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On stable Taylor vortices above the transition to wavy vortices
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The transition from Taylor to wavy vortices is revisited for parameter values in the range of new
laboratory experiments@Lin et al., Phys. Fluids10, 3233 ~1998!#. The dependence of the critical
Reynolds number with the axial wavelength of the Taylor vortices is obtained for azimuthal wave
numbers from 1 to 5, and for five different values of the radius ratio. We show how islands of stable
Taylor vortices above the transition to wavy vortices form. ©2002 American Institute of Physics.
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I. INTRODUCTION

The Taylor–Couette system can exhibit a multiplicity
stable solutions for a given value of the parameters, once
basic Couette flow becomes unstable. Experimental evide
of this behavior has been reported, among other authors
Coles1 in 1965. He discovered that different wavy vorte
flow states, characterized by their axial and azimuthal w
numbers could be achieved by approaching the final R
nolds number with different accelerations. Jones2,3 calculated
the transition curves from steady axisymmetric Taylor vo
ces to wavy vortices when both have an axial wavelength
twice the gap between the cylinders, the outer cylinder is
rest and for values of the radius ratio from 0.6 to 1. H
results illustrate the complex behavior of these transiti
when different radius ratios and azimuthal wave numbers
taken into account. He found that the neutral stability cur
allow the existence of stable Taylor vortices above the on
of azimuthal waves in a range of radius ratio between 0
and 0.8. This was confirmed experimentally by Park.4 He
found that, for a radius ratio of 0.782 and when the inn
Reynolds number is increased quasi-statically, a wavy vo
flow with azimuthal wave numberm52 is obtained that re-
turns later to the Taylor vortex state.

The initial wavelength of the Taylor vortices is also a
important parameter, which affects the boundaries of the
ondary instabilities, as was demonstrated by Mullin a
Benjamin5 and Lorenzenet al.6 We examine here the onse
of wavy vortices for a wide range of axial wavelengths, a
for systems with five different radius ratios between 0.72 a
0.8. We compare our numerical results with those of Jon2

and with the experimental works of Burkhalter an
Koschmieder7 and Lim et al.8 The latter authors studied th
effect of the angular acceleration on the critical wavelen
of the bifurcated flow and found that stable vortices abo
the quasi-static transition to wavy vortices can be obtain
These vortices have axial wavelengths shorter than those
tained after a quasi-static transition from Couette flow.
show here that these solutions are connected with the s
1661070-6631/2002/14(5)/1661/5/$19.00
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dard Taylor vortices and that they could also be obtain
quasi-statically, for certain values of the radius ratio, if
mechanism of modifying the axial wavelength~as in Ref. 9!
is available.

II. THE TAYLOR–COUETTE PROBLEM

We consider the flow of an incompressible fluid confin
between two coaxial cylinders. The geometry of the syst
is specified by the inner and outer radius of the cylindersr i*
and r o* , with gap widthd5r o* 2r i* . The inner cylinder ro-
tates with angular velocityV i and the outer cylinder is at res
in all the cases we will consider. The nondimensional para
eters for the problem are the radius ratioh5r i* /r o* , and the
inner Reynolds number associated with the tangential ve
ity of the inner cylinder Ri5dri* V i /n, wheren is the kine-
matic viscosity. We usedd as length scale andd2/n as time
scale. The dimensionless Navier–Stokes equation and th
compressibility condition are then

] tv1v•“v52“p1Dv, “"v50. ~1!

We will assume infinite cylinders and periodic solutions
the axial direction with axial wavelengthl. The boundary
conditions are

v5Ri êu at r 5r i , and v50 at r 5r o, ~2!

wherer i andr o are the dimensionless radii of the cylinder

III. TAYLOR VORTICES AND THEIR STABILITY

We will only give a brief description of the method w
have used to compute the Taylor vortices and to exam
their stability. It is fully detailed in Refs. 10 and 11.

We have adopted a formulation based on potentials
which the velocity field is written as

v5 f êu1hêz1“3~gêu1cêz!1“3“3~fêz!, ~3!

wheref andg depend on~r ,z), h depends on (r ,u), andc
andf depend on the three coordinates (r ,u,z). This velocity
1 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



f

ls
nd

t
o
ri
e

s

av
n
e
is
b

or
io
a
rm

.
as
s

In

r

th
w

be
e

eir
inds
the
es

of
and
de-

the

no-

us-
ylor

ed
s
n-

he
tine

ach
ops
he
the

ed
the
re
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field is divergence-free and the Navier–Stokes equations
velocity and pressure are substituted by thez-components of
their curl and double curl written in terms of the potentia
This formulation is general for three-dimensional flows a
will be used later to find the eigenvalue problem needed
study the stability of Taylor vortices. In the particular case
Taylor vortices, as they are axisymmetric and the bounda
between cells are flat,~3! can be greatly simplified and th
velocity field can be expressed as

vv~r ,z!5 f êu1“3~gêu!.

The system to be solved to find the steady Taylor vortice

D̃f 52gzD1 f 1 f zD1g,

D̃D̃g5
1

r
]zf

21D1gD̃gz2gzD2D̃g,

with the corresponding boundary conditions

f ~r i !5Ri , f ~r o!50, D1g5gz50 at r 5r i ,r o

and where the operators are

D5] r , D65D6
1

r
, D̃5DD11]zz

2 .

In order to solve the equations for the potentials we h
used pseudo-spectral methods.12 The potentials have bee
expanded using Chebyshev polynomials in the radial dir
tion, and a Fourier expansion in the axial direction. The d
cretization of the equations for the potentials is obtained
collocation methods in both coordinates. As the Taylor v
tex flow is stationary it can be computed using continuat
methods varying different parameters. The discretized ste
Navier–Stokes equations can be written in the fo
F(X,p)50, wherep is the continuation parameter Ri or l.
These equations implicitly define a curve of solutionsX
5X(p) wherever det„DXF(X,p))Þ0. A description of the
general continuation techniques can be found in Ref. 13

The linear stability of the computed Taylor vortices h
been studied. We consider non-axisymmetric perturbation
vv of the same axial periodicity,

vp~r ,u,z,t !5vv~r ,z!1v~r ,z!emteimu, ~4!

mPZ being the azimuthal wave number of perturbation.
terms of the most general scalar potentials~3!,

f p~r ,z,t !5 f v~r ,z!1 f ~r ,z!emt,

gp~r ,z,t !5gv~r ,z!1g~r ,z!emt,

hp~r ,u,t !5h~r !eimuemt,

cp~r ,u,z,t !5c~r ,z!eimuemt,

fp~r ,u,z,t !5f~r ,z!eimuemt,

where the subscriptv refers to the potentials of the Taylo
vortex flow. It can be seen11 that f andg only contribute to
axisymmetric instabilities that can be detected during
continuation process to calculate the Taylor vortices. So,
have putf 5g50. In addition the eigenvalue problem can
split into two parts by separating the potentials into its ev
and odd parts in the vertical coordinatez. If c and f are
Downloaded 29 Apr 2003 to 147.83.27.136. Redistribution subject to A
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written asc5ce1co andf5fe1fo and after substituting
into the equations, a detailed study of the parity of th
terms shows that the system can be separated into two k
of eigenvalue problems. One of them only depends on
potentialsce andfo and does not disturb the flat boundari
between Taylor vortices. This is the case in the transition
the twisted vortices which appear in a co-rotating system
were studied in Ref. 11. The other eigenvalue problem
pends onh, co, andfe,

mh~r !5Dhh~r !2Pz~12Pu!êz•bh,co,fe, ~5!

mDhco~r ,z!5DDhco~r ,z!1~12Pu!êz•“3bh,co,fe, ~6!

mDDhfe~r ,z!5DDDhfe~r ,z!

2~12Pu!~12Pz!êz•“3“3bh,co,fe, ~7!

and corresponds to transitions to wavy solutions in which
boundaries oscillate. In these equationsDh5D1D
11/r 2]uu

2 , v5“3v is the vorticity,Pu and Pz are the av-
erage operators in the two periodic coordinates, and the
tation bh,co,fe has been used for the termb5vu3v1v
3vu when the perturbationv of vv is that corresponding to
this case:

v5hêz1“3~coêz!1“3“3~feêz!.

The corresponding set of boundary conditions are

h50, ~8!

] rc
o5fe5Dhfe50, ~9!

mco1r ] rzf
e50, ~10!

mDDhfe2rDDh]zc
o50, ~11!

at r 5r i ,r o .
The eigenvalue problem has also been discretized by

ing the same pseudo-spectral method used to calculate Ta
vortices. The main difficulty is that, in this case, the coupl
boundary conditions~10! and ~11! make the basis function
for c andf to be also coupled. A discrete generalized eige
value problem of the form

AmX5mmBmX

is obtained whereAm and Bm are complex matrices which
depend on the azimuthal wave numberm, and the eigenvec-
tor X contains the amplitudes of the eigenfunctions in t
aforementioned basis. It is solved by using the subrou
ZGEEV from the LAPACK library.

The code we have developed studies the stability of e
solution obtained during the continuation process, and st
when the real part of the leading eigenvalue is zero. T
details about the implementation of the spectral methods,
construction of the basis functions verifying the coupl
boundary conditions, and the study of the convergence of
critical Reynolds number with the numerical resolution a
provided in Ref. 11.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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IV. RESULTS AND DISCUSSION

Figure 1 shows a detail of the neutral stability curves
the transition of wavy vortices of differentm obtained by
Jones.3 The ratio Ri /Ric at which Taylor vortices bifurcate to
wavy vortices is plotted against the radius ratioh. Ric is the
critical inner Reynolds number for the transition from Co
ette flow to Taylor vortices. In this figure the axial wav
length of the Taylor vortices is alwaysl52d. The vertical
dotted lines indicate the value of the radius ratio~0.727,
0.746 05, 0.7651, 0.784 15, and 0.8032! at which we have
studied the dependence of the transition withl. The former
and the latter have been considered in order to compare t
with experimental results~Refs. 7 and 8, respectively!; the
other three are equally spaced between the extreme va
This range corresponds to the region of strong dependenc
the transition to wavy vortices withh.

The plots in Figs. 2–6 show the stability boundaries
the onset of wavy vortices of azimuthal wave numberm
from 1 to 5 in the parameter plane (l,Ri /Ric). Each plot
corresponds to one of the above-mentioned values ofh. The
neutral stability curves with azimuthal wave numbers abo
those of the figures have not been plotted because they
above Ri /Ric55. The numerical resolution used in all ca
culations has been checked to give accurate results b

FIG. 1. Neutral curves for the transition to wavy vortices obtained by Jo
~Ref. 3!.

FIG. 2. Neutral stability curves for the transition to wavy vortice
h50.727.
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this limit ~see Ref. 11!. Each vertical dotted line atl52
corresponds to one of those of Fig. 1. Their intersectio
with the neutral curves have been used to compare our
sults with Jones calculations. We have digitalized his res
and the difference in Ri /Ric between both calculations i
below 3% for all the aforementioned intersections except
one of them that reaches a 6%. This point correspond
m51 and h50.8032 and, as can be seen in the origin
figure in Ref. 3, it is difficult to be obtained from the plo
because it is very near the intersection with another neu
curve.

For values ofh50.727 andh50.746 05, the dominan
transition is to azimuthal wave numberm53 above a certain
value of l. The critical Reynolds number depends strong
on the axial wavelength of the vortices, and forl.2 the ratio
the ratio Ri /Ric decreases withl. Below this value, the tran-
sition to wavy vortices is above the range of the Reyno
numbers of the plots, leaving a wide region of stable Tay
vortices. Burkhalter and Koschmieder7 obtained these low-l
solutions in a Taylor–Couette system withh50.727, even
for Ri /Ric up to 7. In these experiments the inner cylind

s

FIG. 3. As for Fig. 2 withh50.746 05.

FIG. 4. Neutral stability curves for the transition to wavy vortice
h50.7651. The dashed regions correspond to stable Taylor vort
~USTV!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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was brought from rest to a supercritical Reynolds num
(Ri.Ric) in less than 1 s. The minimuml they obtained is
near 1.4 for Ri /Ric'4.

When h is increased above 0.75 approximately, a n
transition curve ofm51 appears as can be seen in Figs
and 4. This becomes the first instability for a broad range
axial wavelengths. The tongue-shaped curve allows the e
tence of a region of stable Taylor vortices above it. It h
been dashed in Figs. 4–6 and labeled as USTV. It is
connected with the region below the tongue forh50.7651.
In this case the vortices in the dashed region could be
tained quasi-steadily from the standard squared Taylor vo
ces following a suitable path, if a mechanism of varying t
axial wavelength is available~slowly filling or emptying the
gap between cylinders, as shown by Snyder,9 for example!.

By further increasingh, new transition curves appear
the turning points of the curves in Fig. 1, with azimuth
wave numbers up tom55. Some of them have folds which
in the casesm51 andm52, grow from left to right ash is
increased. For 3<m<5 they grow in the opposite directio
~see Figs. 4–6!. Figure 5 shows how the stability curve
have separated the region of stable Taylor vortices in
disconnected components. Finally, Fig. 6 shows the situa
at h50.8032. The upper region of stable Taylor vortic

FIG. 5. As for Fig. 4 withh50.784 15.

FIG. 6. As for Fig. 4 withh50.8032.
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~USTV! is now well separated from the lower region by a
the transition curves, and it is confined to lower axial wav
lengths.

In a recent paper, Limet al.8 studied the effect of the
acceleration of the inner cylinder on the final state in
Taylor–Couette system withh50.8032, an aspect ratio o
50.54, and a free surface top boundary. When the acce
tion (dRi /dt) is above 2.2 s21, they found a regime of stable
Taylor vortices with axial wavelengths shorter than those
tained quasi-steadily. They refer to it as secondary Tay
vortex flow ~STVF!. If the acceleration is lower, wavy vor
tices are obtained in the same range of Reynolds number
Fig. 7 we show a detail of Fig. 6 together with some expe
mental data obtained from Ref. 8. Each symbol correspo
to one of the solutions found in their study~STVF!, with
wavelengths between 1.5 and 1.9 and for a range of Ri /Ric

form 1.8 to 3.1. They were obtained by accelerating or
celerating the cylinder with 2.2 s21<udRi /dtu<110 s21.

If our computational model included all the features
the experiment, all the experimental points would lie insi
the dashed region~USTV! of Fig. 7. Actually, or model as-
sumes exact periodicity in the axial direction and so igno
end-effects. It is known that the critical Reynolds numbe
for the onset of wavy vortices can be extremely sensit
to variations in the aspect ratio. Although the value in t
experiments of Limet al.8 is high ~50.54! the infinite cylin-
der approximation we use does not reproduce the finite c
accurately.

It is usually found in the experiment that the end-effe
delay the transition to wavy vortices. Therefore they could
modeled, in a first approximation, by a negative shift of t
growth rates we find@R(l)#. We have computed the spect
at the experimental points outside the stable region~USTV!
in Fig. 7 and classified them according to the greater gro
rate. The points with maximal growth rate in the interva
~0,0.3!, ~0.3,0.6!, and ~0.6,1.1! have been surrounded by
circle, a square, and a diamond, respectively. The more
stable azimuthal wave number is alwaysm53 or m54 for
all these points.

FIG. 7. Detail of the neutral curves forh50.8032. The diamonds, take
from Lim et al. ~Ref. 8! correspond to the STVF. Symbols surrounded
circles, squares, and diamonds correspond to different intervals of the m
mal growth rate~see text!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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It can be seen in Fig. 7 that the region delimited
R(l),e ~labeled as USTV whene50!, which grows withe,
includes five more experimental points whene50.3 ~those
surrounded by a circle!, and seven more ife50.6 ~those sur-
rounded by a square!. To include all experimental pointse
must be 1.1. If, as mentioned before, the end-effects
modeled as a maximal negative shift of the growth rates2e,
we could obtain the stable region fromR~l!,e. A shift of
e51.1 units is then enough to explain the discrepancies
tween our calculations and the experiments. The valuee
could be estimated from the delay in the first transition fro
Taylor to wavy vortices, but we have not been able to obt
definitive conclusions with the experimental data at ha
Moreover, the growth rates vary very slowly with the Re
nolds number~of the order of 2 units for a change of 10
units of the Reynolds number!. Therefore, any perturbatio
of the eigenvalue problem leads to very significant chan
in the transition curves. An example of this can be obtain
by comparing Figs. 5 and 6. Only a 3% difference inh
produces very significant changes; especially in the fo
Another difficulty in comparing our results with the expe
ments is the way the axial wavelength is measured. In Re
it is calculated asl52H/Nd, H being the height of the fluid
column,d the gap between the cylinders, andN the number
of vortices. The size of the cells, in these experiments
generally decreasing from top to bottom with a variation
about 3.5%. This does not explain the discrepancies,
shows that the experimental region in which this regime
observed has also some uncertainties. It would be interes
to see if this flow is observed in an apparatus with both e
fixed, and the relationship with our results.

In spite of all the aforementioned comments, Fig. 7 e
plains the coexistence of the two regimes~Taylor and wavy
vortices! observed in the experiments of Limet al.8 Pertur-
bations of the neutral curves due to the finite length effe
or to the way the axial wavelength is measured, co
modify the stability region by embracing more experimen
results.

Unfortunately, the study of the transitions to azimuth
dependence with realistic boundary conditions could only
tackled for low values of the aspect ratio due to the compl
ity of the numerics. We have made calculations with realis
boundary conditions in the vortex breakdown problem
which there is also a discontinuity in the velocity at one
the lids.14 In that case, we used finite differences and ite
Downloaded 29 Apr 2003 to 147.83.27.136. Redistribution subject to A
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tive methods based on Krylov subspaces15 to solve the eigen-
value problems. Spectral methods could also be used if
boundary conditions are regularized and Chebyshev
Legendre expansions are used in the axial coordinate16 in-
stead of trigonometric functions. We plan to use these te
niques for the finite Taylor–Couette problem but, even w
this new approach, we do not expect to be able to simul
in the near future, aspect ratios as large as those we com
with in this article.
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