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Transitions from Taylor vortex flow in a co-rotating Taylor–Couette system
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The stability of the Taylor vortex flow in the periodic Taylor–Couette problem with co-rotating
cylinders is examined. Transitions to twisted and wavy twisted vortices and wavy inflow and
outflow boundary flows are considered. Marginal stability curves for the transition from Taylor to
twisted and wavy twisted vortices have been calculated. The azimuthal wave number and the phase
velocity at their onset have also been obtained. To compare with experiments and previous
numerical works for the narrow gap approximation, the case of radius ratio 0.883 is analyzed in
detail. An explanation for the increase in the azimuthal wave number of the twisted vortices as the
Reynolds number of the inner cylinder is increased is provided. The velocity fields of twisted
vortices, wavy twisted vortices, wavy inflow, and wavy outflow boundary flows at their onset are
also shown. ©2000 American Institute of Physics.@S1070-6631~00!50312-2#
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I. INTRODUCTION

Transitions from Taylor vortices in the Taylor–Couet
problem have been well studied since the first contributi
of some authors at the end of the 1960s. The bifurcation
axisymmetric solutions have been studied in detail@see the
review article~Ref. 1!#. Daveyet al.2 and Eagles3 considered
nonaxisymmeric perturbations to the basic Couette flow
used weakly nonlinear theories, expanding the solution
powers of the distance from the inner critical Reynolds nu
ber to obtain wavy solutions.

In the early 1980s, Mullin and Benjamin4 pointed out the
strong dependence of the critical Reynolds number for
appearance of wavy vortices with the axial wavelength
Taylor vortices, and Jones5,6 published his numerical calcu
lations on these transitions showing also the strong dep
dence with the radius ratio. The discrepancies between
experiments and the theoretical calculations on the sele
azimuthal wave number at the onset of the wavy vortex flo
and on the Reynolds numbers at which the bifurcation occ
were explained as end wall effects by Walgraefet al.,7 using
amplitude equations, and later by Edwardset al.8 using a
Ginzburg–Landau equation. In most of these works, only
case where the outer cylinder is at rest was considered.

After the publication of the works of Anderecket al.9 on
new flows on the Taylor–Couette apparatus, the interes
the system with co-rotating cylinders increased. This c
was considered in the theoretical studies of Nagata10,11 and
Weisshaaret al.12 They used the narrow gap and almost c
rotating cylinders approximation. With this simplificatio
the problem becomes mathematically similar to the prob
of Rayleigh–Be´nard convection of a Boussinesq fluid.

a!Electronic mail: fina@fa.upc.es
b!Electronic mail: sanchez@fa.upc.es
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Ref. 12, the transition to twisted vortices was studied; th
were calculated and their stability boundaries establish
The critical Reynolds numbers were compared with A
derecket al. experiments.9 There was a small shift betwee
experimental data and their calculations, which was att
uted to the narrow gap approximation used. It was a
shown that the preferred transition was to wavy twisted v
tices instead of to twisted vortices for sufficiently high ax
wavelength. We show here that similar results are also
tained without the narrow gap approximation, so all the
discrepancies must be due to end wall effects, and not to
additional symmetry gained in the narrow gap case.

Transitions to subharmonic solutions from Taylor vor
ces were first observed by Cole13 and Lorenzenet al.14 They
used the term jet mode to describe these solutions, due to
greater amplitude of the velocity field near the outflo
boundaries. In Ref. 9, two subharmonic kinds of bifurcatio
were reported. The first one corresponds to the jet modes
was named wavy outflow boundaries flow~WOB!, because
only the outflow boundaries oscillate. The second one w
named wavy inflow boundaries flow~WIB! because in this
case only the inflow boundaries oscillate. We have obtai
the flow patterns of these two kinds of solutions and so
results about the transition curves.

The general formulation of the problem is provided
Sec. II, its particular form used for the calculation of Tayl
vortices in Sec. II A, their stability in Sec. II B, the numeric
methods used in Sec. III, and the results for the stabi
boundaries and flow patterns are given in Secs. IV A a
IV B, respectively.

II. FORMULATION OF THE PROBLEM

We consider the flow of an incompressible fluid confin
between two coaxial cylinders, of inner and outer radiir i* ,
7 © 2000 American Institute of Physics

to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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r o* and gap widthd5r o* 2r i* , which can rotate indepen
dently with angular velocitiesV i , Vo . The nondimensiona
parameters for the problem are the radius ratioh5r i* /r o* ,
and the Reynolds numbers associated with the tangentia
locity of the cylindersRi5dri* V i /n, Ro5dro* Vo /n, where
n is the kinematic viscosity. We used as length scale and
d2/n as time scale. The dimensionless Navier–Stokes eq
tions and the incompressibility condition are then

] tv1v"¹v52“p1Dv, “"v50.

Using the identityv"¹v5vÃv1“(v2/2), wherev5“Ãv
is the vorticity field, and including“(v2/2) into p̃, the
Navier–Stokes equations can be written as

~] t2D!v1vÃv52“ p̃, ¹"v50.

We will assume infinite cylinders and solutions periodic
the axial direction, of spatial periodl52p/k. Details on the
range ofk studied will be given later.

To eliminate the continuity equation and the press
from the formulation, we use a representation of the veloc
field using scalar toroidal and poloidal potentials:

v5¹Ã~cBêz!1¹Ã¹Ã~fBêz!.

This formulation has also been used in the study of the sp
flow.15 The details of the formulation can be seen in Ref.
Here we will only sketch the main lines.

The equations for the potentialscB andfB are obtained
as thez component of the curl and double curl of the origin
momentum conservation equation:

êz"¹Ã~~] t2D!v1vÃv!50,

êz"¹Ã¹Ã~~] t2D!v1vÃv!50.

A lengthy but straightforward computation gives

~] t2D!DhcB2êz"¹Ã~vÃv!50,

~] t2D!DDhfB2êz"¹Ã¹Ã~vÃv!50,

with Dh5D1D11/r 2]uu
2 , D5] r and D15D11/r . To re-

duce the order of the equations governing the zero-w
number modes, the following average operators will be us

PuF5E
0

2p

F~r ,u,z,t !du,

PzF5E
0

2p/k

F~r ,u,z,t !dz.

We definef, g, h, c, andf as

f 52DPucB ,

g52DPufB ,

h52DhPz~12Pu!fB ,

c5~12Pu!cB ,

f5~12Pu!~12Pz!fB .

The dependence of these potentials isf 5 f (t,r ,z), g
5g(t,r ,z), h5h(t,r ,u), c5c(t,r ,u,z), and f
5f(t,r ,u,z) and the following relations hold:
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Puh5Puc5Puf5Pzf50. ~1!

The velocity field can now be written as

v5 f êu1hêz1¹Ã~gêu1cêz!1¹Ã¹Ã~fêz!,

or, in components

v5S 2gz1
cu

r
1f rz , f 2c r1

fuz

r
,h1D1g2Dhf D .

~2!

From this latter expression ofv it can be seen that the new
potentialf is theu-averaged azimuthal velocity,D1g is the
u-averaged vertical velocity, andh is the z average ofvz

2D1g.
The equations for these potentials are

~] t2D̃ ! f 52Puêu"u, ~3!

~] t2D̃ !D̃g5Puêu"¹Ãu, ~4!

~] t2Dh!h52Pz~12Pu!êz"u, ~5!

~] t2D!Dhc5~12Pu!êz"¹Ãu, ~6!

~] t2D!DDhf52~12Pu!~12Pz!êz"¹Ã¹Ãu, ~7!

with u5vÃv and D̃5DD11]zz
2 .

The boundary conditions for this system of equations

f ~r i !5Ri , f ~r o!5Ro ,

and

gz5D1g5D1DD1~Pzg!50,

h50,

Dc5f5Dhf50,

cu1rDfz50,

DDhfu2rDDhcz50,

on both cylinders. They are obtained from the physi
boundary conditions on the cylinders, and from an integ
condition needed to make this formulation equivalent to
original Navier–Stokes equations.

A. Equations for the Taylor vortices

The above-mentioned formulation is general for thre
dimensional flows and will be used later to find the eige
value problem needed to study the stability of Taylor vor
ces. To calculate these, the formulation can be gre
simplified by using the fact that Taylor vortices are statio
ary and axisymmetric and that the boundaries that sepa
two of them are flat. It follows from these last two condition
that

h5c5f50.

The velocity field depends only onr and z, and can be ex-
pressed as

v~r ,z!5 f êu1¹Ã~gêu!5~2gz , f ,D1g!.

This is equivalent to using a streamfunction for the proje
tion of the velocity field onto ther –z plane~g in our case!,
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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plus a function describing the azimuthal velocity~f !, as was
used in Ref. 5. Now only the first two equations from syst
~3!–~7! have to be solved. Iff andg are separated into the
even and odd parts in the periodic directionz, the equations
can be also separated, and it is easy to see thatf must be even
and g must be odd. After expanding the right-hand side
the equations and dropping the dependence on time, the
tem to be solved to find the Taylor vortices is

D̃ f 52gzD1 f 1 f zD1g,

D̃D̃g5
1

r
]zf

21D1gD̃gz2gzD2D̃g,

where D25D21/r , with boundary conditionsf (r i)5Ri ,
f (r o)5Ro , and gz5D1g50 on both cylinders. We have
not written the conditionD1DD1(Pzg)50 because it is
identically satisfied ifg is odd.

B. The stability of Taylor vortices

To analyze the stability of Taylor vortices, we will con
sider only the kinds of perturbations observed in the exp
ments. So we will restrict our analysis to perturbations w
the same axial period 2p/k as the perturbed vortices, or t
subharmonic perturbations with period 4p/k.

If vv(r ,z) and vv(r ,z) are the velocity and vorticity
fields corresponding to Taylor vortices, we will consider p
turbations of the form

vp~r ,u,z,t !5vv~r ,z!1v~r ,z!emteimu, ~8!

mPZ being the azimuthal wave number of the perturbati
In order to obtain subharmonic transitions using pertur
tions of the same form~8!, the basic Taylor vortex flowvv
with axial periodicity 2p/k has been extended to an axi
period 4p/k. Thus both types of perturbations have be
treated in the same way, the only difference being the co
putational cost.

The perturbations have been written in terms of the s
lar potentials for the velocity:

f p~r ,z!5 f v~r ,z!1 f ~r ,z!emt,

gp~r ,z!5gv~r ,z!1g~r ,z!emt,

hp~r ,u!5h~r !eimuemt,

cp~r ,u,z!5c~r ,z!eimuemt,

fp~r ,u,z!5f~r ,z!eimuemt.

By substituting these expressions in Eqs.~3!–~7!, the follow-
ing family of eigenvalue problems depending onm is ob-
tained:

m f 5D̃ f 2Puêu"u, ~9!

mD̃g5D̃D̃g1Puêu"¹Ãu, ~10!

mh5Dhh2Pz~12Pu!êz"u, ~11!

mDhc5DDhc1~12Pu!êz"¹Ãu, ~12!

mDDhf5DDDhf2~12Pu!~12Pz!êz"¹Ã¹Ãu, ~13!
Downloaded 12 Feb 2001  to 161.116.81.151.  Redistribution subject 
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with u5vvÃv1vÃvv .
Taylor vortex flow is axisymmetric, and thenPuvv5vv

and (12Pu)vv50. Using this fact, the definitions off andg,
the properties of the operatorPu acting on the potentials~1!
and the linearity of the operator“, it is easy to prove the
following:

~1! The termsPuêu•u and Puêu"¹Ãu, from Eqs. ~9! and
~10!, only depend on the potentialsf andg.

~2! The terms Pz(12Pu)êz•u from Eq. ~11!, (1
2Pu)êz"¹Ãu from Eq. ~12!, and (12Pu)(1
2Pz)êz"¹Ã¹Ãu from Eq. ~13!, only depend on the po
tentialsh, c, andf.

Then the eigenvalue problem can be split into two parts. T
first two equations~9! and ~10! correspond to axisymmetric
(m50) perturbations of Taylor vortices that can be detec
while they are being calculated. As we are interested in a
muthal dependence (mÞ0) we will not consider this kind of
transition and we will putf 5g50 for the perturbation.

Another splitting of the eigenvalue problem can be o
tained by separating the potentials into their even and
axial components:

c5ce1co, f5fe1fo.

After substituting this potential decomposition in Eqs.~11!–
~13!, a detailed study of the parity of the terms that appea
each of the equations shows that the system can be sepa
into two kinds of eigenvalue problems.

Type I:

mh5Dhh2Pz~12Pu!~ êz"u!e, ~14!

mDhco5DDhco1~12Pu!~ êz"¹Ãu!o, ~15!

mDDhfe5DDDhfe2~12Pu!~12Pz!~ êz"¹Ã¹Ãu!e,
~16!

and type II:

mDhce5DDhce1~12Pu!~ êz"¹Ãu!e, ~17!

mDDhfo5DDDhfo2~12Pu!~12Pz!~ êz"¹Ã¹Ãu!o.
~18!

In Appendix A, we show the dependence of each right-ha
side term of the above equations~14!–~18! on the potentials,
once they are separated into their even and odd parts.

The set of boundary conditions for each of the eige
value problems are, for case I,

h50, ~19!

] rc
o5fe5Dhfe50, ~20!

imco1r ] rzf
e50, ~21!

imDDhfe2rDDh]zc
o50, ~22!

and for case II

] rc
e5fo5Dhfo50, ~23!

imce1r ] rzf
o50, ~24!

imDDhfo2rDDh]zc
e50, ~25!
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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at r 5r i ,r o .
The perturbation,v, of the Taylor vortices,vv , is

v5hêz1¹Ã~coêz!1¹Ã¹Ã~feêz!

in case I, and

v5¹Ã~ceêz!1¹Ã¹Ã~foêz!

in case II. In the latter, the boundaries between vortices
not perturbed and transitions to twisted vortices will be o
tained@see thez component ofv in ~2!#. In case I, because o
the azimuthal oscillations of the boundaries, and followi
Weisshaaret al.,12 we will name the solutions wavy vortice
or wavy twisted vortices, depending on their appearance
azimuthal wave number. Both have oscillatory boundar
but, as we will show later, the wavy twisted vortices cor
spond to higher azimuthal wave numbers. When the a
wavelength of the pattern is twice that of Taylor vortices,
will obtain WOB solutions in case I, since all inflow bound
aries remain flat while the outflow boundaries of Taylor vo
tex flow become wavy. In case II, all the outflow boundar
are flat and inflow boundaries become wavy. As a con
quence, we will obtain WIB solutions.

III. NUMERICAL METHODS

To examine the stability of the Taylor vortex flow, th
first step is to calculate it efficiently. In order to solve th
equations for the potentials for the Taylor vortex flow, w
have used spectral methods~Canutoet al.17!. The potentials
f v andgv have been expanded as

f v~x,z!5 f C~x!1(
l 52

L

(
n50

N

f l ,nHl
f~x!cosnkz,

gv~x,z!5(
l 54

L

(
n51

N

gl ,nHl
g~x!sinnkz,

where f C is the Couette flow,f C5Ar1B/r , which verifies
f C(r i)5Ri and f C(r o)5Ro . The polynomials of degree
l H l

f and Hl
g , are linear combinations of Chebyshev pol

nomials that verify the boundary conditionsHl
f50 andHl

g

5D1Hl
g50 on both cylinders. Their expressions can

found in Appendix B. The coordinatex52r 2(r i1r o) with
xP@21,1# has been introduced because of the domain of
Chebyshev functions. The axial wave numberk has been
included and the axial period isl52p/k.

The equations for the amplitudesf l ,n andgl ,n have been
obtained by a collocation method in the two coordinates.
have used a Gauss–Lobatto mesh for the radial coordi
and equally spaced points in the axial direction. This allo
an efficient evaluation of the equations forf v and gv by
using fast trigonometric transforms in both coordinates.

Taylor vortex flows are stationary. Therefore, they c
be computed using continuation methods varying differ
parameters. These techniques are described in detail in R
18–20. They have been previously applied in the Taylo
Couette problem to calculate the bifurcation diagrams for
Taylor vortices~see the reference list in the review artic
Ref. 1!, to compute wavy vortex flows21 and spiral flows.15
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Let p be the continuation parameter~Ri , Ro , h, or k!,
and letX be the vector formed with the amplitudesf l ,n and
gl ,n . Then the discretized steady Navier–Stokes equati
can be written in the formF(X,p)50. These equations im
plicitly define a curve of solutionsX5X(p) wherever
det(DX F(X,p))Þ0. At each stage of the continuation proce
from the previous known points on the curve of solutions
predictor step provides the initial guess from which a corr
tor step, based on a modified Newton–Raphson iterat
converges to a new point on the curve. For the first t
steps, the prediction is made using the tangent to the cu
and after, polynomial extrapolation is used based on the
three points on the curve.

The stability of each Taylor vortex solution is obtaine
during the continuation process. The code that we have
veloped follows a curve of solutions and stops when a u
defined conditionG(X,p)50 holds. This procedure ha
been used withG defined as the real part of the leadin
eigenvalue of one of the eigenvalue problems already st
~14!–~18!.

The eigenvalue problems have also been solved usin
collocation method on the same mesh used to obtain Ta
vortices. The expansions for the potentialsh, ce, co, fe,
andfo are analogous to those forf andg:

h~x!5(
l 52

L

hlHl
h~x!,

co~x,z!5 i (
n51

N F(
l 54

L

c l ,n
o Hl ,n

co
~x!1(

l 56

L

c̄ l ,n
o H̄ l ,n

co
~x!Gsinnkz,

fe~x,z!5 (
n51

N F(
l 54

L

f̄ l ,n
e H̄ l ,n

fe
~x!1(

l 56

L

f l ,n
e Hl ,n

fe
~x!Gcosnkz,

ce~x,z!5 (
n50

N F(
l 54

L

c l ,n
e Hl ,n

ce
~x!1(

l 56

L

c̄ l ,n
e H̄ l ,n

ce
~x!Gcosnkz,

fo~x,z!5 i (
n51

N F(
l 54

L

f̄ l ,n
o H̄ l ,n

fo
~x!1(

l 56

L

f l ,n
o Hl ,n

fo
~x!Gsinnkz,

where Hl
h ,Hl ,n

co
,H̄ l ,n

co
,H̄ l ,n

fe
,Hl ,n

fe
, etc., are combinations o

Chebyshev polynomials that verify one of the sets of bou
ary conditions for the potentials~19!–~22! or ~23!–~25!. In
Appendix B the details about the construction of these ba
of functions can be found.

To solve the two generalized eigenvalue problems
pending on the azimuthal wave numberm

AmX5mmBmX,

we have used theLAPACK library. The eigenvectors contai
the coefficientsX5(hl ,c l ,n

o ,c̄ l ,n
o ,f̄ l ,n

e ,f l ,n
e ) in case I, and

X5(c l ,n
e ,c̄ l ,n

e ,f̄ l ,n
o ,f l ,n

o ) in case II, andAm ,Bm are complex
matrices.

Some tests have been made to ensure that the result
sufficiently accurate. They have been summarized in Tabl
and II. With the first we justify why the lower values ofm do
not appear in any of the subsequent figures. The sec
shows the degree of accuracy achieved in our calculat
for the higher azimuthal wave numbers. In both cases
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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have solved stability problems of the type II, correspond
to twisted vortices, withRo51060, the highest outer Rey
nolds number considered in this study, and for a fixed rad
ratio h50.883.

In Table I, the values of the inner critical Reynolds num
ber at which Taylor vortices lose stability are shown as
function of the truncation parametersL andN, for azimuthal
wave numbersm51,2,12,13 and for three values of the ax
wavelengthl51.8,2.1,2.5. They have been obtained by
creasing the inner Reynolds numberRi because, as can b
seen in Table I, the critical inner Reynolds number is n
very sensitive to the value ofl for a fixed resolution, in
contrast with the results for higher values ofm shown in
Figs. 1 and 2. In this latter case the curves have been
tained by increasingl because of the appearance of fold
All the remaining parameters have been kept fixed.

The critical values ofRi , for the azimuthal wave num
bers in the rangem51 to m512, do not converge with the
resolutions we are able to use. They grow as the radial r
lution L is increased and seems to be, in general, insens
to changes in the axial truncation parameterN. They could
be even greater than the values we have obtained or

TABLE I. Dependence of the inner critical Reynolds number on the tr
cation parametersL andN for different values of the azimuthal wave num
ber (m51,2,12,13) and of the axial wavelength (l51.8,2.1,2.5) and for
Ro51060.

L N Ri c
(l51.8) Ri c

(l52.1) Ri c
(l52.5)

24 12 1275.38 1276.47 1285.53
24 16 1275.38 1276.46 1286.21

m51 32 12 1365.09 1365.63 1382.86
32 16 1365.13 1365.66 1369.18
36 12 1474.65 1476.47 1463.90
36 16 1475.43 1476.49 1479.07
48 12 1882.29 1880.17 1837.74
48 16 1877.07 1873.79 1895.81

24 12 1289.93 1290.15 1297.84
24 16 1289.93 1290.12 1299.19

m52 32 12 1400.02 1394.14 1380.36
32 16 1399.61 1393.34 1393.59
36 12 1497.48 1500.53 1505.12
36 16 1497.92 1500.84 1506.81
48 12 2010.49 1957.45 1890.57
48 16 1982.74 1972.42 1978.97

24 12 1364.58 1360.12 1385.81
24 16 1364.82 1360.12 1383.30

m512 32 12 1491.07 1504.59 1645.98
32 16 1491.45 1504.04 1644.04
36 12 1612.64 1689.52 1647.29
36 16 1594.57 1687.56 1689.82
48 12 2293.31 2210.43 2064.15
48 16 2030.41 2209.99 2096.94

24 12 1369.89 1363.29 1354.58
24 16 1369.76 1363.44 1356.31

m513 32 12 1487.18 1505.07 1240.43
32 16 1487.93 1505.48 1240.64
36 12 1610.92 1661.41 1240.36
36 16 1598.69 1679.88 1240.63
48 12 1866.06 1857.17 1240.63
48 16 1843.15 1828.08 1240.66
Downloaded 12 Feb 2001  to 161.116.81.151.  Redistribution subject 
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corresponding curves may have folds, as form.12, and they
may be at the right of the range ofl considered (1.6,l
,2.5), as the sequence of curves in Figs. 1 and 2 seems
indicate. Another possibility is that Taylor vortices are stab
to some of these kinds of perturbations in the range of valu
of l for which they exist.

The casem513 and l52.5 is the only exception in
Table I because this curve is the next one to appear at
right in Fig. 2 afterm514. The convergence is now quite
good showing five stable significant digits.

FIG. 1. Marginal stability curves for the onset of twisted vortices of differ
ent azimuthal wave numbers. The values of the parameters held constan
Ro5815 andh50.883.

TABLE II. Dependence of the critical wavelengthlc on the truncation
parametersL and N for m516 andm528 and for a fixed value of the
Reynolds numbersRi51400 andRo51060.

L N lc

24 12 1.868
24 16 1.879
24 24 1.880
32 12 2.410

m516 32 16 2.411
32 24 2.411
36 12 2.457
36 16 2.456
48 12 2.448
48 16 2.447

24 12 1.956
24 16 1.947
24 24 1.948
32 12 1.845

m528 32 16 1.845
32 24 1.845
36 12 1.821
36 16 1.820
48 12 1.823
48 16 1.824

-

to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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In Table II a similar study is shown for azimuthal wav
numbersm516 andm528. The Reynolds numbers areRi

51400 andRo51060 and the critical point has been o
tained by increasingl as explained previously. The value o
Ri in the upper region of Fig. 2 has been selected becaus
the special sensitivity to the truncation parameters. At low
values ofRi the dependence withL and N is not so pro-
nounced.

The results show that the critical point is again mu
more dependent onL than onN. Doubling N from 12 to 24
~for L524 andL532! only changes, at most, the third sig
nificant digit of lc . In contrast, to have the same accura
at leastL536 is needed. The same situation was reporte
Ref. 15 for the calculation of the spiral flow.

The resolution used to calculate the curves shown in
the following figures isL536 andN512. Additional check-
ings of accuracy have been made in some selected poin
the curves changing the axial resolution toN516.

IV. RESULTS AND DISCUSSION

A. Stability boundaries

If p andq are two parameters on which Taylor vortic
depend~Ri , Ro , h, or k!, the neutral curves Re(mm)(p,q)
50 are the boundaries for the onset of tertiary flows w
azimuthal wave numberm. These curves have been obtain
by slicing the parameter planep–q. For a fixedp, the sta-
bility of Taylor vortices parametrized byq has been studied
to find a point on the neutral curve. This process is repea
for different values ofp. In the presence of turning points o
Re(mm)(p,q)50, the role ofp andq can be interchanged. W
will now present the results for (p,q)5(l,Ri), where l
52p/k is the axial wavelength of Taylor vortices.

FIG. 2. Marginal stability curves for the onset of twisted vortices of diffe
ent azimuthal wave numbers. The values of the parameters held consta
Ro51060 andh50.883.
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Although transitions to time-dependent axisymmet
flows are known to exist in the finite length case with t
outer cylinder at rest22 we have focused our attention o
nonaxisymmetric bifurcations because we are intereste
comparing with experiments performed in co-rotation with
large aspect ratio.

In Figs. 1 and 2 we show the marginal stability curv
for the onset of twisted vortices of azimuthal wave numb
m. For a direct comparison with previous experimental a
numerical results, we have taken a fixed gaph50.883, and
outer Reynolds numbersRo5815 andRo51060 in Figs. 1
and 2, respectively. Beside each neutral curve we have i
cated its corresponding azimuthal wave number, rang
from m513 to m534. As stated before, the curves form
,13 are all outside the limits of the plots. Negative values
m correspond to conjugate eigenvalues and eigenfuncti
so only positive values have been considered. We have
served no qualitative difference in the shape of these tra
tion curves by changing the parity ofm. Therefore, we have
only plotted half of the azimuthal wave numbers in the afo
mentioned range.

In all the curves the criticalRi number depends strongl
on the axial wavelength, and turning points appear. The s
behavior has been previously observed in the transition
wavy vortices.4 The envelope curve of this set of neutr
curves has been plotted with solid lines in both Figs. 1 and

The intersections of the neutral curves for numbersm
and m11 correspond to bicritical points. At these point
Taylor vortices become unstable and twisted vortices w
the same axial wavelength but different azimuthal wa
number can appear. Furthermore, complicated dynam
could be observed around these points due to their hig
codimension. The nonlinear interaction between these dif
ent modes could be the reason why, in the experime
twisted vortices of different azimuthal wave number can c
exist. Bicritical points have also been obtained for the tra
sition to spiral vortices form Couette flow.23,24

It is interesting to notice that as the inner Reynolds nu
ber is increased with a fixed axial wavelength, transiti
curves to higher azimuthal wave numbers are crossed. Th
consistent with the experiments of Anderecket al.9 They
found that, after the onset of the twisted vortices~with wave
numbers ranging from 14 to 16 forl'2.4!, there was a
transition in the number of twists to a range of 17 to 20 if t
Reynolds number was increased. For other axial wa
lengths, they found values ofm up to 30. Our results are in
good accordance with these experimental results in the
ues ofm and in the order in which they appear.

If only the envelope is considered, as the axial wav
length is increased the first transition occurs at lower in
Reynolds and azimuthal wave numbers. In Ref. 9 it w
suggested that this could be the reason why in the exp
ments the end vortices are the first to bifurcate to twis
ones due to their larger size, when the rest of the Tay
vortices in the core of the fluid are still stable.

In Figs. 3~a! and 3~b!, the solid lines are the envelop
curves plotted in Figs. 1 and 2, the dashed lines corresp
to the calculations of Weisshaaret al.,12 and the triangles to
Anderecket al.9 experiments. Our envelopes agree with t

are
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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stability boundaries obtained in Ref. 12, where narrow g
and almost co-rotating cylinders is assumed, for the hig
values of the axial wavelength. There are many possible
planations for the discrepancies for the lower values ofl.
They could be due to numerical inaccuracies~although we
have shown in Table II that increasing the resolution in o
calculations does not change the critical values ofl signifi-
cantly! or simply to the fact that the two calculations are n
for the same value of the radius ratio.

In the case ofRo51060, there is a gap between bo
numerical results and the experimental ones. Therefore,
assumption of narrow gap and almost co-rotating cylinder
not responsible for this disagreement, which could be du
the effect of the approximation of cylinders of infinite leng
used in both numerical calculations.

Only twisted vortices seem to have been observed in
experiments of Anderecket al.9 in these regions of param

FIG. 3. Comparison of our results with previous ones. The solid lines
the envelopes of the curves of Figs. 1 and 2. The dashed lines correspo
the calculations of Weisshaaret al. ~Ref. 12!, and the triangles are take
from Anderecket al. ~Ref. 9! experiments.~a! Ro5815 andh50.883,~b!
Ro51060 andh50.883.
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eters. We have also found the neutral curves for the tra
tions to wavy twisted vortices in order to contrast the n
merical results with this experimental evidence. The
neutral curves for a fixedm are similar to those previously
plotted. In Figs. 4~a! and 4~b!, the envelopes have been plo
ted in dashed lines for the same two aforementioned va
of Ro . As before, they match, for the higher values ofl,
with the transition curves calculated in Ref. 12. The so
lines are the envelopes corresponding to twisted vortices
viously shown. The two symbols, one on each curve in F
4~b!, indicate the position at which the eigenfunctions ha
been plotted in Figs. 7~b! and 7~c!.

In both our calculations and those of Weisshaaret al.12

the first instability is, above a certain value ofl, to wavy
twisted vortices. In Figs. 4~a! and 4~b! this is true for l
.2.07 if Ro5815 and forl.1.83 if Ro51060. This behav-
ior differs from the experimental results obtained by A
derecket al.9 In Ref. 12, it is suggested that this is due to t

e
to

FIG. 4. Boundaries for the onset of twisted~solid line! and wavy twisted
vortices ~dashed line!. ~a! Ro5815 andh50.883. ~b! Ro51060 andh
50.883. The symbols in~b! indicate the position of the eigenfunctions i
Figs. 7~b! and 7~c!.
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small gap approximation they used, but as we have sho
both calculations give the same results. We think that
could also be related to the finite length of the cylinders. T
effects of the end walls on the two kinds of solutions cou
be different. The vertical oscillation of wavy twisted vortice
would be damped by the end walls, delaying their onset.
twisted vortices would be less affected due to their flat n
oscillatory separation surfaces.

In a recent work,25 it has been proved that, by period
cally forcing the Taylor–Couette system, it is possible
interchange the marginal stability boundaries for the tran
tions to Taylor vortices and nonaxisymmetric modes. Wh
the outer cylinder is at rest, the first unstable mode is t
corresponding to Taylor vortices, but by superposing a v
tical periodic oscillation of the inner cylinder it is possible
obtain nonaxisymmetric modes. This has also been re
duced experimentally.26 It would be interesting to see if by
some kind of periodic forcing~vertical oscillations or peri-
odic modulations of the velocity of any of the cylinders! the
boundaries for the transitions to twisted and wavy twis
vortices are interchanged. This would provide an experim
tal way to observe the latter.

We have also made a brief study of the dependenc
the onset of twisted vortices with the radius ratioh. Transi-
tions to any other kind of solutions previously mention
have only been studied forh50.883. The results are sum
marized in Figs. 5 and 6.

Because it is computationally expensive to calculate
envelope curves including all the azimuthal wave numbe
we have only computed the transitions to even values om.
Although this has the consequence that some curves are
smooth, they are informative of the critical Reynolds nu
bers and of the range of azimuthal wave numbers that co
be expected in these cases.

In Fig. 5~a!, the even envelopes of the neutral curv
corresponding toh50.7, 0.75, 0.8, 0.85, 0.883 have be
plotted for Ro5815. The labels beside each point indica
the corresponding azimuthal wave numbersm.

It can be observed that ash is decreased, the range ofm
decreases from the range 14–33 forh50.883 to 2–6 forh
50.7. High azimuthal wave number flows are only observ
in the case of radius ratios near one. As far as we kn
twisted vortices of lowm have not been observed in expe
ments with a wide gap, perhaps because in most cases
have been performed with the outer cylinder at rest, or
cause the first transition is to wavy vortex flows.

For the smaller radius ratios, the transitions to twis
vortices occurs at a higher inner Reynolds numbers, bu
the ratioRi /Ri v

~critical inner Reynolds number for the ons

of twisted vortices over inner Reynolds number for the tra
sition to Taylor vortices! is plotted as a function of the axia
wavelengthl @Fig. 5~b!#, it can be seen that the region o
stable Taylor vortices becomes relatively narrower. It is a
clear from this figure that for any value of the radius rat
the Taylor vortices with higher axial wavelength are the fi
to bifurcate to this kind of solution and that the slope of t
curves increases withh.

In Fig. 6, we have compared the phase velocity on
Downloaded 12 Feb 2001  to 161.116.81.151.  Redistribution subject 
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even envelopes with the mean angular velocity of the cy
ders, both scaled withRi , for different values ofh. From the
previous even envelope curves shown in Fig. 5, we h
obtained the scaled phase velocityc5v/mRi ,v being the
imaginary part of the eigenvalue that crosses the imagin
axis at the bifurcation, andRi the corresponding critical inne
Reynolds number. The phase velocity is shown in solid lin
and the mean angular velocity with dotted lines. The ph
velocity of twisted vortices is almost independent of the ax
wavelength. Moreover, as the radius ratio tends to one,
constant is close to the mean angular velocity. An expla
tion of this behavior was given by Jones5 for the case of
transition to wavy vortices. He suggested that the go
agreement he obtained with experiments was due to the
that the azimuthal velocity of the inviscid core between t
cylinders principally determines the phase velocity.

We have not made a detailed study of the subharmo

FIG. 5. Boundaries for the onset of even azimuthal wave number twis
vortices for different radius ratios.~a! Inner critical Reynolds number vsl.
~b! Inner critical Reynolds number over inner Reynolds number for
transition to Taylor vortices vsl. The dominant azimuthal wave numbe
are labeled in~a!.
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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transitions because of the high computational cost of solv
the eigenvalue problems with twice the vertical resolution
the previous case. Nevertheless, we have computed s
critical points to check if they match the experimental
sults. For WIB flows, the Reynolds numbers at which bifu
cations occur are in good agreement with data from A
derecket al.,9 but for WOB flows we have always obtaine
much lower critical Reynolds numbers. We do not have
good explanation for this fact. It could be due to numeri
inaccuracies, which are difficult to check due to the hi
resolution needed, or to the periodic approximation. In a
case, in the following we will show the patterns obtained
both cases. They reproduce the qualitative behavior of th
solutions quite well.

B. Flow patterns

In order to obtain a picture of the flow patterns near
bifurcation boundaries, we have added some small mult
of the velocity perturbation field to the axisymmetric velo
ity field of Taylor vortices. Then the perturbed velocity fie
is written

v5vv1e~vpeivt1 imu1 v̄pe2 ivt2 imu!,

wherevv is the velocity field of Taylor vortices, andvp and
v̄p are the conjugate eigenfunctions with eigenvaluesiv and
2 iv corresponding to the bifurcations with azimuthal wa
numberm and 2m, respectively. In all the plots we hav
fixed the azimuthal phase by settingt50, i.e.,

v5vv12e~Re~vp!cosmu2Im~vp!sinmu!.

The parameters of the flows plotted in all subsequent figu
can be seen in Table III.

In Figs. 7~a!, 7~b!, and 7~c!, we show the velocity fields
of wavy vortices, twisted vortices, and wavy twisted vortic
respectively. The top plot on each group is a perspec
view of the projection of each velocity field at radiusr
50.9(r i2r o)1r i onto the cylindrical surface of the sam

FIG. 6. Relative phase velocities of the twisted vortices at the marg
stability boundaries~solid lines! and mean angular velocity~dotted lines!,
for different values ofh.
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radius. In order to obtain a better visualization, we show t
vertical periods, and the phase velocity of the whole str
ture has been subtracted. Then the view would correspon
the rotating frame of reference at which the solutions
stationary. Below each perspective view, we have plot
projections of each velocity field onto five different vertic
planes equally spaced in an azimuthal period 2p/m. The
left-hand side of each rectangle corresponds to the inner
inder, and the right-hand side to the outer one. The ang
positions of the vertical sections have been indicated in
perspective view.

The symmetry properties of each of these tertiary flo
can be seen in the plots. Twisted vortices keep the reflex
symmetry of Taylor vortices about a horizontal plane b
cause they are solutions of the eigenproblem of type II~17!
and ~18!, so the flat boundaries between them do not su
any distortion. Wavy and wavy twisted vortices break th
symmetry. Both are solutions of the eigenproblem of typ
~14!–~16!, but the latter have higher azimuthal wave numb
and are found for higher outer cylinder velocities.

Although the perspective view of twisted and wav
twisted vortices have some similarities, the inclined rope-l
structures are quite different. In the first case, the bands w
positive and negative slopes are symmetric about the sep
tion plane between vortices and they appear because the
turbation of the Taylor vortex flow moves the center of t
vortices from their original position, with a vertical displac
ment that depends on the azimuthal coordinate. This can
clearly seen in the sequence of vertical plots. In the cas
wavy twisted vortices, however, the bands of positive slo
are shifted, in the azimuthal direction, from those of negat
slope. The bands appear, again, as a consequence of a
cal shift of the vortices. Due to the reflexion symmet
breaking, the two eddies represented in the verticals cuts
not of the same size, as in the case of wavy vortices.

Figures 8~a! and 8~b! show the global structure of sub
harmonic flows WIB and WOB, respectively. As in previou
figures, on top there are perspective views of the veloc
fields at radius r 50.9(r i2r o)1r i in Fig. 8~a!, and r
50.2(r i2r o)1r i in Fig. 8~b!. Different radii have been cho
sen to make the patterns more evident. The cylinder heigh
the axial periodicity of the solutions, which is twice that
Taylor vortices. Again, the velocity field at five vertical se
tions equidistant in an azimuthal period 2p/m have been
plotted below.

The symmetry properties of both subharmonic solutio
are clear in the plots. For each of them, one of the two kin
of boundaries between vortices remain flat, the outflow

al

TABLE III. Value of the parameters for the eigenfunctions shown in th
section. In all of themh50.883.

Tertiary flows m l Ro Ri

Wavy vortices 6 2.00 100. 470.
Twisted vortices 24 2.02 1060. 1290.
Wavy twisted vortices 14 2.01 1060. 1260.
WIB 12 2.00 1100. 1401.
WOB 8 2.00 700. 1051.
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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WIB and the inflow for WOB, while the other is wavy. Th
maxima of the velocity are achieved on the wavy boundar
This was the reason why experimental researchers used
term jet modes. Another well-known characteristic is that
oscillatory boundaries move in antiphase, as can be see
the perspective views.

FIG. 7. Velocity fields of~a! wavy vortices,~b! twisted vortices, and~c!
wavy twisted vortices of azimuthal wave numbers 6, 24, and 14, res
tively. The top plot on each group is a perspective view for radiusr
50.9(r i2r o)1r i . Below each one are the projections of each velocity fi
onto five different vertical planes.
Downloaded 12 Feb 2001  to 161.116.81.151.  Redistribution subject 
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V. CONCLUSIONS AND PERSPECTIVES

The transitions from Taylor vortices have been studi
We have compared our results for the transition to twis
vortices with the previous ones from Weisshaaret al.,12

showing that their discrepancies with the experiments of A
derecket al.9 are not due to the narrow gap approximati
but to the infinite length approximation. If only the first tran
sition is considered both numerical calculations give ve
similar results. A possible mechanism for the changes in
azimuthal wave numbers when the inner Reynolds numbe
increased has been provided. It has also been shown tha

c-

FIG. 8. Velocity fields of~a! WIB and ~b! WOB flows of azimuthal wave
numbers 12 and 8, respectively. The top plot on each group is a perspe
view for radius r 50.9(r i2r o)1r i in ~a!, and r 50.2(r i2r o)1r i in ~b!.
Below each one are the projections of each velocity field onto five differ
vertical planes.
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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kind of solution with high azimuthal wave numbers is relat
to narrow gaps. For any value of the radius ratio, the vorti
with higher axial wavelength are the first to bifurcate
twisted vortices.

Transition to wavy inflow and outflow boundaries flow
have been studied, although in much less detail mainly
cause of the numerical cost of the computations. For
reason and to start the study of the finite length case~at least
for moderate aspect ratios! new numerical methods ar
needed. We are developing numerical continuation and
ear stability analysis techniques based on Arnoldi metho27

to cope with this and other problems in fluid mechanics.
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APPENDIX A: DEPENDENCE OF THE EQUATIONS
ON THE POTENTIALS

In this Appendix we study the dependence on the pot
tials h, co, ce, fo, fe of the odd terms (êz"¹Ãu)o,
(êz"¹Ã¹Ãu)o and the even terms (êz"¹Ãu)e,
(êz"¹Ã¹Ãu)e, which are defined as

êz"¹Ãu5
1

r
uu1] ruu2

1

r
]uur ,

êz"¹Ã¹Ãu5
1

r
]zur2

1

r
] ruz1] rzur2] rr uz2

1

r 2 ]uu
2 uz

1
1

r
]zu

2 uu .

From these expressions, it is clear that (êz"¹Ãu)e,
(êz"¹Ãu)o, (êz"¹Ã¹Ãu)e, and (êz"¹Ã¹Ãu)o only depend
on the velocities components$ur

e ,uu
e%, $ur

o ,uu
o%, $ur

o ,uu
o ,uz

e%,
and$ur

e ,uu
e ,uz

o% respectively.
Let us now split the odd and even part ofu as a function

of the potentials, bearing in mind thatu5vvÃv1vÃvv ,
where the velocity and vorticity of the Taylor vortices are

vv5~2gz
o , f e,D1go!, vv5~2 f z

e ,2D̃go,D1 f e!,

and the nonaxisymmetric perturbed velocity and vortic
fields are

v5S 1

r
cu1f rz ,2c r1

1

r
fuz ,h2Dhf D ,

v5S 1

r
hu1c rz2

1

r
Dfu ,2hr1

1

r
cuz1DDf,2Dhc D .

Then we have
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e 1DDfoDD1go1Dhcef e2D̃go~2Dhfo!

2D1 f eS 2c r
e1

1

r
fuz

o D ,

ur
o5S 2hr1

1

r
cuz

o 1DDfeDD1go1Dhcof e

2D̃go~h2Dhfe!2D1 f eS 2c r
o1

1
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e D ,

uu
e5Dhcegz

o2S c rz
e 2

1
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o D

1 f z
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o2S 1
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o 2
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1 f z
eS c r

e2
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r
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o D1D̃goS 1

r
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e1f rz
o D ,

where allu derivatives should be substituted by the produ
by im.

From these expressions for the velocity components
can be seen that$ur

e ,uu
e ,uz

o% and$ur
o ,uu

o ,uz
e% only depend on

the set of potentials$ce,fo% and $h,co,fe%, respectively.
Then (êz•¹Ãu)e and (êz•¹Ã¹Ãu)o only depend on
$ce,fo%, and (êz•¹Ãu)o and (êz•¹Ã¹Ãu)e only depend on
$h,co,fe%.

So it has been shown that in the eigenvalue problem
type I only the potentials$h,co,fe% are involved, and that
type II only involves$ce,fo%.

APPENDIX B: CONSTRUCTION OF BASIS
FUNCTIONS

In this Appendix we show how to obtain the differe
basis of functions used to expand the potentials.

The potentialsf, h, andg have been expressed in term
of the functionsHl

f5Hl
h andHl

g , respectively, which verify
the boundary conditionsHl

f50 andHl
g5D1Hl

g50:

Hl
f5H Tl2T0 if l even

Tl2T1 if l odd

for l>2 and

Hl
g5H Tl2 l 2/4T21~ l 2/421!T0 if l even

Tl2~12 l 2!/8T32~92 l 2!/8T1 if l odd
to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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for l>4, Tl being the Chebyshev polynomial of degreel.
They can be obtained by the same procedure that is det
next for the more complicated case of the potentialsc andf.

The basis forc andf cannot be obtained separately d
to the coupled boundary conditions. Only the set of bound
conditions corresponding to the type I eigenvalue probl
described in Sec. II will be considered in detail. The oth
type has been treated in a very similar way. Therefore a b
for the pair (co,fe) verifying the set of boundary condition

] rc
o5fe5Dhfe50, ~B1!

imco1r ] rzf
e50, ~B2!

imDDhfe2rDDh]zc
o50 ~B3!

on both cylinders will be found.
co andfe are first expanded in the form

co~x,z!5 i (
n51

N S (
l 50

L

al ,nTl~x!D sinnkz,

fe~x,z!5 (
n51

N S (
l 50

L

bl ,nTl~x!D cosnkz.

If these expressions are substituted into the linear bou
ary conditions~B1!–~B3!, the Fourier coefficients of the re
sulting equations are relations between the constantsal ,n and
bl ,n that ensure that the boundary conditions will be satisfi
As an example, condition~B2! implies

(
l 50

L

~mal ,nTl~x!1rnkbl ,n] rTl~x!!50

for n51,...,N and on the two cylinders (x561). Boundary
conditions are transformed in this way into a set of algebr
relations between the coefficientsal ,n andbl ,n . Therefore we
can consider the subset corresponding to a fixed value on.
From these latter ten equations, ten of the coefficients ca
expressed in terms of the rest. The dependent coeffici
which have been used are

$al ,n%0< l<3 $bl ,n%0< l<5 . ~B4!

These have been chosen because there are two more b
ary conditions forfe than forco.

Consider now the functions

Hl ,n
co

~x!5Tl~x!1 (
k50

3

ak,n
l Tk~x!,

H̄ l ,n
fe

~x!5 (
k50

5

bk,n
l Tk~x!, l>4,

obtained by setting all the independent coefficients to z
except that ofTl in the expansion ofco which is set to one
and with $ak,n

l %0<k<3 and $bk,n
l %0<k<5 satisfying the afore-

mentioned relations between coefficients. The coup

(Hl ,n
co

,H̄ l ,n
fe

) verify ~B1!–~B3!. Analogously the functions

(H̄ l ,n
co

,Hl ,n
fe

), defined as

H̄ l ,n
co

~x!5 (
k50

3

ak,n
l Tk~x!,
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Hl ,n
fe~x!5Tl~x!1 (

k50

5

bk,n
l Tk~x!, l>6,

and obtained by setting all the independent coefficients
zero except that ofTl in the expansion offe which is set to
one, verify the set of boundary conditions.

Finally the expansions used forco,fe are

co~x,z!5 i (
n51

N F(
l 54

L

c l ,n
o Hl ,n

co
~x!1(

l 56

L

c̄ l ,n
o H̄ l ,n

co
~x!Gsinnkz,

fe~x,z!5 (
n51

N F(
l 54

L

f̄ l ,n
e H̄ l ,n

fe
~x!1(

l 56

L

f l ,n
e Hl ,n

fe
~x!Gcosnkz.

1S. J. Tavener and K. A. Cliffe, ‘‘Primary flow exchange mechanisms
the Taylor apparatus applying impermeable stress-free boundary co
tions,’’ IMA J. Appl. Math. 49, 165 ~1991!.

2A. Davey, R. C. Diprima, and J. T. Stuart, ‘‘On the instability of Taylo
vortices,’’ J. Fluid Mech.31, 17 ~1968!.

3P. M. Eagles, ‘‘On the stability of Taylor vortices by fifth-order amplitud
expansions,’’ J. Fluid Mech.49, 529 ~1971!.

4T. Mullin and T. B. Benjamin, ‘‘Transition to oscillatory motion in the
Taylor experiment,’’ Nature~London! 288, 567 ~1980!.

5C. A. Jones, ‘‘Nonlinear Taylor vortices and their stability,’’ J. Flui
Mech.102, 249 ~1981!.

6C. A. Jones, ‘‘The transition to wavy Taylor vortices,’’ J. Fluid Mech
157, 135 ~1985!.

7D. Walgraef, P. Borckmans, and G. Dewel, ‘‘Onset of wavy vortex flow
finite geometries,’’ Phys. Rev. A329, 1514~1984!.

8W. S. Edwards, S. R. Beane, and S. Varma, ‘‘Onset of wavy vortice
the finite-length Couette–Taylor problem,’’ Phys. Fluids A3, 1510
~1991!.

9C. D. Andereck, R. Dickman, and H. L. Swinney, ‘‘New flows in a circu
lar Couette system with co-rotating cylinders,’’ Phys. Fluids26, 1395
~1983!.

10M. Nagata, ‘‘Bifurcations in Couette flow between almost corotating c
inders,’’ J. Fluid Mech.169, 229 ~1986!.

11M. Nagata, ‘‘On wavy instabilities of the Taylor-vortex flow betwee
corotating cylinders,’’ J. Fluid Mech.88, 585 ~1988!.

12E. Weisshaar, F. H. Busse, and M. Nagata, ‘‘Twist vortices and th
instabilities in the Taylor–Couette system,’’ J. Fluid Mech.226, 549
~1991!.

13J. A. Cole, ‘‘The effect of cylinder radius ratio on wavy vortex onset
Third Taylor Vortex Flow Working Party Meeting, 1983~unpublished!,
p. 1.a1.

14A. Lorenzen, G. Pfister, and T. Mullin, ‘‘End effects on the transition
time-dependent motion in the Taylor experiment,’’ Phys. Fluids26, 10
~1982!.

15J. Antonijoan, F. Marque´s, and J. Sa´nchez, ‘‘Nonlinear spirals in the
Taylor–Couette problem,’’ Phys. Fluids10, 829 ~1998!.

16F. Marqués, ‘‘On boundary condition for velocity potentials in confine
flows: Application to Couette flow,’’ Phys. Fluids A2, 729 ~1990!.

17C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Meth-
ods in Fluid Dynamics~Springer, New York, 1987!.

18H. B. Keller, ‘‘Numerical solution of bifurcation and nonlinear eigenvalu
problems,’’ in Applications of Bifurcation Theory, edited by P. H. Rabi-
nowitz ~Academic, New York, 1977!.

19R. Seydel,Practical Bifurcation and Stability Analysis~Springer, New
York, 1994!.

20Y. Kuznetsov,Elements of Applied Bifurcation Theory~Springer, New
York, 1998!.
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