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s/n. Campus Nord. Mòdul B4, 08034 Barcelona, Spain

Abstract

A parallelizable algorithm to compute invariant tori of high-dimensional dissi-
pative systems, obtained upon discretization of PDEs is presented. The size of
the set of equations to be solved is only a small multiple of the dimension of
the original system. The sequential and parallel implementations are compared
with a previous method [1], showing that important savings in wall-clock time
can be achieved. In order to test it, a thermal convection problem of a binary
mixture of fluids has been used. The new method can also be applied to prob-
lems with very low rotation numbers, for which the previous is not suitable.
This is tested in two examples of two-dimensional maps.

Key words: Invariant tori, parallel algorithms, continuation methods,
generalized Poincaré maps, variational equations, Newton-Krylov methods.

1. Introduction

The spatial discretization of systems of elliptic–parabolic partial differential
equations leads to large-scale systems of differential-algebraic equations (DAEs)
which, in many cases, take the form

Mẋ = f(x, λ), (x, λ) ∈ U ⊂ R
n × R, (1)

where M is a linear operator, possibly singular, n the dimension, and λ a dis-
tinguished parameter. The computation of its invariant manifolds is essen-
tial to understand the global dynamics induced by the system (see [2] for a
recent review of applications in Fluid Mechanics). Algorithms to find fixed
points [3, 4, 5, 6, 7], periodic orbits [8, 9, 10, 11] and invariant tori [1] of large-
scale problems, and to study their stability [12, 13, 14, 15] have been developed
in the past. The calculation of coefficients of normal forms at fixed points and
periodic orbits has also been considered, for instance, in [16, 17], and that of
portions of two-dimensional unstable manifolds of periodic orbits in [18].

The method to compute invariant two-dimensional tori described in [1] con-
sists in finding a single point of the invariant curve of a Poincaré section located
at its intersection with a second transversal section. The point is found as the
fixed point of a synthesized map, which is defined as the intersection of the sec-
ond section with the curve interpolating the first powers of the Poincaré map
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of the initial point, which fall inside a small ball centered at it. Due to this
definition high powers of the Poincaré map may be necessary to complete the
computation of the synthesized map, for instance, in the case of low rotation
numbers. Moreover the computation of the required powers is a sequential pro-
cess.

A parallel algorithm is proposed here, which reduces the computing time
of the previous. It consists in finding a set of points which interpolate an arc
of the invariant curve in a Poincaré section. The invariance condition is now
that the interpolating curve, passing through the first power of each point of
the initial set, and falling near to them, be close to the initial arc. Several
implementations are possible, three of which are detailed in the text and final
appendices. Since only the first returning power of each point is needed, and
they are independent of each other, the computational cost decreases, and they
can be calculated in parallel. Moreover, the new method can also be applied to
very low-rotation-number cases, for which the first method is too expensive or
could be not suitable due to extrapolation errors. The new algorithm is based on
previous ideas for low-dimensional systems, which can be found, among others,
in [19, 20, 21, 22]. The details on how to compute Poincaré maps, and the
action of their Jacobians were given in [1], and will not be repeated here. For
this purpose, it is assumed that a time integrator is available to solve the initial
value problem (1), and the corresponding first variational equation

Mẏ = Dxf(x, λ)y +Dλf(x, λ)µ, (y, µ) ∈ R
n × R, (2)

for given initial conditions x(0) = x0 and y(0) = y0, and a constant µ. Only
the action of the Jacobian of a Poincaré map is required because matrix-free
implementations of Newton-Krylov methods are used to solve the nonlinear
systems.

In order to perform the numerical experiments, we have applied the method
to the thermal convection of a binary mixture, filling a two-dimensional rect-
angular domain. It is known that the onset of convection is subcritical and
oscillatory below a determined negative value of the separation ratio, and that,
depending on the aspect ratio, it can give rise to very complex dynamics.

To see that the method can be used for very low rotation numbers, some
tests have also been performed for two two-dimensional maps.

Section 2 describes the previous and new algorithms to compute invariant
tori. The main test problem is presented in Section 3, with a summary of
previous results in Section 4. The results of the comparison of the two meth-
ods occupy Section 5, and the two-dimensional examples and the conclusions
Sections 6 and 7.

2. Two algorithms to compute invariant two-tori of ODEs

The intersection of an invariant two-dimensional torus with a hyperplane Σ1,
which cuts it transversally is locally (near one of the points of the intersection)
an arc of a curve. The algorithms described here try to compute a point on this
arc, or the discretization of an small portion of the arc. The first was described
in detail in [1] but has also been included here for comparison purposes. In both
cases a map G will be defined such that the solution is obtained by applying
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Newton-Krylov methods to the equation

x−G(x, λ) = 0. (3)

The reason for the fast convergence of the linear solvers for this particular
problem, and for the computation of periodic orbits was given in [1, 9]. The
essential idea is that, since the system is dissipative, as for the integration of
the systems of DAEs considered, the spectrum of G is tightly clustered around
zero so that the Jacobian I −DxG(x, λ) is near a low-rank perturbation of the
identity. In this situation Krylov methods (GMRES[23] for instance) are known
to converge in a low number of iterations.
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Figure 1: Schemes of the maps used to compute invariant tori. In the two plots the long solid
line represents the invariant curve in Σ1. a) For the map G1, the intersection with Σ1 ∩ Σ2

(empty circle) is the point we want to approximate. b) For G2, the desired points (empty
circles) are those at the stations µ1 to µq+1. The interpolation degree is q=3 in both schemes.
In a) the distance between x and the curve containing the points zj would be small if x is
a good prediction of a point on the torus. It has been exaggerated in the figure for clarity
purposes. The same holds for the distances between the xj and the curve passing through the
zj in b).

2.1. The first method

Let P : V ⊂ Σ1 → Σ1 be the Poincaré map defined on the hyperplane Σ1

given by v⊤1 (x − xΣ1 ) = 0, with ‖v1‖2 = 1. The intersection of Σ1 with an
invariant torus of the system (1) is invariant under the map P . Let Σ2 be
another hyperplane, given by v⊤2 (x − xΣ2 ) = 0, with ‖v2‖2 = 1, transversal to
both Σ1 and the invariant two-torus. Then we define a map

G1(x, λ) : U1 ⊂ (Σ1 ∩ Σ2) × R → Σ1 ∩ Σ2, (4)

such that its fixed points are intersections of the invariant curve and Σ2, as
follows (see Fig. 1a). If x is a point on the intersection Σ1 ∩ Σ2, and B(x, ε) is
the ball of radius ε centered at x, a time integration of (1) with initial condition
x is started to find the first q+ 1 powers (q = 3 in Fig. 1a) of the Poincaré map

zj = P kj (x, λ), with j = 1, · · · , q + 1 and k1 < k2 < . . . < kq+1, (5)

3



which fall inside B(x, ε). Then the intersection of Σ2 with the polynomial which
interpolates these points defines the map G1. If

µj = v⊤2 (P kj (x, λ) − xΣ2 ), j = 1, · · · , q + 1, (6)

are the projections of the points zj onto the line x = xΣ2 + µv2, then

G1(x, λ) =

q+1
∑

j=1

lj(0)zj, (7)

where the lj(0) are the Lagrange interpolation polynomials of degree q, based
on the nodes µj , evaluated at µ = 0.

By differentiating (7) the following expression for the action of the Jacobian
of G1 is obtained:

DG1(x, λ)(∆x,∆λ) =

q+1
∑

i=1



 li(0)DP ki(x, λ) + P ki(x, λ)

q+1
∑

j=1

∂µj
li(0)vT

2 DP
kj (x, λ)



 (∆x,∆λ). (8)

Hence the action of the Jacobian of G1 on (∆x,∆λ) reduces to that of the
Poincaré map.

It must be noticed that x and ∆x in Eqs. (7) and (8) are in manifolds of
dimension n−2, which must be parameterized. This is done as follows. Suppose
that j1 is the index of the largest component of v1, j2 is that of v2 different from
j1, and let R : Σ1 ∩ Σ2 → R

n−2 be the orthogonal projection from Σ1 ∩ Σ2

onto the subspace {x ∈ R
n | xj1 = 0, xj2 = 0} ≡ R

n−2. The diffeomorphism
R drops the components j1 and j2 from a point in Σ1 ∩ Σ2, and its inverse fills
these components such that the resulting point is in Σ1 ∩ Σ2. Then instead of
working with the map G1 we work with

Ḡ1(x̄, λ) = R(G1(R
−1(x̄), λ)) : Ū1 × R ⊂ R

n−2 × R → R
n−2.

The actions of the Jacobians of R and R−1 are trivial. The same kind of param-
eterization is needed for the next method, but we will skip these implementation
details in the description.

2.2. The second method

The new method consists in finding a set of points which represents a dis-
cretization of an arc of the invariant curve (see Fig. 1b. In the same situation
as for the previous map, let µ1, · · · , µq+1 be q + 1 fixed coordinates along the

line x = xΣ2 + µv2, and Σj
2 the hyperplanes given by v⊤2 (x− xΣ2) = µj parallel

to Σ2. Then, if H = Σ1 ∩ Σ1
2 ×

q+1· · · × Σ1 ∩ Σq+1
2 we define a map

G2(X,λ) : U2 ⊂ H× R → H (9)

as follows. Given a value of ε, if X = (x1, · · · , xq+1) ∈ U2, q+1 time integrations
of (1) are started with initial conditions xj , j = 1, · · · , q + 1, to find the first
power of the Poincaré map on each xj falling inside B(xj , ε). Let the powers be

k′j , and let define zj = P k′

j (xj , λ), Z = (z1, · · · , zq+1) and µ̃j = v⊤2 (zj−xΣ2), j =
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1, · · · , q + 1 (see Fig. 1b. The points zj are interpolated to find the polynomial
of degree q

Q(µ) =

q
∑

i=0

αiµ
i, (10)

with αi ∈ R
n. If A = (α0, · · · , αq) ∈ R

n×(q+1), by imposing that the polynomial
passes through (µ̃j , zj),

zj =

q
∑

i=0

αiµ̃
i
j ,

or in matrix form, Z = AṼ , with

Ṽ =









1 · · · 1
µ̃1 · · · µ̃q+1

. . . . . . . . . .
µ̃q

1 · · · µ̃q
q+1









(11)

the Vandermonde matrix associated with the µ̃j , the coefficients of the polyno-

mial are obtained as A = ZṼ −1.
Evaluating Q at the positions µj to obtain x′j = Q(µj) is computing the

product X ′ = AV with X ′ = (x′1, · · · , x′q+1), and V the Vandermonde matrix
associated with the µj . Therefore the definition of the new map G2 is

G2(X,λ) = X ′ = Z(X,λ)Ṽ (X,λ)−1V, (12)

where the dependence of Z and Ṽ on X and λ has been explicited. Each fixed
point of G2(X,λ) approximates an arc of the invariant curve in Σ1.

The first method was described in terms of Lagrange interpolation, but can
also be written in power form as in Eq. 10. Then G1(x, λ) = α0.

The action of the Jacobian of G2 = ZṼ −1V also reduces, essentially, to that
of the Poincaré map. The details are given in Appendix A. Here we only show
the final result. If ∆X = (∆x1, · · · ,∆xq+1) then

DG2(X,λ)(∆X,∆λ) =
[

DZ(X,λ)(∆X,∆λ)

− Z(X,λ)Ṽ (X,λ)−1DṼ (X,λ)(∆X,∆λ)
]

Ṽ (X,λ)−1V, (13)

where

DZ(X,λ)(∆X,∆λ) =

(DP k′

1(x1, λ)(∆x1,∆λ), · · · , DP k′

q+1(xq+1, λ)(∆xq+1,∆λ)),

DṼ (X,λ)(∆X,∆λ) =













0 · · · 0
1 · · · 1

2µ̃1 · · · 2µ̃q+1

. . . . . . . . . . . . . .

qµ̃q−1
1 · · · qµ̃q−1

q+1



















η1 · · · 0
...

. . .
...

0 · · · ηq+1






, (14)

and ηj = v⊤2 DP
k′

j (xj , λ)(∆xj ,∆λ). In short, DG2 = [DZ − ZṼ −1DṼ ]Ṽ −1V.
At the beginning of this section the fast convergence of GMRES to solve

systems with matrix M = I −DxG(x, λ) when DxG(x, λ) is contractive was re-
called. An explanation was given in the case of periodic orbits in [9], and in more
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general situations, when the spectrum of M consists of several close clusters of
eigenvalues in [24]. Since G2 involves the time evolution of parabolic equations
it will be contractive, except along the unstable manifold of its fixed points,
which we assume will have, at most, a low dimension. Moreover, the compu-
tation of G2 and the action of its Jacobian can be done in parallel because the
calculation of each zj = P k′

j (xj , λ) or DP k′

j (xj , λ)(∆xj ,∆λ) is an independent
process. In order to have an optimal parallelism we also need that the number of
iterations required to solve systems with matrix M = I −DG2(X,λ) be almost
independent of q. From [24] we know that, if M has clusters of eigenvalues, at
each iteration of GMRES the residual is reduced by a factor, which depends
only on a common relative radius of the discs containing each cluster and on
the maximal distance between them. In addition, the asymptotic error constant
depends on the maximal distance of the outliers (the eigenvalues out of the
clusters) from the clusters. Therefore we have to see that when q changes, the
number of clusters and their relative positions do not change. In Appendix B
we give an outline of a proof of this fact. In any case, the numerical experiments
have confirmed the almost independence of q of the number of iterations of the
solver.

Instead of defining zj = P k′

j (xj , λ), with k′j the first power of the Poincaré
map on xj falling inside B(xj , ε), it could be defined as the first power for which

P k′

j (xj , λ) ∈ B(xi, ε) for some 1 ≤ i ≤ q + 1. In addition, a condition on its
projection onto the line x = xΣ2 + µv2 could also be required to ensure that
it does not fall too far away from the initial µi. This would give rise to other
variants of the method.

Polynomial interpolation has been used in the presentation of the method
because it provides a simple expression for G2 and its Jacobian. It is assumed
that the degree will be small because the total dimension of the systems to
be solved, (q + 1)(n − 2), must be limited for the algorithms to be efficient.
The maximum degree used in the numerical experiments has been five. In
Appendix C we give the details on how to compute G2, and the action of its
Jacobian in case of spline interpolation, which could be used if, for some reason,
the number of points q + 1 required to approximate the arc must be large. For
instance close to the breakdown of the tori when they lose regularity.

Another possibility is using least squares polynomial fitting. This can be
specially useful in the case of unstable tori. The algorithm defined by the map
G2 in Eq. (12) computes the powers zj = P k′

j (xj , λ). If the torus is unstable
(think of a two-dimensional unstable manifold for the invariant curve by the
Poincaré map) the component of each zj along the unstable direction can grow
in any of the two opposite directions. Then the interpolation polynomial could
be highly oscillatory giving rise to poor results. To avoid this, we describe in
Appendix D how to compute the map, and the action of its Jacobian in the case
of polynomial fitting.

The maps G1 and any of the three versions of G2 depend on the radius ε,
and the degree of the interpolation polynomial. G2 depends also on the position
of the µi. Several strategies can be implemented to include adaptability when
the parameter λ is changed during a continuation process, and to discard, for
instance, a point too close to a previous one in case ofG1, which would introduce
large errors in the interpolation.

In the case of ε, a starting value can be given and, once a torus has been
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Figure 2: Extreme cases to be avoided. a) ε too large compared with ε′, leading to extrapo-
lation. b) ε too small leading to very long time integrations to find the points zj .

obtained, it can be set to a fraction of the diameter of the invariant curve
passing through the points found. The continuation process will always start
from an initial known condition. The initial diameter, and ε can be estimated,
for instance, from a time integration, by computing enough Poincaré sections
to complete a turn on the invariant curve. If the continuation starts close to a
Neimark-Sacker bifurcation, the diameter grows proportionally to

√
λ− λc, λc

being the value of the parameter at the bifurcation. During the continuation
of the tori the diameter can be estimated by calculating the distances from the
initial conditions to the powers of the Poincaré map obtained while computing
the maps Gi. If ε is not changed, and the diameter of the invariant curve grows,
the powers of the Poincaré map required to fall inside the balls B(xj , ε) will
also grow, increasing the computational cost. If the diameter decreases the
interpolation might lose sense because the points might be at distances of the
order of the size of the invariant curve.

Adaptability in the degree of the polynomial could also be implemented.
When the full invariant curve is computed by expanding it in Fourier series, the
number of harmonics can be adapted to control the error of the approximation.
This was implemented in [25], where two different estimators for the error were
provided. One was based on controlling the size of the tail in the Fourier expan-
sion, and the other on the evaluation of the invariance condition on a mesh of
points. In [21] a method was implemented to compute invariant curves, similar
to that described here. The segment of invariant curve interpolated was that
determined by a set of points on it and their images by the map. Therefore the
segment could be relatively long compared with the total length of the invariant
curve, requiring a large number of interpolation points. Then, instead of poly-
nomial interpolation, splines were used. The interpolation error was estimated
by increasing in one unit the number of points employed in the splines. This
number was then increased or decreased depending on a threshold for the error.

The position of the µj can also be changed during the continuation process.
Assuming they are ordered, the length |µ1−µq+1| can be increased or decreased
according to the variation of ε. The relative position of the µj is also impor-
tant. They can be homothetic to a mesh of Gauss–Chebyshev or Gauss–Lobatto
points to minimize the interpolation error.
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The initial selection of the µj is essential to have convergence of the New-
ton’s iterations together with an efficient parallelism. Ideally, the CPU time to
compute each zj (see Fig. 1b and Eq. (12)) should be essentially the same. This
will be the case if the xj are close enough, due to the continuity with respect to
the initial conditions. On the other side, if ε′ is the maximal distance among the
xj , and ε′ < ε as shown in Fig. 2a, the x′j could be evaluated by extrapolation
of the zj, with a possible large error leading to failure in the convergence of
Newton’s method. If ε is too small the time integration required to obtain the
zj can be too large, and the method too inefficient (imagine Fig. 2b with the xj

closer to the curve passing through the zj , and a very small radius of the balls).
In the numerical experiments we have kept q and the position of the µj fixed

to avoid many differences between the two methods when comparing them, but
we have implemented variation of ε.

In the description of the maps it has been shown how to compute the action
of their Jacobians, which implies knowing how to calculate the product by the
Jacobian of the Poincaré map. The latter is explained in detail in [1, 26]. A
word of caution is necessary here. Approximating the products DG(x, λ)(u, µ)
(directional derivatives) by finite differences may lead to problems in the con-
vergence of the linear iterative methods. The reason is that the error in the
approximation has two parts. The first corresponds to the truncation error
that, for centered differences with step h is O(h2), the second, due to the error
in the evaluation of the map, is O(h−1). Since computing them involves time
integrations, it may be difficult to obtain good approximations unless very good
time-steppers are used. This is uncommon when solving PDEs. When a linear
system Ax = b, with A = DxG, is solved by an iterative method, for instance
by GMRES [23], the way of detecting a bad approximation of the products by
A is to compare the estimation of the residual ‖b − Ax‖ provided by GMRES
at the end of the iterations, with the actual residual. The latter will be orders
of magnitude larger than the former for bad approximations.

In [1] it was already mentioned that, for the methods presented here to make
sense, the assumption of reducibility of the invariant curve (the possibility of
reducing the linearized map to constant coefficients by a suitable change of
variables) is essential [27, 28]. Otherwise, the differential of the return map
is not well defined in general, and non-typical behavior can be observed [29].
Some comments can also be found there and in [30, 31] on the objects which
are found depending on the Diophantine properties of the rotation number of
the invariant curve, and on how the tori can be destroyed.

3. Thermal convection in binary fluid mixtures

The thermal convection of a binary mixture, filling a two-dimensional rect-
angular domain Ω heated from below has been used as a test problem. It was
also the example in [1]. The equations of the system are the conservation of
mass, momentum and energy, and the evolution of one of the concentrations
(the denser has been chosen here) [32]. The units used to put them in non-
dimensional form are the height of the domain h, the thermal diffusion time
h2/κ, κ being the thermal diffusivity, the temperature difference between the
top and bottom sides ∆T , and C̄(C̄ − 1)D′∆T/D, C̄ being the volume-average
concentration, D > 0 the mass diffusion coefficient, and D′ the thermal diffu-
sion coefficient. In non-dimensional units Ω = [0,Γ] × [0, 1], Γ being the width
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l to the height ratio, and x and y are the horizontal and vertical coordinates,
respectively.

The basic conductive and linearly stratified state, which is a solution of the
equations for any value of the parameters, is given by zero velocity vb = 0,
and non-dimensional linear profiles for the temperature Tb = Tb(0)− y, and the
concentration Cb = Cb(0)− y. The values Tb(0) and Cb(0) are related constants
because of the boundary conditions defined below.

The Boussinesq approximation of the equations for the perturbation (v,Θ,Σ),
of the basic state (vb, Tb, Cb), are

∂tv + (v · ∇)v = −∇π + σ∇2v + σRa(Θ + SΣ)êy,

∂tΘ + (v · ∇)Θ = ∇2Θ + vy,

∂tΣ + (v · ∇)Σ = L(∇2Σ −∇2Θ) + vy ,

∇ · v = 0,

where v = (vx, vy). The problem depends on the aspect ratio, the non-dimensional
Rayleigh, Prandtl and Lewis numbers, and the separation ratio, defined as

Γ =
l

h
, Ra =

αg∆Th3

κν
, σ =

ν

κ
, L =

D

κ
, S =

C̄(1 − C̄)βD′

αD

respectively. In the definitions of the parameters ν means the kinematic viscos-
ity, and α and β (taken positive) are the thermal and solutal expansion coef-
ficients, respectively. The Prandtl and Lewis numbers represent ratios of time
scales involving the viscous, thermal and solutal diffusions, but the separation
ratio is also related with the temperature and concentration gradients of the
flow. As usual, the Rayleigh number represents the ratio between the gravita-
tional potential energy released when the light fluid rises (and the heavier falls),
and the viscous and thermal dissipation of energy. The physical parameters
must be evaluated at C̄, T̄ , and ρ̄.

In the continuation experiments we fix Γ = 4, σ = 0.6, L = 0.03 and
S = −0.1. The last three values correspond to a mixture of two isotopes of
Helium in liquid state. According with the definition of S, D′ < 0, and ini-
tially the concentration gradient is stabilizing in opposition to the destabilizing
temperature gradient. If S is below a negative critical value, as it is in the test
problem, the primary bifurcation from the basic state is a Hopf bifurcation, and
when convection sets in, the denser component tends to migrate towards the
hotter region. The Rayleigh number, which is proportional to the difference
between the bottom and top temperatures, will be the control parameter.

The boundary conditions taken are non-slip for the velocity field (v = 0
on ∂Ω), constant temperatures at the top and bottom sides, insulating lateral
sides, and non-porous boundaries.

The above equations are rewritten in terms of a stream-function, ψ, i.e.,
v = (−∂yψ, ∂xψ), and an auxiliary function η = Σ − Θ. They are

∂t∇2ψ + J(ψ,∇2ψ) = σ∇4ψ + σRa [(S + 1)∂xΘ + S∂xη] ,

∂tΘ + J(ψ,Θ) = ∇2Θ + ∂xψ,

∂tη + J(ψ, η) = L∇2η −∇2Θ,

with J(f, g) = ∂xf∂yg − ∂yf∂xg, and the boundary conditions become ψ =
∂nψ = ∂nη = 0 on ∂Ω, Θ = 0 on y = 0, 1, and ∂xΘ = 0 on x = 0,Γ. In this way
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the incompressibility condition is identically fulfilled, the boundary conditions
for Θ and Σ decouple, and the number of unknowns is reduced.

The group of symmetries of this system is Z2×Z2 generated by the reflections
with respect to the vertical, and horizontal mid-planes, i.e., changing x by Γ−x
and the sign of ψ, or changing y by 1 − y and the sign of all three functions,
leaves the system invariant. These symmetries give rise to several pitchfork
bifurcations of fixed points, periodic orbits, and also of invariant tori.

To obtain the numerical solutions, the functions ψ, Θ, and η are approxi-
mated by a pseudo-spectral method. Collocation on a mesh of nx×ny = 64×16
Gauss-Lobatto points has been used in all the calculations shown. This gives a
total dimension n = 3072. This mesh is enough to have a good accuracy in the
interval of Ra considered because the solutions are smooth. Finer resolutions
were used in [1, 11] to check the results. The stiff system of ODEs obtained
after the spatial discretization can be written as Bu̇ = Lu + N(u), where the
vector u = (ψij ,Θij , ηij) contains the values of ψ, Θ and η at the mesh of
collocation points. The operators L and N represent the linear and nonlinear
terms in the equations. They are integrated by using fixed-time-step sixth-order
BDF-extrapolation formulas

(γ0B − ∆tL)un+1 =

k−1
∑

i=0

(

αiBu
n−i + ∆tβiN(un−i)

)

where the superscripts indicate the time step. The coefficients, up to order
six, are given in [9], and a comparison with other high-order time integration
methods was performed in [33]. The initial points required to start the time
integration are obtained by a fully implicit BDF method, using the subroutine
DLSODPK of the ODEPACK package [34].

4. Invariant tori

A detailed explanation of all the results obtained for this problem can be
found in [1]. We give here just a brief summary. Fig. 3 shows a part of the bi-
furcation diagram for the thermal convection problem, which contains the main
branch of periodic orbits, and the bifurcated branches of tori. The Euclidean
norm of the solution is plotted versus Ra. The points shown correspond to the
intersection of the solution with the hyperplane Σ1 if it is a periodic orbit, and
with Σ1 ∩ Σ2 as defined for the map G1 if it is a torus. Solid and dashed lines
mean stable and unstable solutions, respectively.

The horizontal line in Fig. 3a corresponds to the basic state which loses
stability at a subcritical Hopf bifurcation, where a branch of periodic orbits
emerges. It becomes stable after a saddle–node, and, very near, there is a
Neimark-Sacker bifurcation giving rise to the branch of invariant tori we have
computed for testing purposes. A detail of the branch of tori is given in Fig. 3b.
It starts at Ra ≈ 2066.74, and it is stable up to a pitchfork bifurcation at
Ra ≈ 2115.92. The rotation number ρ decreases along this main branch when
Ra is increased, starting near but below 1/6, and ending close to 1/8. The
Appendix in [1] gives details on the method used to compute it, and on error
estimates. Only one of the two stable branches of tori after the pitchfork was
computed, and shown in the diagrams. This stable branch was continued up
to a 1/8 resonance interval at 2116.18 < Ra < 2116.20. The periodic orbits in

10



 0

 3

 6

 9

 2000  2100  2200  2300  2400

||u||

Ra 

a)

H

SN

NS PTO

 5.3

 5.35

 5.4

 5.45

 2070  2080  2090  2100  2110  2120

||u||

Ra 

b)

NS

PTO

Figure 3: a) Bifurcation diagram. The horizontal line corresponds to the basic state. It loses
stability at a subcritical Hopf bifurcation (H). The periodic orbits become stable at a saddle–
node (SN) and again unstable at a Neimark-Sacker (NS) bifurcation. b) Detail of the branch
of invariant tori. It ends on a pitchfork bifurcation of invariant tori (PTO). Only one of the
two stable branches is shown after the bifurcation.

this region were also computed by continuation methods. After the 1/8-phase-
locking interval there are two period doubling bifurcations at Ra ≈ 2118.40
and Ra ≈ 2118.55, and finally, a breakdown of the tori at Ra ≈ 2118.6. The
strange attractors at Ra = 2118.6 and Ra = 2118.7 were described, and it
was also possible to compute a small portion of the unstable branch after the
pitchfork bifurcation at Ra ≈ 2115.92 (see Fig. 3b). It was started with an
initial condition obtained by a continuation of the stable branch with a large
arclength step, which allowed to cross a gap in the unstable branch where no
solution was found. This gap is probably due to a breakdown of the tori. Neither
was it possible to continue the branch backward in Ra down to the pitchfork
bifurcation.

5. Comparison of the two methods

To test the new algorithm and compare it with the first method, the interval
Ra ∈ [2100, 2115] on the main branch of invariant tori was selected because at
some points it requires high powers of the Poincaré map when the first method
(map G1) is used. This makes this portion specially expensive to compute. We
have implemented the variant of the second method described in section 2. In
this range of Ra the diameter of the invariant curve is in the interval [4.8, 5.9],
the radius of the balls ε, which defines the maps, was set initially to 0.36,
and to 0.075 times the estimation of the diameter during the continuation for
both methods. The initial conditions for G2 were taken inside a ball of radius
ε′ = 0.3 to ensure that the powers required to return close to them (fall in
each B(xj , ε)) were the same for most of the tori computed. The stations µi

were chosen homothetic to a mesh of Gauss-Chebyshev points. The codes were
written in FORTRAN, and MPI [35] was used to implement the parallel version.
They were run on a cluster of Intel I7 processors at 2.67 GHz.

Before reporting the results on the comparison of the computing times re-
quired by the two methods, it is possible to advance what should be expected
by making a few assumptions which are trivial or have been confirmed by the
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computations. Suppose that the same degree, q, of interpolation is used for
both methods, with the same value of ε, then:

1. The first method requires computing increasing returning powers k1 < k2 <
· · · < kq+1 of the Poincaré map on a single initial condition x. This is a
sequential process.

2. The second method requires the first returning powers k′j for a collection of
initial conditions xj . They can be computed in parallel and, provided the
xj are close enough, and ε is not too small, all the k′j would be the same by
the continuity of Poincaré’s map. This is important to balance the load of
the different processors involved in the computation in the parallel version
of this algorithm. Therefore one can expect k′1 = · · · = k′q+1 = k1, with k1

the first returning power of the first method.

3. If the second method is implemented by using parallelism, and the previous
assumption is fulfilled, the wall-clock time required to compute the map G2

or the action of its Jacobian is reduced by a factor kq+1/k1 if it is compared
with that of G1.

4. If the number of iterations of Newton’s method and the linear solver are the
same for both methods, the time (wall-clock) to obtain the fixed points of
the map G2 would be reduced essentially by a factor kq+1/k1 if compared
with that of G1.

5. If the returning powers of the first method satisfy k2 ≈ 2k1, · · · , kq+1 ≈
(q+1)k1, then the factor in the previous statement is kq+1/k1 ≈ q+1. If k2 >
2k1, · · · , kq+1 > (q + 1)k1 then kq+1/k1 > q + 1, and larger accelerations
could be expected.

6. If k′1 = · · · = k′q+1 the speed-up of the second method (wall clock time for
the sequential code)/(wall clock time for the parallel code) would be about
q + 1.

Summarizing, the speed-up factor (ratio of the wall-clock times) of the par-
allel implementation of the second method to the sequential can be expected to
be essentially q + 1, because almost all the time is spent in the time integra-
tion, and any other task is negligible. The acceleration factor when the parallel
version of the second method is compared with the first should be at least, q+1.

The assumption k′1 = · · · = k′q+1 = k1 in the second item of the above list is
fulfilled in most of the points computed during the numerical experiments. That
of the fourth item is also satisfied, the number of iterations of Newton’s method
and the linear solver does not increase with the degree of interpolation. They
seem to be quite independent of q if the points interpolated are close enough.
Finally, we have seen that, in general, k2 > 2k1, · · · , kq+1 > (q + 1)k1 (see item
5). Hence kq+1/k1 > q + 1.

Table 1 summarizes the results of the tests. The first group of four rows
corresponds to the first algorithm, the second group to the sequential version
of the second method, and the third to its parallel version. This is described
by the first and second columns. The rest of the columns contain the interpo-
lation degree q, the wall-clock time in minutes required to do the calculations,
the number of solutions computed in the interval Ra ∈ [2100, 2115], the time
required per solution computed, and two ratios of computing times. Ratio1 is,
for the first eight rows, the total time divided by the total time of the parallel
version of the second algorithm with the same q. Ratio2 is the same ratio but
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for the average time required to compute a solution. In the last four rows the
ratios are the times divided by that of q = 2 in the same group, in order to com-
pare the times required by the different interpolations with the second parallel
algorithm.

The continuation algorithm incorporates a control of the arc-length step-
size. Therefore, the number of solutions calculated in each case can be different.
Since the test to increase or decrease the step-size uses the Euclidean norm, we
have taken the maximal arc-length step-size as 0.05

√
q + 1, i.e., proportional to

the square root of the number of points used in the interpolation. With this we
managed to obtain a number of solutions of 18 or 19 in all runs. This makes
the two ratios shown be different in some rows.

Meth. Version q Time N. sol. Time/N. sol. Ratio1 Ratio2

1 serial 2 3725 19 196 4.97 4.71
1 serial 3 3960 19 208 5.27 4.99
1 serial 4 5019 19 264 7.34 7.34
1 serial 5 5664 19 298 7.97 7.97

2 serial 2 2255 18 125 3.01 3.01
2 serial 3 2830 18 157 3.76 3.76
2 serial 4 3563 19 188 5.21 5.21
2 serial 5 4333 19 228 6.09 6.09

2 parallel 2 749 18 42 1.00 1.00
2 parallel 3 752 18 42 1.00 1.00
2 parallel 4 684 19 36 0.91 0.87
2 parallel 5 711 19 37 0.95 0.90

Table 1: Comparison of the wall-clock times for the different algorithms, implementations,
and interpolation degrees. See text for details.

The comparison of the first and second groups of four lines in Table 1 shows
that, even without parallelism, the second algorithm is computationally cheaper
than the first. Since the number of iterations of Newton’s method and the linear
solver are essentially the same, the decrease of CPU time is due to the lower
powers of the Poincaré map required by the second method. As stated before
we found that, on average, kj > jk1 during the computation of the tori.

The comparison of the second and third groups of four lines indicates, as
should be expected, that the parallelism consisting in sending each computation
of the zj of the second method to a different processor divides the wall-clock
time by q + 1. This is so because almost all the computing time is employed in
the time integration of the system, and each of them is independent of the rest.
In parallel computing, speed-up refers usually to how much a parallel algorithm
is faster than the best available sequential algorithm. Therefore, since this is the
second method we can say that the speed-up of the new algorithm is q+1. There
is however a limitation. Since we are dealing with high-dimensional systems one
must avoid the total size of the systems to be solved, (q+1)(n−2), from growing
too much, and then q must be limited. Then, one cannot expect a massive
parallelization, unless this be possible in the time integration algorithm.

The last four rows show that the computing time is almost independent
of the degree of interpolation q, at least for the low degrees considered. This
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indicates that the number of iterations of the solvers does not increase with q.
It has also been checked from the output of the codes.

Finally, the comparison of the first and third groups of four lines shows
another acceleration factor we were interested in studying. We have seen that
factors above q + 1 could be expected if kj > jk1. This was the case in our
computations, and ratios 4.71, 4.99, 7.34 and 7.97 were obtained for q + 1 =
3, 4, 5, and 6, if Ratio2 is used to measure it. They depend on the distance
|kj − jk1|, which depends on the rotation number of the tori, the value of ε and
the position of the µj . This implies that they can be different in each portion
of the interval of continuation. The values given here are averages in the range
of Ra considered to do the test.

6. Low rotation number examples.

The two methods presented become very expensive when the rotation num-
ber is very low, because the powers of the Poincaré map required to return to a
vicinity of the initial points can be very large for small ε. In this case, instead of
completing a full turn along the invariant curve to obtain the zj = P k′

j (xj , λ),

one only needs to compute a single fixed low power k′ of each xj , zj = P k′

(xj , λ),

to reconstruct the invariant curve, because each zj = P k′

(xj , λ) will be close
to its corresponding xj . If the rotation number is extremely low, the only re-
quirement is that k′ be large enough to separate each zj from xj to avoid them
to be too close. Something similar could be done, in principle, with the first
method. Given an initial x, the q + 1 consecutive powers z1 = P (x, λ), z2 =
P 2(x, λ), · · · , zq+1 = P (q+1)(x, λ) could be used to define G1(x, λ). Again, if
the rotation number is low enough the zj will be close to the initial x. The
problem is that all the zj will be at the same side of the hyperplane Σ2, and
an extrapolation will be needed to obtain G1(x, λ). Unless the rotation number
be very small, this can lead to the same difficulties explained for the map G2 in
the case of large ε (see Fig. 2a). The possible large errors in the extrapolation
can lead to failure in the convergence of Newton’s method.

To check this particular variant in the case of the second method, two ex-
amples of two-dimensional maps have been used as tests. The first is a driven
logistic map defined by

T : S1 × R → S1 × R,

T (θ, x) = (θ + ω, 1 − a(θ)x2), a(θ) = a0 + γ sin(2πθ) (15)

with S1 = {R mod 1}. It depends on three parameters, a0, γ, and the rotation
number ω. The second component is the logistic map but with a non-constant
parameter a(θ), θ having quasiperiodic dynamics. This map is part of a family
studied in [36], used there to show how double precision numerical simulations
can lead to erroneous interpretations of the results. More recently, it was used
in [37] to illustrate computer assisted proofs of normally hyperbolic invariant
manifolds. In particular, the existence of invariant curves of T was rigorously
proved.

Continuations with respect to two parameters (γ and ω) are shown in Fig. 4.
The parameterizing coordinate (see Fig. 1b) is µ = θ, the number of points
forming a Gauss-Lobatto mesh is q+ 1 = 5, and the common power of the map
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Figure 4: Continuations for the map (15) (left plots) and details of the points computed by
method 2. See text for the description of the plots.

T used to define G2 is k′ = 1. The attractors shown in each plot were found by
iterating T , starting with one of the points found by method 2. This can be done
in this case because the invariant objects are stable. If they are unstable, and a
larger portion or a full invariant curve is needed, it can be found by successive
extrapolations of the points found by method 2 followed by a refinement by the
same method. This procedure would follow the invariant curve.

The first row corresponds to the continuation with respect to γ ∈ [0, 0.25],
with a0 = 0, ω = 10−3ϕ, and ϕ = (

√
5 − 1)/2 the golden mean minus one. The

initial invariant curve for γ = 0 is x = 1. The arrows in the left plots indicate
the direction of variation of the parameter. The different curves correspond
to equally spaced values of the continuation parameter. The same holds for
the rest of plots. The symbols in all figures are the points computed with the
new algorithm. In Fig. 4a there are two groups of coordinates µi, one around
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θ = 0.35 and the other around θ = 0.7. In both cases the width of the interval
of µ = θ is 0.02 as can be seen in Fig. 4b, where a detail of the points around
θ = 0.7 is shown, and the Gauss-Lobatto mesh is visible. For this continuation
there is no special reason to choose a particular position of the µi.

The second row of Fig. 4 corresponds to the continuation with respect to
γ ∈ [0.28, 0.67], decreasing it from γ = 0.67, with a0 = 0.85, ω = 10−2ϕ, the µi

around θ = 0.9, and a width of 0.01. The initial condition can be reached by
following the path a0 = 0.55, γ ∈ [0, 0.67], starting from the constant invariant
curve x = (

√
1 + 4a0 − 1)/2a0 at γ = 0, and then a0 ∈ [0.55, 0.85], γ = 0.67.

In this case the method is able to find invariant objects which are no longer
single-valued curves. The invariant curve doubles because there is an interval of
values of θ for which a(θ) is beyond the first period doubling of the logistic map
(a=3/4). The limits between which the curve is not single-valued are not just
given by the solutions of the equation a(θ) = 3/4 because there is a delay due
to the slow variation of the parameter. An example of how to compute these
limits, for other values of the parameters, can be found in [37]. The authors
give a detailed explanation of the reasons why the attractor in their Fig. 6
looks so different when it is computed in double precision (it seems chaotic),
and in extended precision (a smooth curve). When T is iterated, starting with
(θ1, x1), the error of xj is multiplied at each step by a factor |2a(θj)xj |. After
n iterations the factor becomes

∏n

j=1 |2a(θj)xj | = exp(
∑n

j=1 ln |2a(θj)xj |). If

Sn =
∑n

j=1 ln |2a(θj)xj |, the Lyapunov exponent is λ = limn→∞ Sn/n. Suppose
that (θ1, x1) is on a smooth invariant curve with λ < 0, but that the sequence Sn

decreases oscillating to −∞, such that there are indices n1 < n2 with Sn1
< 0,

Sn2
< 0 but Sn1

< Sn2
. Then during the iterations between n1 and n2 the

amplification factor of the error becomes exp(Sn2
− Sn1

), and the number of
decimal significant digits lost is ndl = (Sn2

−Sn1
)/ ln 10. This is the case for the

map T . The lower α the larger ndl can be, because for very small α, depending
on the values of a0 and γ, |2a(θj)xj | > 1 during many consecutive iterations.

For the values we have used, the doubled curves have a noticiable numer-
ical noise if T is iterated in double precision. Therefore, each curve shown
in Figs. 4c,d was computed by iterating using quad-double precision (approxi-
mately 64 decimal digits). The same holds for Figs. 4e,f. The attractors com-
puted by using both precisions differ only inside the doubled interval, close to
θ = 0.5. This is why method 2 can still be used without increasing the numerical
resolution. Moreover, the position of the µi must be out of the doubled portion.
If not, the method might fail even using the second power of the map (k′ = 2).

Finally, last row of Fig. 4 shows a continuation with respect to the rotation
number in the interval ω ∈ [10−3, 10−2]ϕ, decreasing from 10−2ϕ, with γ = 0.6
and a0 = 0.9, and the µi as in the previous example. The initial conditions can
be found following a path similar to that described before, or just by iterating
the map T to find points with θ close to the µi, interpolating them if necessary.
The last invariant object in Fig. 4e is no longer the union of two smooth single-
valued curves. Therefore, its computation is not possible by means of the Fourier
expansion method, or by any other based on the assumption that there is a
global parameterization of the invariant curve. Each smooth branch of the
curves in Figs. 4c,e could still be computed with the Fourier method applied to
an even power of the map. In this last case the attractors look very different in
double precision. It was checked that the curves shown, computed with quad-
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double precision, do not change when the number of decimal digits is increased
up to 500.

Since the rotation number is ω = 6.18 × 10−4 in some of these examples, it
takes around 1/ω = 1618 iterations to return to a vicinity of an initial point,
if a complete turn along the invariant curve is required. If q + 1 = 5, as in
the calculations shown, this means that each evaluation of G1 with a small ε
could require the same order of iterations of T instead of just the 5 needed by
G2 with k′ = 1. The problems with the propagation of rounding errors should
also be added depending on the parameters explored. This makes the direct
application of method 1 very expensive, even if this could be done without
extended precision. The modified version of G1 consisting in using the first
q+1 consecutive powers of the Poincaré map, described at the beginning of this
section, could be used instead. The calculation would be sequential, and the
risks of using extrapolation present.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

y

x 

a)

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.02 -0.01  0  0.01  0.02

y

x 

b)

Figure 5: Continuations for the map (16), and detail of the points computed by method 2.

The second map considered is defined by

T : S1 × R → S1 × R,

T (θ, r) = (θ + ω, 1 + λ(r − 1) + γ cos(mθ)). (16)

Now S1 = {R mod 2π}, and the map depends on λ, γ, ω, and m. There is an
invariant curve, which can be found analytically. It is given by

r = 1 + γ
cos(m(θ − ω)) − λ cos(mθ)

1 + λ2 − 2λ cos(mω)
.

The continuations with respect to γ ∈ [0, 0.09] can be seen in Fig. 5 for λ = 0.9,
ω = 2πϕ10−4 and ϕ = (

√
5 + 1)/2 the golden mean. Instead of representing

(θ, r), (x, y) = r(cos θ, sin θ) is plotted. The points computed are on lines of
constant θ, in the interval π/2 ± 0.01. Although the dynamics of this map is
not as rich as that of the previous example, it can be used to test methods for
computing tori, because the number of oscillations of r(θ), m, can be controlled,
and there is a closed expression for the invariant curve. The Fourier series
method, for instance, would require just three non-zero coefficients.
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7. Conclusions

A new method has been presented to compute invariant tori for large-scale
systems obtained upon the discretization of dissipative partial differential equa-
tions, although it is also useful and may be competitive against those employed
for low-dimensional systems of ordinary differential equations. Three versions,
differing in the way a segment of the invariant curve is approximated, are de-
scribed in detail, two of them in the final appendices. The implementation
based on polynomial interpolation, has been compared with a previous method
reporting accelerations of the computations by a factor above q + 1, q being
the degree of interpolation. Since the parallelization is trivial, the comparison
of the serial and parallel versions of the new method show speed-ups around
q + 1. The only requirement to be optimal is that the computing time of each
integration be almost the same, and this can always be accomplished if the ini-
tial conditions (i.e. the position of the µj) are close enough, and the radius ε
is not too large. These conditions are necessary, in any case, to have a good
approximation of the invariant curve.

There is an obvious limitation on the parallelism of the algorithm. Since the
number of points q+1 must be kept small to avoid solving extremely large-scale
systems, the parallelism is restricted to a low number of processors unless it is
also employed in the time integration, but this is not part of the algorithm.

Since the new method requires lower powers of the Poincaré map, it is better
suited for the computation of weakly unstable invariant tori than the method de-
scribed in [1], and it can also be applied to problems with low rotation numbers
for which the first is not adequate.

Other variants of this method are possible. Changing the way the zj are
selected, as explained before, or the kind of approximation of the invariant
curve (interpolation, splines, least squares, minimax polynomials, trigonometric
or Chebyshev expansions, collocation, etc.) would lead to similar methods. The
only problem can be finding an easy expression for the action of the Jacobian.
On the other hand, instead of a pure Newton’s method, globalized versions can
be employed when good initial conditions are not available.

Close to the breakdown of the tori, when the invariant curve wrinkles, the
local single-valued parameterization represented in Fig. 1 might be impossible.
In this case a parameterization based on approximations of the arc-length of the
curve could be used. For instance, a description of chordal spline interpolation
can be found in [38, 39].

The main example shown here was of dimension n = 3072, and the time
needed to do the computations with the first method was still acceptable. For
larger problems it is essential to have more efficient algorithms like those de-
scribed here.
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We thank C. Simó for very helpful discussions during the preparation of this
manuscript. This research has been supported by Spain Ministerio de Ciencia e
Innovación, and Generalitat de Catalunya under projects MTM2010-16930 and
2009-SGR-67, respectively.

18



Appendix A: Derivatives of the map G2

In this section we proof Eq. (13). If G2(X,λ) = X ′ = Z(X,λ)Ṽ (X,λ)−1V
(in short, X ′ = ZṼ −1V ), and since V does not depend on X and λ, we can
compute the derivatives of Y ≡ X ′V −1 = ZṼ −1. Let Y = (y1, · · · , yq+1) with
yi ∈ R

n and Y ∈ R
n×(q+1), and let denote the j component of yi by yij , and the

same for X , Z, ∆X , etc. We want to compute the action DY (X,λ)(∆X,∆λ),
i.e.,

(DY (X,λ)(∆X,∆λ))ij =
∑

1≤k≤n
1≤l≤q+1

∂yij

∂xkl

∆Xkl +
∂yij

∂λ
∆λ ≡ Dyij

where the operator

D =
∑

1≤k≤n
1≤l≤q+1

∆Xkl

∂

∂xkl

+ ∆λ
∂

∂λ

,

which acts componentwise on vectors and matrices ((DY )ij ≡ Dyij), has been
introduced.

Let vij and v̄ij be the elements of Ṽ and its inverse Ṽ −1 respectively. The
following relations hold

q+1
∑

l=1

vilv̄lj = δij ,

q+1
∑

l=1

(Dvilv̄lj + vilDv̄lj) = 0, Dv̄rj = −
q+1
∑

k=1

v̄rk

q+1
∑

l=1

Dvklv̄lj ,

i.e., DṼ −1 = −Ṽ −1DṼ Ṽ −1. Since yij =
∑q+1

r=1 zir v̄rj ,

(DY )ij =

q+1
∑

r=1

(Dzir v̄rj + zirDv̄rj) =

q+1
∑

r=1

(

Dzir v̄rj − zir

q+1
∑

k=1

v̄rk

q+1
∑

l=1

Dvkl v̄lj

)

=
(

DZ Ṽ −1 − ZṼ −1 DṼ Ṽ −1
)

ij
, and

(DX ′)ij =
(

(DZ − ZṼ −1 DṼ )Ṽ −1V
)

ij
.

Finally, since the elements of Ṽ , vij depend on the µ̃k, which in turn depend on
the xl and λ (in our case µ̃k only depends on xk), we have

Dvij =

q+1
∑

l=1

∂vij

∂µ̃l

Dµ̃l.

The Vandermonde matrix Ṽ has elements vij = µ̃i−1
j , and µ̃l = v⊤2 (zl − xΣ2),

hence

∂vij

∂µ̃l

= (i− 1)µ̃i−2
j δjl, Dµ̃l = v⊤2 Dzl = v⊤2 DP

k′

l(xl, λ)(∆xl,∆λ) ≡ ηl,

and therefore Dvij = (i− 1)µ̃i−2
j ηj . Compare now with Eq. (14).
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Appendix B: Conditioning of the Jacobian of G2

An idea of the distribution of the eigenvalues ofDG2(X,λ) is necessary to see
that the results in [24] can be used to establish the fast convergence of GMRES
solving systems with matrix I −DG2(X,λ), and the independence of q of the
number of iterations. For this purpose we assume that the points x1, · · · , xq+1,
which approximate an arc of a torus, are inside a ball B(x0,mε) centered at a
point x0 on the torus and close, for instance, to the barycenter of the xj , and
of radius m times that of the balls defining the map G2, for some m. Suppose
also, for simplicity, that all the powers k′j are the same, and equal to a common
value k.

Each zj = P k(xj , λ) is in B(xj , ε), and µ̃j and µj are, respectively, the
projections of zj and xj onto the line x = xΣ2+µv2 (see Fig. 1), then µ̃j = µj+δj
with |δj | < ε. This implies that V = Ṽ + O(ε), and Ṽ −1V = I + O(ε). Then

the map G2 can be written as G2 = Z(X,λ)Ṽ (X,λ)−1V = Z(X,λ)+O(ε), and

DG2(X,λ) = DZ(X,λ) + O(ε).

The time integrations to find P k(xj , λ), j = 1, · · · , q + 1, are independent, and
then the Jacobian DZ has a block-diagonal structure with blocks DP k(xj , λ).
Since the xj are within a distance mε we can also write

DP k(xj , λ) = DP k(x0, λ) + O(ε).

Hence DG2 acts as q + 1 copies of DP k(x0, λ) plus a perturbation of order ε.
The map P k is computed by evolving a system of parabolic PDEs, and then the
Jacobian DP k(x0, λ) will have the spectrum tightly clustered around zero, with
p eigenvalues (p much less than the total dimension n) at a distance from the
origin greater than a certain β < 1. If the torus being computed is unstable some
of these latter will be out of the unit circle. By introducing a small perturbation
(for small enough ε) each eigenvalue of multiplicity q+1 splits into q+1 simple
eigenvalues inside a small disk [40]. Therefore, the matrix I−DG2 has a cluster
centered at +1 containing most of its spectrum and p more clusters, each one
containing q+ 1 eigenvalues, and which can be considered of radius less than β
for small enough ε. Under these conditions, the results in [24] apply, and after
kp iterations of GMRES a reduction in norm of the residual

‖rkp‖ ≤ C(σp−1β)k‖r0‖

can be expected, r0 being the initial residual, C a constant independent of k,
and σ the relative maximal distance between clusters. It must be stated that
this bound is not necessary sharp and faster convergences are possible.

The difference, when the degree of the interpolation polynomial q is changed,
is just the number of eigenvalues inside each disk, not the number of clusters
or their relative positions, assuming the new points xj are still in B(x0,mε).
Therefore, the convergence of GMRES is not affected by changing q. This situa-
tion is completely different to what happens when periodic orbits are computed
by multiple shooting. The integrations for the subintervals can be computed
in parallel, but the number of iteration of GMRES grows proportionally to the
number of subintervals m and no speed-up is achieved when using parallelism.
The reason is that the eigenvalues of the multiple-shooting matrix spread in cir-
cles because they are the m-th roots of that corresponding to the single-shooting
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method. Hence a preconditioner is required in this case to keep the iterations
independent of m [11].

Appendix C: Spline interpolation

The definition of G2(X,λ) is given here for cubic spline interpolation. With
the notation of section 2 and following [41], assume µ̃1 < · · · < µ̃q+1 (if not
they must be reordered), let Ii = [µ̃i−1, µ̃i], hi = µ̃i − µ̃i−1, and θ = (µ −
µ̃i−1)/hi ∈ [0, 1] if µ ∈ Ii. The cubic spline which passes through the points
(µ̃i, zi), i = 1, · · · , q + 1, with zi ∈ Σ1 ∩ Σi

2 ⊂ R
n, is given, in Ii, by

S(µ) = −h
2
i

6
(θ3 − 3θ2 + 2θ)Mi−1 +

h2
i

6
(θ3 − θ)Mi + (1 − θ)zi−1 + θzi

with Mi = S′′(µ̃i). The continuity of the first derivatives at the inner nodal
points gives the equations

hiMi−1+2(hi+hi+1)Mi+hi+1Mi+1 = 6

(

zi+1 − zi

hi+1
− zi − zi−1

hi−1

)

, i = 2, · · · , q.

Two additional conditions must be added to completely determine the spline.
The available options, which can easily be expressed in terms of the Mi, are
natural spline (M1 = Mq+1 = 0), parabolic runout spline (M1 = M2, Mq =
Mq+1), cubic runout spline (M1 = 2M2 −M3, Mq+1 = 2Mq −Mq−1), or M1

and Mq+1 can be approximated by finite differences from the values zi (of fourth
order if the accuracy of the spline has to be preserved). In any case the relation
between the zi and the Mi can be written as

(M1, · · · ,Mq+1)W1 = (z1, · · · , zq+1)W2,

where the matrices Wi ∈ R
(q+1)×(q+1), i = 1, 2, are tridiagonal in most cases.

If the spline is evaluated at the nodes µj and x′j = S(µj) we have

x′j = −
h2

ij

6
(θ3j − 3θ2j + 2θj)Mij−1 +

h2
ij

6
(θ3j − θj)Mij

+ (1 − θj)zij−1 + θjzij

with θj = (µj−µ̃ij−1)/hij
, if µj ∈ Iij

, i.e., there are matricesWi ∈ R
(q+1)×(q+1),

i = 3, 4 such that

(x′1, · · · , x′q+1) = (M1, · · · ,Mq+1)W3 + (z1, · · · , zq+1)W4.

Hence
(x′1, · · · , x′q+1) = (z1, · · · , zq+1)(W2W

−1
1 W3 +W4),

where the x′i and zi are column vectors, and

X ′ = G2(X,λ) = Z(W2W
−1
1 W3 +W4),

which is the alternative to Eq. (12).
The action of DG2 is similar to that corresponding to polynomial interpo-

lation, i.e.,

DG2(X,λ)(∆X,∆λ) = DZ(W2W
−1
1 W3 +W4)

+Z
(

DW2W
−1
1 W3 +W2W

−1
1 (−DW1W

−1
1 W3 +DW3) +DW4

)

,
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where DZ and DWi represent

DZ ≡ DZ(X,λ)(∆X,∆λ), DWi ≡ DWi(X,λ)(∆X,∆λ) =

q+1
∑

j=1

ηj

∂

∂µ̃j

Wi,

with ηj = v⊤2 DP
k′

j (xj , λ)(∆xj ,∆λ).

Appendix D: Polynomial fitting

The definition of G2(X,λ) is given here for least squares polynomial fit-
ting. As in the case of polynomial interpolation, given a value of ε, if X =
(x1, · · · , xq+1) ∈ U2 ⊂ R

n×(q+1) such that the projection of xj onto the line
x = xΣ2 + µv2 is µj , i.e.,

v⊤2 (xj − xΣ2 ) = µj , j = 1, · · · , q + 1, (17)

a larger collection of points (µ̂j , x̂j), j = 1, · · · , q′+1, with q′ > q can be obtained

by polynomial interpolation at a set of new nodes µ̂j . If X̂ = (x̂1, · · · , x̂q′+1) ∈
R

n×(q′+1), and V ∈ R
(q+1)×(q+1) and V̂ ∈ R

(q+1)×(q′+1) are the Vandermonde
matrices

V =









1 · · · 1
µ1 · · · µq+1

. . . . . . . . . .
µq

1 · · · µq
q+1









, and V̂ =









1 · · · 1
µ̂1 · · · µ̂q′+1

. . . . . . . . . . .
µ̂q

1 · · · µ̂q
q′+1









, (18)

then X̂ = XV −1V̂ .
Let zj = P k′

j (x̂j , λ) for j = 1, · · · , q′ + 1, be the first power of the Poincaré
map on x̂j falling inside the ball B(x̂j , ε), Z = (z1, · · · , zq′+1), and µ̃j = v⊤2 (zj−
xΣ2), j = 1, · · · , q′ + 1 (as for the map G2 in Fig. 1b.

The overdetermined system of equations to fit a polynomial of degree q

Q(µ) =

q
∑

i=0

αiµ
i,

with αi ∈ R
n, to the points zj , is Z = AṼ , where A = (α0, · · · , αq) ∈ R

n×(q+1),
and with

Ṽ =









1 · · · 1
µ̃1 · · · µ̃q′+1

. . . . . . . . . . .
µ̃q

1 · · · µ̃q
q′+1









(19)

the Vandermonde matrix associated with the µ̃j , Ṽ ∈ R
(q+1)×(q′+1). The normal

equations to find the least squares polynomial of degree q are

AṼ Ṽ ⊤ = ZṼ ⊤.

Therefore the definition of the map is

G2(X,λ) = X ′ = AV = ZṼ ⊤(Ṽ Ṽ ⊤)−1V, (20)
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where the dependence of Z and Ṽ on X and λ has no been explicited. This is
the second alternative to Eq. (12).

The action of the Jacobian of this G2 can be computed as before. If W =
Ṽ Ṽ ⊤ then G2(X,λ) = ZṼ ⊤W−1V , and

DG2(X,λ)(∆X,∆λ) =
[

DZṼ ⊤ + Z
(

DṼ ⊤ − Ṽ ⊤W−1(DṼ Ṽ ⊤ +DṼ ⊤Ṽ )
)]

W−1V,

where the identity DW−1 = −W−1DWW−1 has been used, DZ and DṼ rep-
resent, respectively,

DZ ≡ DZ(X,λ)(∆X,∆λ) =

(DP k′

1(x̂1, λ)(∆x̂1,∆λ), · · · , DP k′

q′+1(x̂q′+1, λ)(∆x̂q′+1,∆λ)),

with ∆X̂ = (∆x̂1, · · · ,∆x̂q′+1) = ∆XV −1V̂ , and

DṼ ≡ DṼ (X,λ)(∆X,∆λ) =













0 · · · 0
1 · · · 1

2µ̃1 · · · 2µ̃q′+1

. . . . . . . . . . . . . .

qµ̃q−1
1 · · · qµ̃q−1

q′+1



















η1 · · · 0
...

. . .
...

0 · · · ηq′+1






,

with ηj = v⊤2 DP
k′

j (x̂j , λ)(∆x̂j ,∆λ) for j = 1, · · · , q′ + 1.
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[20] C. Simó, Effective Computations in Hamiltonian Dynamics, in: Cent ans
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