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Two-dimensional nonlinear convection in a vertical rotating cylindrical annulus with
flat adiabatic stress-free lids, heated from the inside and with radial gravity, is numerically
analyzed for a low value of the Prandtl number, σ = 0.025. When the Rayleigh number
exceeds a critical value, the conduction state becomes unstable and steady columns parallel
to the axis of rotation, and characterized by a finite integer azimuthal wavenumber, n, are
the preferred form of convection at the onset for large rotation rates. Despite the presence of
rotation, equations retain the O(2) symmetry for z-independent columnar solutions. Both by
using continuation techniques and by a time-integration of the evolution equations, primary
nonlinear solutions are obtained for a moderate value of the radius ratio, and are found to
give way to periodic solutions in the form of direction reversing travelling waves. The new
solution keeps the same wavenumber and breaks the reflection symmetry of the columns.
As a consequence, an oscillatory mean flux appears that decreases the efficiency of the heat
transport in the radial direction. By further increasing the Rayleigh number, a transition
from the oscillatory to a chaotic flow takes place. This chaotic state is reached via a pitchfork
bifurcation that breaks the rotation symmetry R2π/3 of the orbit, followed by a subcritical
Neimark-Sacker bifurcation that gives rise to a quasi-periodic solution. Finally, the invariant
torus breaks up and a chaotic regime appears.

§1. Introduction

Geophysical and astrophysical processes, such as fluid motions in the atmo-
spheres of major planets and in planetary fluid cores, have motivated numerous
studies of thermal convection in rotating systems. These large-scale motions, which
are driven by temperature gradients, all have in common the spherical geometry of
the convective shell, on one hand, and the strong effect of rotation in the convective
system, on the other. The key role played by the Coriolis force makes the dynamics
of rotating systems surprisingly different from that of the nonrotating ones.

A global study of these phenomena using models that realistically reproduce
the conditions of the physical system is unapproachable. One of the main difficul-
ties arises from the spherical geometry, which makes the orientation of gravity and
rotation vary with latitude. This fact leads to expensive fully three-dimensional
computations; it makes linear and weakly nonlinear analytical solutions very hard to
obtain and experimental studies difficult to carry out, since such a convective system
is extremely complicated to reproduce in the laboratory due to the presence of verti-
cal gravity. In spite of these difficulties, some numerical works dealing with spherical
convection have been done during the last decade (see, for instance, 1) and 2)), though
they are limitted to some particular aspects of the dynamics. It is thus desirable
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to consider simpler convection systems that provide a better understanding of the
nature of instabilities in rotating systems.

The dynamics in rotating convective systems is mainly influenced by the relative
orientation of gravity, temperature gradient and rotation vectors. In the case that the
three vectors are parallel, some of the most extensively studied systems are those
formed by a rotating plane layer or a vertical cylinder heated from below, which
are used as a model of convection in high latitudes of spherical shells. For other
latitudes, among the systems in which gravity, temperature gradient and rotation
do not have the same direction, much attention has been paid to thermal convection
driven by radial heating in an annulus rotating uniformly about its axis, and to
β-plane convection. The dynamics resulting from a destabilizing thermal gradient
perpendicular to rotation depends fundamentally on the direction of gravity.

In the present paper, we consider a convective system formed by a cylindrical an-
nulus rotating about its axis of symmetry with radial gravity and outwards heating,
which is an example of a barotropic problem. In a previous work, the linear stability
of the conduction state, either with stress-free 3) and no-slip 4) boundary conditions
for the velocity on the lids of the annulus, was studied. It was shown that in the
first case there is always a moderate rotation rate above which steady z-independent
two-dimensional columns parallel to the axis of rotation are the preferred solutions
at the onset of convection. These solutions are characterized by a fixed azimuthal
wavenumber determined by the radius ratio of the annulus. For large rotation rates,
a geostrophic balance is achieved in this regime, with the Coriolis force being ex-
actly balanced by a pressure gradient, and the solution is known as Taylor columns.
When no-slip boundary conditions are considered, convection is found to be nearly
two-dimensional, with departures from two-dimensionality confined to narrow layers
at the ends of the annulus in the limit of rapid rotation, and the pattern slightly
drifts. Similar results have been obtained in the case of an annulus heated by a uni-
form distribution of heat sources 5), 6). The present study will focus on the nonlinear
analysis of this z-independent columnar solution obtained in the stress-free case.

Since the constraint of rotation forces the motion to remain two-dimensional, we
have studied numerically the stability of the Taylor columns by considering pertur-
bations independent of the axial coordinate. Indeed, there is experimental evidence
that the two-dimensional nature of the columns is preserved up to large Rayleigh
numbers for large rotation rates 7). A study of the nonlinear regime in a low rotating
annulus should include three-dimensional disturbances, since they will very probably
dominate the dynamics of the system, as can be inferred from the stability analysis
of a two-dimensional solution in a low rotating annulus in the limit η → 1 considered
in 8). Both the results obtained by a weakly nonlinear analysis based on amplitude
equations, and the numerical results show that the convection rolls become unstable,
giving rise to a three-dimensional structure after either a cross-roll or a subharmonic
varicose instability takes place.

Moreover, the problem of the stability of the two-dimensional columns in a ro-
tating annulus provides a simple fluid dynamic system which is highly attractive
from the point of view of bifurcation theory, as the undergoing bifurcations can
be described in terms of symmetry breaking instabilities. Although the rotation
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of the annulus breaks the reflection symmetry, turning the O(2) symmetry of the
nonrotating annulus into a SO(2) symmetry 9), when the two-dimensional solution
is considered, equations retrieve the reflection invariance and the system becomes
O(2)-symmetric. Symmetries affect the nature of instabilities in a system. The type
of secondary bifurcations that a solution which has broken the rotation symmetry in
a O(2)-symmetric system may undergo is known. If the azimuthal structure of the
primary flux is mantained, according to bifurcation theory 10), 11) there are four pos-
sible codimension one secondary bifurcations. The new solution can either keep the
reflection symmetry of the basic solution or break it. In the first case, the bifurcation
can be a saddle-node or a Hopf bifurcation, giving rise to an exchange of stabilities
or to a standing wave without any spatial drift. In the second case, it can either
be a pitchfork or a Hopf bifurcation, leading to travelling waves, which have a drift
speed that increases with increasing bifurcation parameter, or to direction reversing
travelling waves, a pattern that alternatively drifts back and forth 12). Obviously,
if the secondary solution changes the wavenumber of the primary flux the type of
generic secondary bifurcation and the transition to chaos can be different.

The remainder of the paper is organized as follows. After presenting the mathe-
matical formulation of the problem and describing the numerical techniques used to
solve it in Sec. 2, the results are presented and discussed in Sec. 3 for a low value of
the Prandtl number, σ = 0.025. The onset of the first instability and the secondary
solutions in the form of direction reversing travelling waves are analyzed in 3.1, while
the transition route to chaos exhibited by the system is detailed in 3.2.

§2. Mathematical formulation and numerical methods

We consider the problem of nonlinear convection in a cylindrical annulus of
radius ratio η = ri/ro, where ri and ro are the inner and outer radii, rotating about
its axis of symmetry, filled with a Boussinesq fluid of thermal diffusivity κ, thermal
expansion coefficient α and kinematic viscosity ν. The inner and outer sidewalls are
mantained at constant temperatures Ti and To, with Ti > To, and the gravitational
acceleration is taken radially inwards, g = −gêr, and is assumed to be constant.
With upper and lower horizontal boundaries, there exists a basic conduction state

Tc(r) = Ti +∆T
ln r/ri
ln η

, (2.1)

with ∆T ≡ Ti − To, in which heat is radially transferred towards the outer cylinder
by thermal conduction without macroscopic motions of the fluid. The stability of
the conduction state is described by the Navier-Stokes continuity and heat equations
which, once nondimensionalized by using the gap width d = ro − ri as lengthscale,
d2/κ as timescale and ∆T as temperature scale, take the form

σ−1
(

∂tu + (u · ∇)u
)

= −∇p + ∇2u +RaΘêr − Ta1/2êz × u, (2.2a)

∇· u = 0, (2.2b)

∂tΘ + u · ∇Θ = −
u

r ln η
+∇2Θ. (2.2c)
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Here, u = (u, v, w) is the velocity field in cylindrical coordinates and Θ denotes the
departure of the temperature from its conduction profile, T = Θ+Tc. The Rayleigh,
Prandtl and Taylor numbers are defined by

Ra =
α∆Tgd3

κν
, σ =

ν

κ
, Ta = 4

(

Ω

ν/d2

)2

.

The presence of the Coriolis term in the equations breaks the reflection symmetry
in any vertical plane containing the axis of rotation, R1. Therefore, the rotating
cylindrical annulus is invariant under rotations, Rθ, and under reflections in the
equatorial plane, R3, its group of symmetry being SO(2)× Z2, where SO(2) is the
group of rotations around the z-axis and Z2 the group generated by R3, while the
symmetry of the nonrotating annulus is O(2)×Z2, where O(2) is the group generated
by rotations around the z-axis and the reflections R1.

We are interested in studying the nonlinear evolution of the two-dimensional
solution. For this z−independent solution there is no vertical velocity, w = 0. The
Coriolis term can be written as a gradient and introduced in the pressure term, and
the equations reduce to

∂tu = −∂rp+ σ
[

∇2u
]

r
+ σRaΘ −

[

(u · ∇)u
]

r
, (2.3a)

∂tv = −
1

r
∂θp+ σ

[

∇2u
]

θ
−

[

(u · ∇)u
]

θ
, (2.3b)

∂tΘ = ∇2Θ −
u

r ln η
− u · ∇Θ, (2.3c)

∇ · u = 0. (2.3d)

They will be solved with no-slip and perfectly conducting boundary conditions

u = θ = 0 (2.4)

on the lateral walls, ri = η/(1−η) and ro = 1/(1−η). It is important to notice that,
due to the absence of the Coriolis term, equations (2.3) become invariant under
reflections in vertical planes. So, when the columnar solution is considered, the
system retrieves the O(2) symmetry of the nonrotating annulus.

To integrate the nonlinear equations, we have developed a semi-implicit time-
splitting spectral code which allows us to find any time-dependent stable solution
of the system in an efficient way. In particular, following 13), we have used a mixed
stiffly-stable second order time-accurate scheme, implicit for the linear terms and
explicit for the nonlinear terms. The variables have been expanded in terms of
Chebyshev polinomials, Tl(r), for the radial dependence, and Fourier expansions for
the periodic direction

u(r, θ, t) =
∑

l,n

ul,n(t)Tl(r)e
inθ.

An improved boundary condition has been introduced to minimize the effect of
erroneous numerical boundary layers induced by splitting methods 13). The details
can be found in 14).
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The study of the dynamics has been completed with the use of a continuation
code 15) in order to find the stationary nonlinear columns when any parameter of
interest, such as the Rayleigh number, is varied. It is possible to follow any stationary
branch of solutions with a high precision, even if they are unstable, and to locate
the different bifurcations that occur. In this case, to solve the equations we have
used a technique based on velocity potencials. As in the time integration scheme,
the variables have been expanded in terms of Chebyshev polynomials and Fourier
expansions. In this formulation the velocity field is written as

u = f êθ +∇× Ψ êz,

where Ψ = Ψ(r, θ) is the streamfunction, which does not contain the zero-mode in
the Fourier expansion, and f = f(r) is related with the n = 0 mode. The nonlinear
equations to be solved are

∂tf = σ∇2
−f + Pθ

[

∇2
hΨ

(1

r
∂θΨ

)

]

, (2.5a)

∂t∇
2
hΨ = σ∇4

hΨ + (1− Pθ)
σRa

r
∂θΘ + (1− Pθ)J(Ψ,∇

2
hΨ) + (2.5b)

+∇2
−f

(1

r
∂θΨ

)

− f
(1

r
∂θ∇

2
hΨ

)

, (2.5c)

∂tΘ = ∇2
hΘ −

1

r2 ln η
∂θΨ + J(Ψ,Θ)− f

(1

r
∂θΘ

)

, (2.5d)

where ∇2
− = ∂r(∂r +1/r). Pθ is the projection operator that extracts the zero-mode

in a Fourier expansion,

PθF =
1

2π

∫ 2π

0
F (r, θ, z, t)dθ,

and J is the jacobian in cylindrical coordinates.

§3. Numerical results and discussion

The results we are going to present have been obtained with a moderate value of
the radius ratio, η = 0.3. As for the value of the Prandtl number of the fluid, which
is expected to influence greatly the nonlinear behaviour, we have chosen σ = 0.025,
the Prandtl number of mercury.

3.1. Primary nonlinear solutions and secondary bifurcation

As a first step, we have carefully checked both the continuation and time-
integration codes, which reproduce accurately the supercritical pitchfork bifurcation
of the system. Irrespective of the value of the Prandtl number, the primary bifurca-
tion takes place at a critical Rayleigh number Ra1

c = 1799.8, and the most unstable
mode at the onset of convection is characterized by an azimuthal wavenumber n = 3.
This primary flux, which is a nonaxisymmetric solution, breaks the rotation symme-
try, Rθ, of the basic state but, as it is invariant under reflections in vertical planes
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between the columns, R1, and under the rotation R2π/3, its symmetry group is D3.
Figure 1 shows the streamfunction and the Fourier coefficients averaged in the radial
direction for a nonlinear column.

0 3 6 9 12 15 18 21 24

v

Fig. 1. Steady nonlinear column. The contour plot represents the streamfunction and the
bar chart shows the Fourier coefficients of the azimuthal velocity averaged in the radial
direction. Ra = 2500.

Once the nonlinear steady columns bifurcating from the conduction state have
been computed, the critical Rayleigh number for which these columns become unsta-
ble and the character of the secondary bifurcation must be determined. The numer-
ical linear stability analysis of the columnar solution shows that a secondary Hopf
bifurcation takes place at a Rayleigh number Ra2

c = 4114, the imaginary part of the
critical eigenvalue being λI = ±23.5. The nonlinear steady columns become unstable
and they are found to give rise to direction reversing travelling waves (DRTW), which
is a pattern that alternatively drifts back and forth in the azimuthal direction. The
new solution keeps the same azimuthal wavenumber of the steady columns, n = 3,
and is characterized by the appearance of a mean flow in the azimuthal direction
that breaks the reflection symmetry of the columns.

Figure 2 shows the change in the structure of the columns after the secondary
bifurcation. Close to the bifurcation point, the pattern oscillates back and forth
with a frequency given by the imaginary part of the eigenvalue whose real part
becomes zero. The oscillation in the azimuthal direction can be appreciated in the
shadowgraph (right), which represents the evolution in time (y-axis) of temperature
and its θ-dependence (x-axis). Clearly, the DRTW breaks the reflection symmetry
with respect to vertical planes between the columns. The bar chart (lower-left)
corresponds to the Fourier spectrum of the azimuthal velocity, v, averaged in the
radial direction. After the bifurcation, the θ-independent mode of v, f , begins to
contribute to the solution. The dependence of f (mean flow) on the radial coordinate,
x, in four time instants, t = 0, T/4, T/2, 3T/4, is also shown in the figure (top-
left). As the area enclosed by each curve equals the instant net mass flow, it can be
inferred from the plot that there exists an oscillatory mass transport in the azimuthal
direction. That is, the instant net mass flow is non-zero, though it vanishes when
averaged in a whole period.

Figure 3 shows the dependence of the Nusselt number, averaged in time for the
periodic solution, on the Rayleigh number. In our problem, the Nusselt number is
a measure of the radial heat transport by convection, and has been computed in
the outer cylinder. After the secondary bifurcation, there is a significant decrease in
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Fig. 2. Direction reversing travelling wave. (top-left) Four snapshots showing the radial
dependence of the n = 0 mode of the azimuthal velocity, f (mean flow). (lower-left)
Fourier coeficients averaged in the radial direction. (right) Shadowgraph showing the
evolution of temperature in time for a fixed value of the radial coordinate, r = (r1+r2)/2.
Ra = 5000.

the slope of the curve. This decrease in the efficiency in the radial heat transport is
caused by the appearance of the oscillatory mass flow in the azimuthal direction.

The frequency of any periodic solution far from the bifurcation point can be
precisely determined by computing the Fourier spectra of the time series. It is
obtained that the value of the frequency grows as the Rayleigh number increases.
Just in the bifurcation point, for a Rayleigh number Ra = 4114, the frequency is
f = 3.74, while for a Rayleigh number Ra = 6500, the Fourier spectrum shows that
the solution still remains periodic, the frequency of oscillation being f = 5.15.

3.2. Transition to a chaotic regime

As can be seen in figures 1 and 2, the Taylor columns and the DRTW preserve the
Z3 invariance imposed by the chosen radius ratio, Z3 being the cyclic group generated
by the rotation R2π/3. Moreover, the periodic solution is an S-cycle, i.e. applying a
reflection to the solution equals an evolution in time of T/2, so only the multipliers
µ = 1 and µ = e±iθ0 of the associated Poincaré map can appear (see 16) for details).
Between Ra = 6950 and Ra = 7000 a tertiary spatial subharmonic bifurcation is
identified in the system. We have carefully checked that at the tertiary bifurcation
there is no new frequency appearing in the Fourier spectra of the time series, so
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Fig. 3. (left) Nusselt number as a function of the Rayleigh number and (right) numerical
values of the Nusselt number corresponding to some steady and periodic solutions.

the new solution remains periodic and, accordingly, the unit circle is crossed by the
real multiplier. Figure 4 displays the new periodic orbit very far from transition, for
Ra = 12300. The bar charts show that although the main wavenumber n = 3 and
its harmonics are still dominant, all the modes are now nonzero. The shadowgraph
of the temperature at a fixed radius clearly proves that, as a result, the spatial
Z3 invariance of the columns is broken. The new pattern of convection consists of
three oscillating columns like those in the DRTW, but with a different waveform,
amplitude and phase. The waveform is nearly the same in two of them, but the third
one is meandering. A similar cell pattern can be found when a fixed point bifurcates
with trihedral D3 symmetry (see 17)). In our case, however, the phase shifts from
one to the next are not exactly 2π/3 or π.

When Ra = 12330, the system undergoes a fourth bifurcation. The Poincaré
section of figure 5 (right) shows that an invariant two-dimensional torus appears
through a subcritical Neimark-Sacker bifurcation. It can be inferred from the Fourier
spectrum of the time series corresponding to the Nusselt number included in figure 5
(left) that the new frequency in the system is very small, f2 = 0.815, in comparison
with the value of the main one, f1 = 14.519. Notice that the main frequency f1

associated to the time series of the Nusselt number is twice the frequency of the
velocity field because this number is an azimuthal average of a temperature that
bifurcates from an S-cycle.

The quasi-periodic solution turns out to be stable in a small interval of the con-
trol parameter. A moderate increment in the Rayleigh number produces a great
change in the dynamics of the system, the solution being already chaotic for a
Rayleigh number Ra = 12000. The Fourier spectrum of the time series of the solu-
tion and its Poincaré section indicate that the bifurcation giving rise to this regime
introduces another frequency in the system. Chaos is thus probably reached after
five bifurcations, four of them well described in literature.
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Fig. 4. (left) Shadowgraph showing the evolution of temperature in time (y-axis) for a fixed
value of the radial coordinate, r = (r1 + r2)/2, and (right) azimuthal spectra of temper-
ature, T , and azimuthal velocity, v, for a solution corresponding to Ra = 12300.
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Fig. 5. (left) Fourier spectrum of the temporal series and (right) Poincaré section of the
quasi-periodic orbit. The solution corresponds to Ra = 11500.

The transition route to chaos that this convective system exhibits depends
strongly on the Prandtl number. Although all the results presented in this paper
correspond to a low value of the Prandtl number, σ = 0.025, for which the momen-
tum advection term plays an important role, preliminary results for moderate and
high values of σ confirm that there is a drastic change in the nature of the secondary
bifurcation when the Prandtl number is increased. A steady pitchfork bifurcation
that changes the spatial periodicity of the basic column takes place in the system, the
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pattern that arises after the secondary bifurcation no longer being time-dependent.
Furthermore, this bifurcation is detected for a much higher Rayleigh number.

Nevertheless, steady-state pitchfork bifurcations of the type obtained for a large
value of the Prandtl number are also identified in the σ = 0.025 case when the
unstable branches that bifurcate from the conduction state are analyzed. From
the unstable branch corresponding to a steady n = 2 column, several subharmonic
solutions that also remain unstable are found to arise after pitchfork bifurcations take
place in the system. The importance of not leaving aside the study of the unstable
branches to fully determine the dynamics of the system should be emphasized. The
subsequent bifurcations in these branches may lead to the stabilization of solutions
that coexist with the main stable branch, and this is indeed the case in our problem.
A steady stable n = 4 branch of solutions that coexists with the n = 3 DRTW
appears in the system as a result of a strong spatial interaction of the n = 2 and
n = 4 modes. The detailed description of this 1:2 resonance will be pursued in the
near future.

Acknowledgements

We would like to express our gratitude to Professor E. Knobloch for useful
discussions. This work was supported by DGESIC under grant PB97-0683 and part
of the numerical results were obtained by using the CESCA and CEPBA resources
coordinated by C4.

References

1) K. Zhang, J. Fluid Mech. 236 (1992), 535.
2) A. Tilgner and F.H. Busse, J. Fluid Mech. 332 (1997), 359.
3) A. Alonso, M. Net and E. Knobloch, Phys. Fluids 7(5) (1995), 935.
4) A. Alonso, M. Net, I. Mercader and E. Knobloch, Fluid Dynamics Research 24 (1999),

133.
5) G.T. Greed and K. Zhang, Geophys. Astrophys. Fluid Dynamics 82 (1996), 23.
6) K. Zhang and G.T. Greed, Phys. Fluids 10(9) (1998), 2396.
7) M.A. Azouni, E.W. Bolton and F.H. Busse, Geophys. Astrophys. Fluid Dynamics 34

(1986), 301.
8) M. Auer, F.H. Busse and R.M. Clever, J. Fluid Mech. 97 (1991), 414.
9) E. Knobloch, Lectures on Solar and Planetary Dynamos (ed. M.R.E. Proctor and

A.D. Gilbert, Cambridge University Press, 1994), p. 331.
10) M. Golubitsky and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory (vol.

I) (Springer-Verlag, New York, 1985).
11) E. Knobloch, Phys. Fluids 8(6) (1996), 1446.
12) A.S. Landsberg and E. Knobloch, Phys. Lett. A 159 (1991), 17.
13) G.E. Karniadakis, M. Israeli and S.A. Orszag, Journal of Computational Physics 97 (1991),

414.
14) A. Alonso, PhD thesis, Universidad Politécnica de Cataluña (1999).
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