614 3.65159

50× 200 PO 3500 −7000 0.72897 0 0.607691 85.1227 1.37476 −4.15036

50× 200 PO 4500 2250 0.65941 0 0.713825 50.0384 1.39613 3.65154

The integral over time only applies for the periodic orbits. Then T is the period.

As can be seen a mesh of nx × ny = 40× 150 is sufficient in the interval of Ra considered

to have errors less than 0.5% in the values of the eigenvalues and multipliers and less in the

averaged quantities.

III. INFLUENCE OF THE SOLUTAL GRADIENT ON THE ONSET OF THE

OSCILLATORY FLOWS

In order to study the influence of the concentration on the dynamics of the steady and

time periodic double-diffusive fluids subjects to externally added solutal gradients the H2-Xe

gas mixture of molar mass ratio 65.1 listed in Table I was selected because the parameters

are well determined [13], and the separation ratio and Dufour coefficients have a similar
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weight. The aspect ratio of the slot was fixed to Γ = 8, large enough to allow a rich variety

of solutions. Five cases with different RaC were selected. It was found that for any of them

the initial steady flow is center-symmetric, i.e., it is invariant by S like with impermeable

lateral sides [12]. Consequently, it fulfills

ψ(t, 1− x,Γ− y) = ψ(t, x, y), (26)

Θ(t, 1− x,Γ− y) = −Θ(t, x, y), (27)

Σ(t, 1− x,Γ− y) = −Σ(t, x, y), (28)

and the velocity field fulfills

u(t, 1− x,Γ− y) = −u(t, x, y), (29)

v(t, 1− x,Γ− y) = −v(t, x, y). (30)

A. Dynamics with a negligible solutal gradient

The first case, shown in Fig. 1 is computed with a negligible solutal gradient (RaC = 1.0).

Figures 1(a), (b) show the Nusselt number versus RaT, and Fig. 1(c), (d) the period of the

PO also versus RaT. The Nusselt number increases monotonically with RaT in the steady

regime. It becomes unstable at RaT = 2858.7 through a supercritical Hopf bifurcation (HB).

The emerging periodic orbits are fixed cycles, i.e., they are center-symmetric at any time

instant. The next critical point along the branch of steady solutions is found at a much

higher RaT = 12410. The critical eigenfunction is real, and in this case the center symmetry

is broken. This pitchfork bifurcation gives rise to unstable steady flows from the beginning,

which have not been continued.

The periodic flow arising at the HB (see detail in Fig. 1(b)) becomes unstable at RaT =

4030.7 in a period-doubling (PD) bifurcation, and neither the steady nor the periodic flow

recover stability, at least in the calculated range of parameters (black and red curves in

Fig. 1). By increasing the parameter the already unstable periodic branch has another PD

bifurcation at RaT = 8215.1 when a second multiplier becomes unstable without breaking the

symmetry. The branch arising from this point is extremely unstable. The leading multiplier

has modulus 1.357× 105, so computing the branch does not give information on new stable

flows. Finally there is a pitchfork bifurcation of periodic orbits (PPO) at RaT = 9006.6
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FIG. 1. (a) Nusselt number versus RaT for RaC = 1.0. The solid lines indicate stable solutions

and the dashed lines the unstable ones. Black color lines mean steady states (SS), red, blue, green

and purple lines denote time periodic orbits (PO), and the blue dash-dotted line refers to unstable

PO. In addition, HB means Hopf bifurcation, PPO signifies pitchfork bifurcation of PO, and PD

means period-doubling. (b) detail of (a) showing orbits arising at the PD points and the double

fold of the first double-period orbit, (c) shows the period T , T/2, T/4 and T/8 of the PO versus

RaT, and (d) the period T of the asymmetric PO.

when a third real multiplier crosses the unit circle, breaking the center symmetry. At this

point the first multiplier has modulus 4.735× 102, so the first time dependent orbit is very

unstable.

The flows of double period [see Fig. 1(b)] lose stability at RaT = 4155.1 in a second

PD bifurcation. By increasing the parameter, the curve of double-period solutions has a

double fold at RaT = 4539.0 and at RaT = 4327.5 [see Fig. 1(c)] when the same real

multiplier crosses forth and back the unit circle. It remains unstable from RaT = 4328.8. At

RaT = 6671.5 the leading multiplier is 1.063×104 and it grows with RaT, therefore following

this branch is also too expensive and unnecessary. The new branches of quadruple- and
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FIG. 2. Contour plots of the streamfunction of a stable steady flow for RaT = 2500 at left, and of

the temporal evolution of a stable periodic orbit during a period T = 0.90593 for RaT = 3518.3 at

right. The snapshots are taken in time intervals ∆t = T/8. RaC = 1.

subsequent octuple-period orbits are supercritical, and lose their stability at RaT = 4183.1

and RaT = 4189.2, respectively, in new PDs. The estimation of the Feigenbaum constant

δ = lim
n→∞

an−1 − an−2

an − an−1

with just n = 3 gives δ = 4.401, and with n = 4 already gives δ = 4.567, pointing out that

the next bifurcations give rise to a Feigenbaum cascade. The terms of the sequence, an,

are the successive critical RaT. Figures 1(b) and (c) show the shortening of the stable part

of the branches of PO between PDs as RaT increases. Figure 1(c) also displays the double

folds of the other two branches after each period doubling.

Figures 2, 3, and 4 show the contour plots of the streamfunction of a steady solution

on the primary branch and of the temporal evolution of a bifurcated periodic orbit, of a

double-period orbit, and of a quadruple-period orbit, respectively. All these flows are center-

symmetric. The primary steady solutions have two vortices (left contour plot in Fig. 2) that

when the flow becomes periodic (right part of Fig. 2), travel to the center of the slot, and

again to the horizontal boundaries to get back to the initial position. When they reach the

maximum distance a weak vortex develops between them. The flows after the successive

PDs behave basically in the same way. The vertical oscillation simply occurs twice, four,

eight, etc. times in a period. In these and all subsequent color contour plots the minimum
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FIG. 3. Idem Fig. 2 for the stable time periodic orbit of double period at RaT = 4061.1, with

T = 1.7295. RaC = 1.

FIG. 4. Idem Fig. 2 for the stable time periodic orbit of quadruple period at RaT = 4168.7, with

T = 3.4098. RaC = 1.

value of the represented function is in blue and the maximum in red. Therefore, in the case

of the streamfunction, vortices with a blue (red) core rotate clockwise (counterclockwise),

and a red (blue) color close to the boundary indicates a global clockwise (counterclockwise)

circulation.

Figure 5 shows the contour plots of the temporal evolution of a periodic flow with broken

symmetry during a period. In this case the two vortices travel to the center of the slot while
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FIG. 5. Idem Fig. 2 for the unstable time periodic orbit with broken symmetry at RaT = 9996.6,

with T = 0.65495. RaC = 1.

new vortices appear near the horizontal sides, then they elongate and reconnect in pairs,

recovering the initial position, size and shape with a weak vortex between them.

B. Dynamics near the BBC

Figure 6 shows the bifurcation diagram for RaC = 1750. The primary branch of SS

and its stability are computed in the interval [1, 40000]. This branch of center-symmetric

solutions turns back and forth twice reaching very low RaT. All the bifurcations on the

diagram are steady, giving rise to folds, or pitchfork bifurcations if the critical eigenvector

breaks the center symmetry. The sequence of bifurcations found can be followed in Fig. 6

(black lines), and in Table III, which contains the intervals between bifurcations with the

number of unstable eigenvalues. From now on, the term saddle-node will only be used to

refer to bifurcation points at which two solutions collide and disappear, one of them being

stable and the other unstable. When both are unstable the general terms fold or turning

points will be used.

By following the curve of solutions, starting from the left, the steady flow is stable up

to RaT = 11844 (see details in Figs. 6(b) and (c)). At this point there is a pitchfork

bifurcation (P1) of equilibria breaking the center symmetry of the initial solution (the critical

eigenfunction is antisymmetric). Next, the curve turns back in the small loop of Fig. 6(b)
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when a second eigenvalue becomes unstable at RaT = 12005 (T1). From this point the curve

undergoes two more tiny turning points, with a pitchfork bifurcation (P2) between them,

before continuing to lower RaT. The second fold takes place at RaT = 11804 (T2) when a

third real eigenvalue crosses the imaginary axis. Next, a real positive eigenvalue becomes

stable at RaT = 11813 in P2 [see Fig. 6(b)]. The same holds at the third turning point of

the curve at RaT = 11822 (T3). After the sequence of folds, one eigenvalue remains positive.

The next pitchfork bifurcation takes place when a second real eigenvalue becomes positive

at RaT = 6504.2 (P3) before RaT decreases down to a turning point at RaT = 4896.5 (T4)

[see Fig. 6(d)]. Here a third real eigenvalue becomes positive.

Following the curve to high RaT another pitchfork bifurcation is found at RaT = 11217

(P4), closely followed by another turning point at RaT = 11594 (T5) (see Figs. 6(b) and

(d)). After the two latter steady bifurcations three real eigenvalues remain positive. A new

pitchfork bifurcation is found on the curve at RaT = 11593 (P5) when the third eigenvalue

stabilizes. By decreasing RaT the curve turns up again at RaT = 6496.9 (T6) in another

fold [see Fig. 6(e)], and only a real eigenvalue remains positive. At RaT = 6819.1 (P6) it

becomes negative, and the steady solution becomes stable up to a saddle-node bifurcation

at RaT = 12212 (S7) [see Fig. 6(b)], and the flow loses the stability again. Between P6 and

S7 there is large range of parameters with two stable steady flows (see Fig. 6(a), and the

contour plots below).

Between S7 and the next saddle-node (S8) in which the curve turns to higher RaT there

are two very close pitchfork bifurcations that leave just one positive eigenvalue [see Fig. 6(b)].

The critical pitchfork points are at RaT = 12202 (P7) and RaT = 12157 (P8), and S8 is

placed at RaT = 12153, where the curve stabilizes up to a new saddle-node point placed

at RaT = 11266 (S9) [see Fig. 6(f) and (g)]. The last critical saddle-node found is located

at RaT = 12651 (S10), where the flow becomes stable up to the end of the interval of RaT

computed. Between S9 and S10 there are two pitchfork bifurcations (P9 and P10), which

are extremely close to S9 and S10 respectively [see Fig. 6(g)]. Their positions differ in the

ninth or tenth significant digit, very close to, or at a double-zero point.

The minimum of the curve occurs at RaT = 12896 (C) that fulfills the condition RaT Pr =

RaC Le. In this case there is a conduction state in which Θ = 0, Σ = 0, and the fluid is

at rest. If this condition is kept by increasing simultaneously RaT and RaC from a small

value, the conduction state is stable up to a critical point. This case was studied in [1, 4]
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TABLE III. Values of RaT and number of eigenvalues with positive real part (PRPE) in the

segments between the critical points labeled on the bifurcation diagram of Fig. 6 for RaC = 1750.

The other parameters are Pr = 0.168, Le = 1.238, Se = 0.232, Q = 0.357, and Γ = 8 are kept

constant. B means beginning of the calculations done (RaT = 1).

Segment RaT PRPE Segment RaT PRPE

B-P1 1.000 − 11844 0 T6-P6 6496.9 − 6819.1 1

P1-T1 11844 − 12005 1 P6-S7 6819.1 − 12212 0

T1-T2 12005 − 11804 2 S7-P7 12212 − 12202 1

T2-P2 11804 − 11813 3 P7-P8 12202 − 12157 2

P2-T3 11813 − 11822 2 P8-S8 12157 − 12153 1

T3-P3 11822 − 6504.2 1 S8-S9 12153 − 12662 0

P3-T4 6504.2 − 4896.5 2 S9-P9 12662 − 12662 1

T4-P4 4896.5 − 11217 3 P9-P10 12662 − 12651 2

P4-T5 11217 − 11594 4 P10-S10 12651 − 12651 1

T5-P5 11594 − 11593 3 S10-HB 12651 − 39167 0

P5-T6 11593 − 6496.9 2

with periodic boundary conditions. Consequently, the curve passes through the conduction

state at which Nu = 1 and K = 0 [see Fig. 6(h)]. At this point the global anticlockwise flow

changes to clockwise. A flow evolving cyclically from clockwise to counterclockwise and vice

versa was found in double-diffusive convection in a square enclosure with applied vertical

solute and heat gradients [35], but no similar dynamics has been found in the present study

near the point C. Finally, the steady flow loses stability at RaT = 39167 in a supercritical

HB of period 0.17208, which does not break the symmetry of the steady flow.

Figure 7 shows the contour plots of the solutions on the primary branch to see how the

different stable steady flows develop. Their location is marked with a black cross on the

details of Fig. 6, but the first and the last are out of the window shown. Those stable are

on the solid lines. At low RaT the flow consists of three equidistant vortices. Following

the curve to the right the vortices shrink and the central one weakens and lengthens in

the folds of the loop of Fig. 7(b). The latter splits forming two new vortices of increasing

intensity by decreasing RaT. The four vortices already have the same intensity before T4
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FIG. 6. Idem Fig. 1 for RaC = 1750. (a) Full diagram, and from (b) to (h) details of (a) showing

the bifurcations on the curve of the primary flow and the secondary steady flows in red. TI, with

I = 1, · · · , 6, indicate turning points, SI, with I = 7, · · · , 10, indicate saddle-node bifurcations

of equilibria, PI, with I = 1, · · · , 10, label the pitchfork bifurcations of steady solutions, and C

indicates the conduction state. All the labels belong to the main branch. The crosses indicate the

position of the solutions shown in Figs. 7 to 10.
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[see Fig. 7(d)]. After T4 the four-vortex solutions remain unstable, changing slightly at T5

and T6, and stabilizing past P6. One of these solutions is shown in the first column of the

second row of contour plots and signaled in Figs. 7(d) and 7(e). By following the stable

part of the curve the central vortices weaken and disappear remaining only two boundary

vortices, which are stable between the saddle-nodes S8 and S9 of Figs. 7(f) and 7(g) (see the

upper left corner of Fig. 7(h) for locating the point drawn). Next, the two vortices elongate

and join forming a big vortex near the minimum of the curve (C). Two nearby solutions are

shown there, one at each side of the BBC point [see Fig. 7(h)]. The change of color of the

contour plots indicates the change from the counterclockwise to the clockwise direction of

circulation. Finally, the vortex contracts forming an elongated one in the center of the slot,

which remains stable until the HB. Only two weak vortices above and below the central one

appear when the parameter is very high. The stable branch of center-symmetric periodic

orbits soon becomes unstable in a saddle-node bifurcation at RaT = 39762. The dynamics

of the periodic orbits near the bifurcation point simply consists in the slight intensification

and weakening of the outer vortices. The next transition on the unstable branch of periodic

orbits is a PD bifurcation, with the -1 multiplier decreasing very fast when RaT decreases.

Figure 8 shows the superposition of the contour plots of the concentration and the velocity

field at the same points as those shown for the streamfunction. Like for the temperature (not

shown) the fluid is pulled from the sides following the vortices so that the concentration inside

the cavity form a sinusoidal profile, which depends on the number, position and strength of

the vortices. The concentration is almost a linear x-function when the vortices are confined

near the horizontal sides.

The secondary curves are plotted in red color. In all cases they join pairs of pitchfork

points. The curves joining P1-P2, P4-P5, and P3-P6 are always unstable, and the bifurca-

tions along them are the folds shown in Figs. 6(c), (b) and (d) respectively. The curves P7-P8

and P9-10 undergo saddle-node points [see Figs. 6 (f) and (g)]. The difference between them

is the location of the pitchfork bifurcations. In the second case the curve goes practically

from S9 to S10. The first saddle-node on the secondary curves stabilizes the fluid, and the

second destabilizes it. Therefore, in two small regions the steady antisymmetric flows are

stable. Specifically, in the first case the flow is stable between RaT = 12185, which is the

first saddle-node on the red curve after P7, and RaT = 12188, which is the second before

P8. In the second case, the saddle-nodes on the secondary curve giving the range of stability
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FIG. 7. From left to right and from top to bottom, sequence of contour plots of the streamfunction

of the steady solutions following the primary branch of Fig. 6(a), starting from the left. The first

and last plots, corresponding to RaT = 1000 and 30000 are out of the window of parameters shown

in that figure. Both solutions are stable. The location of the rest is marked with a cross on the

detailed figures at 10000, 11844 (both stable), 11804, 11822, 10000, 5273.3, 10100, 7587.4, 6924.2,

12207 (the last two stable), 12167, 12533 (stable), 12653, 12895, 12900 and 15076 (the last three

stable).

are located at RaT = 12651 and RaT = 12662.

Figure 9 shows a sample of the steady states of broken symmetry found at the pitchfork

bifurcations. The locations of the selected points are signaled on the details of Fig. 6 in

red color on the red secondary branches. In this case the fluid mainly forms four vortices

of different intensity and distance between them because most of the pitchfork bifurcations

are placed in segments where the primary branch has four vortices. The last two plots,

which belong to stable solutions, (see Figs 7(f) and (g)) are set on a segment connecting
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FIG. 8. Idem Fig. 7 for the concentration, and superposed velocity field (arrows).

two turning points of the secondary branches. Notice that the last corresponds to a branch

starting in a point where the primary flow has just two small vortices at top and bottom,

therefore when the flow becomes asymmetric one of the two vortices weakens, and can even

disappear.

Figure 10 shows the superposition of the contour plots of the concentration and the

velocity field at the same points as those of the streamfunction. As before, the velocity field

determines the shape of the concentration and temperature profiles, asymmetric in these

cases.

C. Dynamics far from the BBC

The fluid starts oscillating at lower RaT than for the preceding case when RaC is increased,

and the oscillations are stable for increasingly larger intervals of RaT. Figure 11(a) shows
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FIG. 9. Contour plots of the streamfunction of steady solutions with broken symmetry on the

secondary branches of Fig. 6. Their locations are marked with a red cross in the details of the

figure at RaT = 11824 (P1-P2), 10714 (P3-P6), 11705 (P3-P6), 11208 (P4-P5), 11458 (P4-P5),

11537 (P4-P5), 12188, (P7-P8) 12655 (P9-P10). The last two belong to stable solutions.

FIG. 10. Idem Fig. 9 for the concentration, and superposed velocity field (arrows).

the bifurcation diagram of the SS (in black) and PO (in red) for RaC = 2250, 3000 and 4000.

At 2250 the fluid undergoes a first supercritical HB at RaT = 2595.1, which maintains the

center symmetry of the flow, and a second subcritical HB at RaT = 4984.2 when the unstable

pair of eigenvalues crosses back the imaginary axis. Consequently, the steady flow regains

stability. A stable periodic orbit emerges from the first point that reconnects with the steady
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FIG. 11. (a) Idem Fig. 1 for RaC = 2250, 3000 and 4000, from bottom to top. (b) The correspond-

ing period of the oscillations, from top to bottom.

branch at the second critical point. The Nusselt number of the oscillations is almost that of

the steady flow, as can be seen in the figure. The same holds for K. At RaT = 14033 there

is a third HB out of the region shown that destabilizes the steady branch.

The bifurcation diagram for the onset of the oscillations for the other RaC considered

is similar to that of RaC = 2250, however the first HB is subcritical and takes place at

RaT = 4955.8 for RaC = 3000, so the periodic flow is initially unstable. The critical

eigenfunction also maintains the center symmetry. They become stable at RaT = 3004.8 in

a turning point, giving rise to the coexistence of stable steady and periodic flows in a wide

range of RaT. As before, the loop closes on the branch of SS at RaT = 12290, where the

steady solutions recover the stability up to RaT = 16719 when a HB breaking the symmetry

of the SS takes place. There is a fourth HB at RaT = 19923, which gives rise to a branch of

unstable periodic orbits (not continued).

The bifurcation diagram for RaC = 4000 only differs of that found for RaC = 3000 in the

second HB that now is slightly supercritical, so the oscillations destabilize in a saddle-node

bifurcation out of the range of Fig. 11. The first subcritical HB is found at RaT = 9653.2,

and critical eigenfunction maintains the center symmetry of the SS. The first saddle-node is

located at RaT = 5423.8, where the branch of PO becomes stable up to the second turning

point located near RaT = 19926, and the loop closes at RaT = 19889, where the SS become

stable again. In the three cases the steady branch has turning points at larger RaT. The

period of the oscillations for the three cases is shown in Fig. 11(b). High values of RaC tend

to stabilize the symmetric oscillations, and to decrease their periods.

Figure 12(a) shows the bifurcation diagram for RaC = 4000, including the branch of PO
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FIG. 12. (a) Idem Fig. 1 for RaC = 4000. (b) detail of (a) showing the second fold on the second

branch of periodic orbits at the end of the range of parameters calculated. (c) and (d) period of

the PO versus RaT.

arising at RaT = 21558 when the SS recover the stability . This bifurcation breaks the center

symmetry giving rise to a branch of stable asymmetric PO, which in turn loses stability in

a Neimark-Sacker (NS) bifurcation near RaT = 24409. Quasiperiodic flows emerge from

this point. The comparison of the new frequency of these solutions given by the Fourier

spectra of temporal evolutions, taking as initial condition the unstable PO, with that given

by the critical multiplier, indicates that the bifurcation is supercritical. The similarity of the

contour plots and of the amplitude of the oscillations before and after the NS also points in

this direction. The unstable curve of periodic solutions shows a first fold at RaT = 25019,

and a second at RaT = 24563 [see Fig. 12(b) and (d)]. At these points two real multipliers

cross forward the unit circle consecutively. The branch continues being unstable up to the

last PO computed, where the leading complex multiplier reaches modulus O(104), so it is

unlikely that they recover the stability at larger RaT.

Figure 13 shows the contour plots of the streamfunction of a steady solution, and some

equidistant snapshots in a period of a stable center-symmetric periodic orbit after the first

HB. The three vortices of high intensity remain visible up to the end of the interval shown for
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FIG. 13. Idem Fig. 2 for RaT = 4991.6 at left, and for the periodic orbit at RaT = 13973, with

T = 0.17197 at right. RaC = 4000.

both the SS and the PO. Similar dynamics was found for RaC = 2250 and for RaC = 3000.

The oscillations consist in the intensification and enlargement of the vortices, followed by

the synchronous recovering of the initial size and intensity. This effect is more pronounced

in the central one. In this case the vortices do not travel. At higher RaT in the unstable

part of the steady branch (not shown) new vortices appear as happens in Fig. 7 but the

fluid never stabilizes.

When the symmetry is broken at RaT = 21558 (see Fig. 14) the dynamics of the oscil-

lations consists in the appearance of a weak vortex between the upper and central vortices

and below the lower during a semi-period, and between the lower and central vortices and

above the upper during the second semi-period. In this way, when the central vortex goes

up, the others go down and vice versa. This gives rise to a displacement of the vortices up

and down that generates a vertical traveling wave that retains the following spatio-temporal

symmetry

(ψ,Θ,Σ)(t, 1− x,Γ− y) = (ψ,−Θ,−Σ)(t + T/2, x, y), (31)

which means

(u, v)(t, 1− x,Γ− y) = −(u, v)(t+ T/2, x, y). (32)

For these waves (symmetric cycles) advancing half a period in time is equivalent to applying
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FIG. 14. Idem Fig. 2 for RaT = 21335 at left, and for the periodic orbit at RaT = 24284, with

T = 0.51413 at right. RaC = 4000.

S. This property allows to halve the computational cost of the time integration during the

continuation process, and the time needed to obtain these type of branches.

IV. DISCUSSION

The mechanisms leading to the onset of periodic regimes from the equilibria, can be

established from the kinetic energy balance for the perturbation, obtained from the momen-

tum equation. The details for a pure fluid and a binary mixture contained into impermeable

sides can be found in Refs. [12, 36]. The growth rate of the eigenvalue at the HB points

is zero, then the spatial average of the kinetic energy equation for the perturbation, with

non-slip boundary conditions, is just a balance between the rate of kinetic energy generated

by the shear of the steady field,

Ksh = ℜ

(

−

∫

Ω

v′∗i v
′
j

∂vi
∂xj

dΩ

)

, (33)

by the work done by the thermal buoyancy per unit time,

KbT = ℜ

(

RaT Pr

∫

Ω

v′∗i T
′δi2 dΩ

)

, (34)

by that done by the solutal buoyancy per unit time,

KbC = ℜ

(

−RaC Le

∫

Ω

v′∗i C
′δi2 dΩ

)

, (35)
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TABLE IV. Rate of the kinetic energy generated at the transition from SS to PO by the shear,

Ksh, by the buoyancy forces, KbT and KbC , and dissipated, Kds, by the perturbations at the

bifurcation points. At the transition the four terms are in balance. The rest of parameters are

Pr = 0.168, Se = 0.232, Le = 1.238 and Q = 0.357.

RaC 10−3 N Ksh KbT KbC Kds

1.0 2.8587×103 0.035647 0.0021495 -0.040859 -0.037755

1750 22.3813 1.23602 -0.040280 -0.10159 -1.09417

2250 1.15338 0.55983 -0.032886 0.20697 -0.73392

2250 2.21518 0.52407 -0.068972 0.22935 -0.68443

2250 6.23665 0.61113 0.086869 -0.018808 -0.67920

3000 1.65194 0.65447 -0.054785 0.23967 -0.83938

3000 4.09664 0.53887 -0.17725 0.32218 -0.68380

3000 5.57284 0.75114 0.051175 -0.020046 -0.78227

4000 2.41331 0.77173 -0.091016 0.27764 -0.95840

4000 4.97227 0.59529 -0.25290 0.39484 -0.73708

4000 5.38950 0.86585 0.055282 -0.030462 -0.89067

and the rate of energy dissipated by viscosity,

Kds = ℜ

(

−2Pr

∫

Ω

e′∗ije
′
ij dΩ

)

, (36)

because the rate of change of the total kinetic energy

K =

(
∫

Ω

1

2
v′∗i v

′
idΩ

)

, (37)

of the perturbation is zero. In Eqs. (33)-(35) vi are the components of the velocity of the

steady field at the bifurcation points, v′i those of the critical eigenfunction, T′ and C′ the

temperature and concentration of the perturbation, and * means complex conjugation. In

Eq. (36), e′ij means the strain rate tensor of the perturbation. The contribution of these

terms to the transitions of the steady flow, and the change of this balance for the different

N studied is given in Table IV. It shows that for the mixture studied the shear stresses are

the main contributors to the instability of the steady flow, and that both buoyancies can
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contribute to stabilize or destabilize the fluid depending on the type of bifurcation and the

ratio of Rayleigh numbers. It seems that the thermal buoyancy does not contribute to the

beginning of the oscillations, but it helps to dissipate the kinetic energy of the velocity field

when the steady flows regain stability at large RaT for large enough RaC (compare KbT of

the first row with the seventh and tenth in the table).

As said in the introduction, the stability analysis of the steady flow of binary mixtures

in vertical channels showed that, in general, it can become unstable to thermal, solutal, or

hydrodynamic wave perturbations. However, in the case of gaseous mixtures with positive

or slightly negative Se only the last type of waves destabilize the fluid, and for Se . −0.5

the instability is mainly due to the other two types [9]. This result is in agreement with

the above calculations, and also in agreement with other numerical analyses [12]. On the

other hand, the absence of thermal instability [10] in the range of Se and Pr studied here

and in [12] (although Le is much higher) might also be connected with the large amount

Ksh stored in these mixtures.

By adding the Dufour coupling to the energy equation the off-diagonal term Le2QSe

NPr
∆Σ is

included. The sign of this term depends on the signs of Se and N . Both of them are positive

here, so it behaves as a positive forcing, which increases when the Rayleigh ratio decreases

if the rest of parameters remain frozen. As a consequence of this increase the secondary

time periodic branch of solutions becomes subcritical. Moreover, although there is a lack of

systematic studies on the stability of the periodic orbits bifurcated from the steady states

either with or without Soret and/or Dufour effects, it seems that the influence of the latter

affects the stability of the periodic waves of the gaseous mixtures, since (as far as we know)

the transition from periodic oscillations to steady solutions [see Fig. 11(a)], and the cascade

of period-doubling bifurcations found here was not found in other numerical studies with

other configurations [2, 3, 12]. However, steady overturning convection was already observed

in several experiments, for instance in annular containers [37].

Ghorayev and Mojtabi studied thermosolutal convection (without cross couplings) in a

rectangular cavity of Γ = 7 in the BBC [1]. They found four types of localized steady

states, two of them with central symmetry, while the other two where asymmetric. The

origin of the symmetric states was explained in Ref. [4] within the framework of the snaking

theory. According to their work, the center-symmetric localized states arise from secondary

transcritical bifurcations of the primary branches (spatially periodic states) or at the saddle-
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node bifurcations where the primary branches turn to larger values of the parameter.

The calculations presented for RaC = 1750 help to understand the origin of the localized

asymmetric solutions with just one vortex near the top of the cavity and those asymmetric

with two vortices [1]. This is because this case crosses the buoyancy balanced hyperplane

transversely, so around this point some of the snaking characteristics still remain (see Fig. 6

around RaT = 1.28× 103). The asymmetric states come from pitchfork bifurcations of the

steady primary flow in the snaking part of the branch near the saddle-node bifurcations.

The type of asymmetry depends on the structure of the flow at the bifurcation point. Notice

that this hyperplane separates the zones of clockwise and counterclockwise rotation. Smallest

perturbations of the BBC are expected to keep the full snaking region [4, 5].

V. CONCLUSIONS

The dynamics caused by lateral thermal and solutal gradients, including the Soret and

Dufour effects in a He2-Xe mixture has been analyzed. It was found that it is very different

depending on the relation between RaT and RaC, when the rest of the parameters are fixed.

There is a variety of stable extended and localized steady states that was not found in the

absence of the externally applied solutal gradients [12]. Symmetric flows with one, two,

three or four vortices, and asymmetric solution with two or four vortices were found near

the BBC point. However, far from it the center-symmetric oscillations replace the steady

states at low RaT, although the latter restabilize at higher RaT.

The onset of the stable oscillatory dynamics, via HBs or after saddle-nodes of PO, is

located at RaT = 2858.7, 39167, 2595.1, 3004.8 and 5423.8 for RaC = 1.0, 1750, 2250, 3000

and 4000, respectively, so large solutal gradients strengthen the steady dynamics and delay

the beginning of the oscillations. They appear at a RaT about one order of magnitude

greater than for fluids near the BBC scenario. The interval of stable steady primary flows

after the second HB becomes smaller when RaC is increased (see Figs. 11 and 12), then by

slightly increasing this parameter a leading double-Hopf bifurcation on the branch of steady

states could be determined. The dynamics around this point could differ drastically from

that found here, including the local onset of temporal chaos.

The oscillations give rise to center-symmetric vertical waves for negligible solutal gradi-

ents, and the transition to complex temporal dynamics takes place through a Feigenbaum
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cascade, while for larger solutal gradients the symmetric oscillations generate standing waves,

and quasiperiodic flows leading to temporal chaos were found bifurcating from the asym-

metric waves that arise at larger RaT.

The study of the BBC in gases including the Soret coupling is ongoing.

Appendix: Variational equations

When p = RaC is used, the variational equations for (ψ1,Θ1,Σ1) and δRa
C are

∂t∆ψ1 + J(∆ψ1, ψ) + J(∆ψ, ψ1) =Pr∆2ψ1 − RaTPr ∂xΘ1 + RaCLe ∂xΣ1−

− δRaCLe(1− ∂xΣ) (A.1)

∂tΘ1 + J(Θ1, ψ) + J(Θ, ψ1) =(1 + LeQSe2)∆Θ1 +
Le2QSe

NPr
∆Σ1+

+ δRaC
Le2QSe

RaTPr
∆Σ + ∂yψ1, (A.2)

∂tΣ1 + J(Σ1, ψ) + J(Σ, ψ1) =Le∆Σ1 +NPr Se∆Θ1 − δRaC
Pr SeN

RaC
∆Θ+ ∂yψ1.

(A.3)

When p = Pr is used, the equations for (ψ1,Θ1,Σ1) and δPr are

∂t∆ψ1 + J(∆ψ1, ψ) + J(∆ψ, ψ1) =Pr∆2ψ1 − RaTPr ∂xΘ1 + RaCLe ∂xΣ1+

+ δPrRaT(1− ∂xΘ) + δPr∆2ψ (A.4)

∂tΘ1 + J(Θ1, ψ) + J(Θ, ψ1) =(1 + LeQSe2)∆Θ1 +
Le2QSe

NPr
∆Σ1−

− δPr
Le2QSe

NPr2
∆Σ+ ∂yψ1, (A.5)

∂tΣ1 + J(Σ1, ψ) + J(Σ, ψ1) =Le∆Σ1 +NPr Se∆Θ1 + δPrNSe∆Θ + ∂yψ1. (A.6)

When p = Le is used, the equations for (ψ1,Θ1,Σ1) and δLe are

∂t∆ψ1 + J(∆ψ1, ψ) + J(∆ψ, ψ1) =Pr∆2ψ1 − RaTPr ∂xΘ1 + RaCLe ∂xΣ1−

− δLeRaC(1− ∂xΣ) (A.7)

∂tΘ1 + J(Θ1, ψ) + J(Θ, ψ1) =(1 + LeQSe2)∆Θ1 +
Le2QSe

NPr
∆Σ1+

+ δLeQSe2∆Θ+ δLe
2LeQSe

NPr
∆Σ + ∂yψ1, (A.8)

∂tΣ1 + J(Σ1, ψ) + J(Σ, ψ1) =Le∆Σ1 +NPr Se∆Θ1 + δLe∆Σ+ ∂yψ1. (A.9)
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The above variational systems with their boundary conditions maintain the center symmetry

of Eqs. (13)-(15) together with conditions (16), (11) and (12).
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[15] W. Hort, S. J. Linz, and M. Lücke, “Onset of convection in binary gas mixtures: Role of the

Dufour effect,” Phys. Rev.A 45, 3737–3747 (1992).
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