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From stationary to complex time-dependent flows at moderate Rayleigh
numbers in two-dimensional annular thermal convection
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Two-dimensional nonlinear thermal convection in a cylindrical annulus is numerically analyzed for
a Boussinesq fluid of low Prandtl numbers50.025. For a fixed value of the radius ratio,h
50.3, different types of steady columnar patterns are found. The stability of these convection
patterns and the spatial interaction between them, which result in the formation of mixed modes, are
investigated by considering the full nonlinear set of Navier–Stokes equations. Special attention is
paid to the strong spatial interaction of the initially unstable modes with wavenumbersn52 and
n54, which leads, through global bifurcations, to multiple stable quasi-periodic states of the
system. A detailed picture of the nonlinear dynamics until temporal chaotic patterns set in is
presented and understood in terms of local and global symmetry-breaking bifurcations of the
O(2)-symmetric system. ©2003 American Institute of Physics.@DOI: 10.1063/1.1565335#
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I. INTRODUCTION

The large-scale azimuthal motions in the atmosphere
major planets and in planetary fluid cores have in comm
the influence of the spherical geometry, which makes
relative orientation of gravity and rotation vectors vary w
latitude, and the strong effect of high Taylor numbers. Sin
it is impossible to reproduce such convective systems in
restrial laboratory experiments, due to the presence of v
cal gravity and the difficulties of producing a radial gravi
these flows have given rise to studies of thermal convec
in cylindrical annular geometries with radial inwards heati
and the radial gravity emulated by the centrifugal buoyan
The experimental results1,2 showed that the constraint o
large Taylor numbers causes the motion to remain ne
two-dimensional, with departures from two-dimensional
confined to narrow Ekman layers at the ends of the annu
Consequently, some subsequent theoretical and nume
papers3–7 are based on this fact and look for axia
independent solutions in the narrow gap limit. Others8–10 are
direct numerical simulations allowing the imposition of
radial constant inwards gravity changing the sign of the te
perature gradient. They can capture the same nonlinear
namics, because, except for the geometry and the defin
of the Rayleigh number, they obtain equivalent nondim
sional equations. Considering a constant or a radial dep
dent gravity vector does not affect the radial symmetries
the problem unless the narrow gap approximation (h→1) is
made. In this case the problem may gain an additional m
plane symmetry depending on the curvature of the top
bottom boundaries.

A three-dimensional rotating annulus, with either top a
bottom horizontal or inclined lids, is invariant under rot
tions about the rotation axis, i.e., their symmetry group in
azimuthal direction isSO(2). A symmetry-breaking bifurca
tion of an axisymmetric state~like conduction! must be a
1311070-6631/2003/15(5)/1314/13/$20.00
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Hopf bifurcation,11 which gives rise to waves traveling in th
azimuthal direction. Rigorously, any approximation of t
three-dimensional problem must keep the symmetries of
original one, otherwise the spatio-temporal dynamics c
change from the first bifurcation. This is what happens if t
two-dimensional annular geometry is taken for approxim
ing the azimuthal waves of a slow rotating annulus w
no-slip top and bottom lids. By introducing the streamfun
tion formulation the rotation drops out12 and the equations
can be written in the form of a two-dimensional Rayleigh
Bénard problem without the midplane layer symmetry, i.
the problem recovers the reflection symmetry in verti
planes through the axis of rotation, and theO(2) symmetry
forces a primary stationary bifurcation. An easy way
achieving the SO(2) symmetry of the complete three
dimensional problem in az-independent problem is to con
sider the quasi-geostrophic solutions of the fast rotating
nulus with slightly inclined top and bottom lids.3 In the
resulting two-dimensional equations, theb term breaks the
preceding reflection symmetry in vertical planes. As a res
the primary convective solutions are azimuthal driftin
waves~thermal Rossby waves!, which give rise to secondary
nonlinear patterns dominated by the Coriolis term and
vortex stretching due to the topographicb effect.

In the fast rotation limit, it is easy to see, by comparis
of Refs. 13, 14, and 9, that the (r ,u) dependence and fre
quency of the waves is different depending on the type of
and bottom lids. The linear stability analysis of the condu
tion state of a rotating annulus with radial gravity, outward14

or internal heating13 and experimental no-slip boundary co
ditions on the horizontal top and bottom lids, shows that,
Taylor numbers Ta.106, the convection is already nearl
two-dimensional, with departures from two-dimensional
confined to narrow Ekman layers at the ends of the annu
With Ta.106, for a fluid ofs50.025 in an annulus of radiu
ratio h50.35 and aspect ratiob51 ~defined in Sec. II!, the
4 © 2003 American Institute of Physics
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1315Phys. Fluids, Vol. 15, No. 5, May 2003 From stationary to complex time-dependent flows
precession frequency, in viscous units, is smaller thanv
50.08, i.e., several orders of magnitude smaller than
found for the thermal inertial waves of the slanted lids,9 and
unlikely to be measurable in a laboratory experiment. T
linear modes that first become unstable are determ
physically by the balance among the terms of the linear s
tem. For example, for small Prandtl numbers with slan
lids, the balance is mainly established between the large
ertial term and theb term, the buoyancy force playing
secondary role. However, with horizontal lids, the precess
frequency tends to zero as the Taylor number tends to in
ity, and the buoyancy force contributes at first order to
linear balance. Therefore, the physical nature of the prim
instability is basically inertial or thermal depending on t
geometry.

Thermal steady columns are exact solutions of the
rotating annulus with stress-free boundary conditions on
flat lids.12,15 In fact, they coincide with the two-dimensiona
vortices of the plane geometry. In the no-slip case, the
merical results14 and also the asymptotic theory13 show that
the influence of the Ekman boundary layers decreases a
aspect ratio increases. At leading order, Rac5Ra02CT1/4/b
and v50, where Ra0 is the critical Rayleigh number whe
b→`, i.e., it is the Rayleigh number of the thermal co
umns. The constantC is independent of the Prandtl numbe
On the other hand, for large aspect ratios, the contour p
of the temperature or the velocity field, with both bounda
conditions, only differ in the very narrow top and botto
boundaries. Therefore, the primary convective flow alm
recovers the reflection symmetry of the thermal columns
addition, the experimental results and the linear asympt
analysis3 in fast rotating systems indicate that from low
moderate Rayleigh numbers the Ekman layers remain
tached to the lids when the full nonlinear dynamics is dev
oped. Under these conditions, and taking into account
the type of bifurcations of a solution depends on its symm
tries, the question is; up to what point is it possible to a
proximate the nonlinear evolution of thealmostthermal col-
umns by az-independent problem? In order to answer t
question, we study numerically the influence of theO(2)
symmetry on the convection driven by radial gravity a
heating, specifically on the nonlinear dynamics of the tw
dimensional thermal columns. A summary of the sequenc
bifurcations and information about the symmetries of the
lutions, up to the onset of preturbulent flows, are presen

This study has been focused ons50.025~mercury! and
a radius ratioh50.3. Metallic liquids are fluids of primary
geophysical and magnetohydrodynamics interest. They
difficult to handle in laboratory experiments, since their
ternal structures cannot be directly observed. Numerical
periments with low Prandtl number fluids furnish inform
tion that would be hard to obtain in laboratory conditions. O
the other hand, with smallh, a dynamics dominated by th
spatial 1:2 resonance might be expecteda priori. In effect,
the analysis of a long-wave model for two-dimensional co
vection in a plane layer shows that the 1:2 resonanc
dominant when asymmetric boundary conditions
considered.16 In two-dimensional Rayleigh–Be´nard convec-
tion, the same effect can be achieved by considering diffe
Downloaded 23 Apr 2003 to 147.83.27.136. Redistribution subject to A
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boundary conditions at top and bottom or by including no
Boussinesq terms.17 With symmetric boundary conditions
the leading order resonant term in the 1:2 interaction is
higher order than that in the 1:3 interaction.16,18 In addition,
both values of the parameters allow us to compare the lin
primary modes and critical parameters of convection for a
of the above-mentioned problems.

The type of bifurcation that a solution which has brok
the rotation symmetry but keeps the reflection symme
may undergo is known, but subsequent bifurcations rem
unclear. If the azimuthal structure of the flow is maintaine
according to bifurcation theory,19,20 it can suffer four pos-
sible codimension one bifurcations depending on the par
eters of the system. The new solution can either keep
reflection symmetry of the basic solution or break it. In t
first case, the bifurcation can be a saddle-node or a H
bifurcation that gives rise to a standing wave without a
spatial drift. In the second case, it can either be a pitchfork
a Hopf bifurcation, leading to traveling waves, which have
drift speed that increases with increasing the bifurcation
rameter, or to direction reversing traveling waves~DRTW!
that are vacillating waves, which alternatively drift back a
forth.21 The parameters we have employed give way to
last kind of bifurcation. Obviously, by changing these para
eters, the thermal columns could undergo any of the ot
bifurcations and a different dynamics than that described
this paper would be observed.

The nonlinear dynamics of the two-dimensional colum
also provides a simple fluid dynamics system which is hig
attractive from the point of view of bifurcation theory, be
cause it is large enough to provide a rich spatio-tempo
dynamics induced by the reflection symmetry in vertic
planes, but at the same time not as expensive in calcula
time as a three-dimensional system. In this context, our
sults can be relevant to any problem that shares the s
symmetries. This is the case of electroconvection in an
nular suspended film, where radial driving forces are the
perimental conditions. Unfortunately, it is not possible to e
tablish a direct comparison because the experiments22,23 are
mainly carried out with a rotating inner electrode and, as
the rotating annulus, the reflection symmetry of the system
broken.

The paper is organized as follows. In Sec. II we intr
duce two different formulations of the problem and the n
merical methods used to solve it. In Sec. III we analyze
stability and interaction of the steady solutions that bifurc
from the conduction state, which leads to the stabilization
the flow and to global bifurcations. In Sec. IV the tim
dependent behavior of the stable flows that coexist in a w
range of Rayleigh numbers is studied. New complex flo
are presented consisting of random switching between re
tion symmetric quasi-periodic solutions, and gluing bifurc
tions of tori, also induced by the reflection symmetry of t
system. Finally, Sec. V includes a summary of the results
the main conclusions.

II. BASIC EQUATIONS

We consider an annulus which is rotating about its a
of symmetry with angular velocityV. The gap width isd
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1316 Phys. Fluids, Vol. 15, No. 5, May 2003 Net, Alonso, and Sánchez
[ro2ri , wherer i andr o are the inner and outer radii, andL
is the height of the layer. The geometric parameters of
problem are the radius ratioh[r i /r o and the aspect ratio
b[L/d. The inner and outer side walls are maintained
constant temperaturesTi and To , respectively, with Ti

.To , and for the velocity field no-slip lateral boundary co
ditions

u5v5w50 on r 5r i ,r o , ~1!

are taken.
As we have already mentioned in Sec. I, the pres

study will focus on the nonlinear analysis of th
z-independent columnar solutions, which are exact soluti
of the problem in the stress-free lids case. We write the tw
dimensional Boussinesq Navier–Stokes, mass conserva
and energy equations in the rotating frame of reference,
we consider a constant gravity across the convective layeg,
which is also assumed to be radially inwards. We also
sume thatrV2/g!1, a condition that can be accomplishe
for instance, in planetary cores. To nondimensionalize
equations we use the gap width, the temperature differe
between the side boundaries and the thermal diffusion t
d2/k, wherek represents the thermal diffusivity. The pro
lem is formulated in terms of both the velocity–pressure a
the streamfunction formulation. In the latter case, we defin
new pressure modified by the Coriolis term and we write
velocity field as

u5 f êu1“Ã~cêz!, ~2!

where f (r ) is needed to guarantee the possible existenc
an azimuthal mean flow, if the azimuthal average ofc(r ,u)
is imposed to be zero by the homogeneous boundary co
tions. The equations forf , c, and the departure from th
conductive state temperature,Q, are

~] t2sD̃! f 5PuFDcS 1

r
]uc D G , ~3a!

~] t2sD!Dc5
s Ra

r
]uQ1~12Pu!J~c,Dc!

1D̃ f S 1

r
]uc D2 f S 1

r
]uDc D , ~3b!

~] t2D!Q52
1

r 2 ln h
]uc1J~c,Q!2 f S 1

r
]uQ D , ~3c!

where D̃5] r(] r11/r ). Pu is the operator that averages
the azimuthal direction andJ is the determinant of the cor
responding Jacobian matrix in cylindrical coordinates. T
nondimensional parameters that appear in the equations
the Rayleigh and Prandtl numbers defined by

Ra[
aDTgd3

kn
, s[

n

k
.

The Taylor number does not appear in the equations bec
we are looking for columnar solutions.

The boundary conditions are now

f 5c5] rc5Q50 on r 5r i ,r o . ~4!
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These equations are solved numerically using two diff
ent continuation codes to find the steady solutions, and se
implicit backward differentiation formulas-extrapolatio
time-stepping codes for the time-dependent solutions.
have used a time-splitting code, written in terms of the v
locity field, (u,v), and, to be sure that the solutions are n
spurious, a streamfunction code, with checked integra
methods up to fourth order in time. The method to evalu
linear and nonlinear terms is different in each case. The v
ables are always expanded in terms of Chebyshev polyno
als Tl , and Fourier expansions. For the streamfunction f
mulation they are

f ~x,t !5(
l

a l~ t !Tl~x!, ~5a!

c~x,u,t !5(
l ,n

g ln~ t !Tl~x!einu, ~5b!

Q~x,u,t !5(
l ,n

d ln~ t !Tl~x!einu. ~5c!

The radial coordinate isx52r 2d, with d5(11h)/(1
2h), and the integers (l ,n) indicate the structure of the
functions in the radial and azimuthal directions, respective
The coefficientsa l , g ln , andd ln are related by the boundar
conditions. In the (u,v) formulation, the mean flow is di-
rectly then50 mode ofv.

Some proofs have been made to determine the nume
resolution needed in our calculations. A test of the dep
dence of the frequencies of a quasi-periodic solution for
520 000 is presented in Table I. A tiny difference of 0.01
in the main frequencyf 1 is found, but the difference in-
creases up to 4% for the small frequencyf 2 , when the time
integration method is changed. We believe that this is du
the higher temporal order of the integrator used in
streamfunction formulation, which allows a better determ
nation of the small frequencies. Thus, for the solutions w
Ra.7000, 323192 radial by azimuthal points are used.
general, for Ra,7000, the steady columns and their stabil
are calculated with 243192 points. The bifurcations corre
sponding to high Rayleigh numbers are transitions betw
time complex regimes that cannot be determined precis
with only time evolution codes. The exponential decay~or
growth! of the solutions near a bifurcation point is too slo
and, in addition, different with the two time evolution orde
employed. Even with these difficulties we have found on
differences below a 0.5% in the determination of the tran
tions at Ra.18 000.

TABLE I. Comparison of the frequencies of a quasi-periodic solution
Ra520 000. VP and SF refer, respectively, to the velocity–pressure and
streamfunction codes.LL andN are, respectively, the radial and azimuth
resolutions.

Code LL3N f1 f 2

VP 323192 9.567 0.412
VP 323256 9.567 0.412
VP 483192 9.567 0.412
SF 323192 9.566 0.397
SF 323256 9.566 0.397
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. ~a! Bifurcation diagram showing branches o
columnar modes with wavenumbersn53, n52, and
n54 (N3, N2, andN4 branches, respectively!. They
arise at Rac

151799 ~1!, Rac
251995 ~2!, and Rac

352254
~3!. ~b!–~f! The contour plots of the temperature pertu
bation showing the structure of the solutions in theN2
branch, corresponding to the pointsb (Ra52000), c
(Ra52198), d (Ra52500), e (Ra52711), andf (Ra
52875) in the diagram, respectively.
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Throughout the paper, the Nusselt number, defined
measure of the radial heat transport by convection, has b
computed in the outer cylinder as

Nu511
ln h

12h E
0

2p

] rQ~1,u,t !du. ~6!

III. STEADY STATE THERMAL COLUMNS

In this section we describe the steady columnar patte
that bifurcate from the conduction state, and analyze th
stability and symmetries in order to understand the glo
nonlinear dynamics described in Sec. IV. We will show t
importance of including the study of the unstable branche
order to fully capture the stable dynamics of the system.

Some preliminary results have already be
published,24,25 but are included because they are closely
lated with the new solutions presented in this paper. As a
step, we have carefully checked that the continuation
time-integration codes reproduce accurately the onset of
vection and agree for the nonlinear solutions. The diagram
Fig. 1~a! shows the branches of columnar solutions with b
sic azimuthal wavenumbersn53,2,4 (N3, N2 and N4
branches, respectively!. We displayA(nd lnd ln* for a fixed
radial amplitudel , d ln* being the conjugate ofd ln . The axi-
symmetric conduction state becomes unstable to colu
with wavenumbern53 at Rac

151799 ~point 1 in the bifur-
Downloaded 23 Apr 2003 to 147.83.27.136. Redistribution subject to A
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cation diagram!, in agreement with the wavenumber pr
dicted by the linear stability analysis. For slightly larger Ra
leigh numbers, the conduction state is also unstable to mo
with wavenumbersn52 ~at Rac

251995) andn54 ~at Rac
3

52254). All these new nonaxisymmetric solutions break
rotation symmetry,Ru , of the basic state, but maintain th
reflection symmetry,R, with respect to appropriate vertica
planes u5u0 , and the invariance under 2p/n-rotations,
R2p/n , i.e.,

Q~x,u!5Q~x,2u02u!, c~x,u!52c~x,2u02u!,
~7a!

Q~x,u!5Q~x,u12p/n!, c~x,u!5c~x,u12p/n!.
~7b!

The discrete group of symmetry of the new solutions
Dn . Bifurcations from the conduction state are symmet
breaking steady-state bifurcations in which multiplicity tw
eigenvalues cross the imaginary axis.

While solutions along theN3 andN4 branches are pure
modes, in which only the basic wavenumbers and their h
monics are nonzero, theN2 is a mixed-mode branch. Ther
is a strong spatial interaction between then52 and n54
modes~spatial 1:2 resonance!, which produces a change i
the structure of the solution along theN2 branch. To illus-
trate the physical nature of these solutions, the contour p
of the perturbation of the temperature at different Rayle
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. ~a! Detail of the steady-state bifurcations on th
N2 andN4 branches, which take place at Rac

552362
~5!, Rac

652478 ~6!, Rac
752509 ~7!, Rac

852712 ~8!,
Rac

952887.5 ~9!, and Rac
1052888.9 ~10! on the N2

branch and at Rac
1152851 ~11! and Rac

1052888.9~10!
on theN4 branch.~b!, ~c!, ~d! The contour plots of the
temperature perturbation showing the structure of t
solutions in theN21a, N21b andN21c branches, cor-
responding to pointsb (Ra53308),c (Ra52649), and
d (Ra53040) of the bifurcation diagram, respectively
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numbers are shown from Figs. 1~b!–1~f!. As the Rayleigh
number increases, the contribution of then54 mode be-
comes more important, while then52 contribution dimin-
ishes until vanishing. The initial two pairs of rolls become
n54 solution.

A stability analysis of the mixed-mode solutions sho
that there are several bifurcations in theN2 branch. The new
branches, which we have been able to follow with the c
tinuation code, are included in Fig. 2~a!. Bifurcation points 5
(Rac

552362), 7 (Rac
752509), and 8 (Rac

852712) corre-
spond to subharmonic steady-state bifurcations. The s
tions in these new branches, which are displayed in F
2~b!–2~d!, still keep the reflection symmetry, but now the
is a contribution of all the wavenumbers. Their symme
group isZ2 , generated by a reflection, defined as in Eq.~7a!,
through theu0'p/2 plane in the figures. The bifurcatio
identified in point 6 (Rac

652478) corresponds to a stead
state instability that keeps the wavenumber of the main
lution, n52, but in which the mean flow becomes nonze
According to bifurcation theory,20 a steady-state bifurcatio
that breaks the reflection symmetry, keeping the discrete
tational invariance, would give rise to traveling waves w
zero phase speed at the bifurcation point. Nevertheless
have not followed this time-dependent branch which, in o
case, is unstable. Finally, two subsequent bifurcations v
close to each other occur at points 9 and 10. At the fi
(Rac

952887.5), one of the two positive eigenvalues of t
solution is stabilized through a subharmonic steady-state
furcation. At the second (Rac

1052888.9), the amplitude o
the n52 mode vanishes. TheN2 branch joins theN4
branch, and columns with wavenumbern52 cease to exist
This is a bifurcation from theN4 branch, which occurs afte
a bifurcation in Rac

1152851 at which an eigenvalue wit
multiplicity two gains stability.

All the above-described steady patterns, except for
Downloaded 23 Apr 2003 to 147.83.27.136. Redistribution subject to A
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n53 column, are unstable. However, by extending furth
the N4 branch, a bifurcation that stabilizes the puren54
solution by shedding a new unstable branch takes plac
Rac

1254779 ~not shown in the figures!. Later bifurcations
connected with this branch give rise to pairs of qua
periodic flows related by the reflection symmetry.

IV. TIME-DEPENDENT SOLUTIONS

In this section we will describe the nonlinear solutio
found by increasing the Rayleigh number, when the ste
columns loose stability. The symmetry of the solutions
analyzed in order to understand the influence of theO(2)
symmetry at moderate Rayleigh numbers. First of all,
sequence of local bifurcations and time-dependent solut
with basic azimuthal wavenumbern53 are considered in
Sec. IV A. Section IV B is devoted to the study of the tim
dependent flows, which arise near the strong 1:2 spatial r
nance. It will be seen that then54 steady flow bifurcates to
a DRTW, which in terms of the bifurcation theory is a sym
metric cycle. For these time-dependent solutions, the ev
tion by half a period in time is equivalent to acting by th
reflection that is broken in the bifurcation. Via local trans
tions that consecutively break all the symmetries of the
riodic orbits, pairs of quasi-periodic solutions related throu
the reflection symmetry in vertical planes are found. We w
call these solutionsR-conjugate tori because by applying th
reflection symmetry to one of them, the other is obtain
Ultimately, global bifurcations of the quasi-periodic sol
tions restore the reflection symmetry in the sense that if
reflection symmetry is applied to the new solutions~quasi-
periodic or not!, at any instant of time, another point of th
same solution, at a different time, is obtained (R-invariant
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1319Phys. Fluids, Vol. 15, No. 5, May 2003 From stationary to complex time-dependent flows
solutions!. Finally, for a complete description of the spati
temporal dynamics, an additional branch of mixed solutio
is included in Sec. IV C.

To facilitate the reading of the paper, the results are su
marized in a schematic bifurcation diagram~Fig. 14! in the
final discussion of the paper.

A. Nonlinear solutions with basic dominant
wavenumber nÄ3

The linear stability analysis of theN3 branch of solu-
tions shows that there is a secondary Hopf bifurcation
Rac

454114, the imaginary part of the critical eigenvalu
beingl I5623.5. It corresponds to point 4 of Fig. 1~a!. The
nonlinear steady columns become unstable and they give
to DRTW, which keep the same basic azimuthal wavenum
of the steadyn53 columns. It is characterized by the a
pearance of a mean flow in the azimuthal direction t
breaks the reflection symmetry of the columns, but this
lution preserves theZ3 invariance,Z3 being the cyclic group
generated by the rotationR2p/3 .

Figure 3 shows the change in the structure of the c

FIG. 3. Puren53 direction reversing traveling wave.~a! Shadowgraph
showing the evolution of the temperature perturbation in time at the ra
midpoint of the annulus, for a solution corresponding to Ra55000.~b! Four
snapshots showing the radial dependence of the azimuthal mean flow.
Downloaded 23 Apr 2003 to 147.83.27.136. Redistribution subject to A
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umns after the secondary bifurcation. Close to the bifurcat
point, the pattern oscillates back and forth with a frequen
given by the imaginary part of the eigenvalue whose real p
becomes zero. The oscillation in the azimuthal direction c
be appreciated in the shadowgraph of Fig. 3~a!, which rep-
resents the evolution in time (y axis! of the temperature and
its u-dependence (x axis!. Clearly, the DRTW breaks the
reflection symmetry with respect to vertical planes betwe
the columns, but this periodic solution is a symmetric cyc
i.e., has theS symmetry

Q~x,u,t !5Q~x,2u02u,t1T/2!,

f ~x,t !52 f ~x,t1T/2!,

c~x,u,t !52c~x,2u02u,t1T/2!,

or in terms of the velocity field, (u,v),

u~x,u,t !5u~x,2u02u,t1T/2!,

v~x,u,t !52v~x,2u02u,t1T/2!,

whereT is the period of the wave. It loses the spatial refle
tion symmetry but gains this new spatio-temporal symme
and in this sense it can be said to maintain aD3 invariance.
We will see later that theS symmetry is the clue for under
standing the dynamics of the system at higher Rayleigh n
bers. The new symmetry is also responsible for the period
the Nusselt number of the vacillating waves, defined in~6!,
to be half that of the velocity field. According to the symm
try relation, the temperature maintains the sign by a refl
tion and a half period shift in time. Then

E
0

2p

] rQ~1,u,t ! du5E
0

2p

] rQ~1,u,t1T/2! du.

However, for the velocity field there is a change of sign
the relation, andv(x,u,t)Þv(x,u,t1T/2).

The new symmetry-breaking bifurcation can also
seen in Fig. 3~b!, which shows the dependence of the a
muthal mean flow on the radial coordinate,x, in four time
instants, t50,T/4,T/2,3T/4. After the bifurcation, the
u-independent mode ofv begins to contribute to the solution
As the area enclosed by each curve equals the instantan
net mass flow, it can be inferred from the plot that the

al
e

to
re
the
FIG. 4. ~a! Shadowgraph showing the evolution of th
temperature perturbation in time (y axis! at the radial
midpoint of the annulus for a solution corresponding
Ra512 300. ~b! Time dependence of the temperatu
showing the phase shift between the three points of
annulus of coordinates (L/2,u12pm/3), with m
50,1,2 andL the number of radial points.
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FIG. 5. Quasi-periodic solution at Ra511 500 on the mainn53 branch.~a! Shadowgraph showing the evolution of the temperature perturbation in timy
axis! in the radial midpoint of the annulus,~b! Fourier spectrum of the temporal series of the Nusselt number, and~c! Poincare´ section displaying an odd
versus an even azimuthal mode, in a fixed radial point.
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exists an oscillatory mass transport in the azimuthal dir
tion. That is, the instantaneous net mass flow is nonz
though it vanishes when averaged in a whole period. T
value of the frequency grows as the Rayleigh number
creases. Just at the bifurcation point, for a Rayleigh num
Rac

454114, the frequency isf 53.74, while for a Rayleigh
number Ra56500, the Fourier spectrum shows that the
lution still remains periodic, the frequency of oscillation b
ing f 55.15.

Between Ra56950 and Ra57000 a tertiary spatial sub
harmonic bifurcation, which breaks the last spatial symme
of the solutions, is identified in the system. The symme
breaking implies that the modesnÞ3̇ start to grow. We have
carefully checked that at the tertiary bifurcation there is
new frequency appearing in the Fourier spectra of the t
series after the transition, so the new solution remains p
odic. This fact agrees with bifurcation theory, which esta
lishes that in a codimension one bifurcation of a symme
cycle only the multipliersm51 andm5e6 iu0 of the associ-
ated Poincare´ map can appear.26 In our case the unit circle is
crossed by the real multiplier. Figure 4~a! is a shadowgraph
of the temperature of the new periodic orbit very far fro
transition, for Ra512 300. It is plotted at a fixed radius, an
clearly shows that, as a result, the spatial discrete rotati
invariance of the columns is broken, but the symmetryS is
preserved. The new pattern of convection consists of th
oscillating columns like those in the DRTW, but with diffe
ent waveforms, amplitudes, and phases. The waveform
nearly the same in two of them, but the third one clea
differs from the others. Figure 4~b! shows that three angu
larly equally spaced points, each in a column, which bef
the bifurcation were oscillating in phase, begin to oscilla
out of phase. The phase shift increases with the Rayle
number more for one of the columns than for the other tw
which remain nearly in phase, and, in addition, the shap
one of the columns changes substantially. These are the
sons why in the shadowgraph it seems that they oscil
with a different period. A similar cell pattern can be foun
when a fixed point bifurcates with trihedralD3 symmetry.27

When Ra'12 330, the system undergoes a subcriti
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Neimark–Sacker bifurcation. In the shadowgraph of F
5~a! one may see what this solution looks like. Its Poinca´
section @Fig. 5~c!# shows clearly that an invariant two
dimensional torus appears. The turning point is at
'11 425. From the Fourier spectrum of the time series
the Nusselt number, included in Fig. 5~b!, it can be seen tha
the new frequency in the system is very small,f 250.815, in
comparison with the value of the main one,f 157.26. It is
important to point out that, in this spectrum, the frequen
2 f 1 , appears as a main frequency because the quasi-per
solution bifurcates from anS cycle, and the Rayleigh numbe
must be increased further forf 1 to become apparent. Thus
near the bifurcation point, the main frequency of the Nuss
number remains twice the main frequency of the veloc
field.

The quasi-periodic solution turns out to be stable in
small interval of the control parameter. A moderate inc
ment in the Rayleigh number produces a great change in
dynamics of the system, the solution being already cha
for a Rayleigh number Ra512 000. This can be observed i
Fig. 6, where the Fourier spectrum of the time series of
Nusselt number, at Ra513 000, is plotted. They clearly in
dicate the appearance of a wide band of frequencies,
including thef 1 frequency, in the solution. Temporal chaos
thus reached by a Ruelle–Takens via, after three tim

FIG. 6. Fourier spectrum of the temporal series of the Nusselt number.
solution corresponds to Ra513 000 on the mainn53 branch.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



th
.
re
ig

e
a

s

a

ne

y

s

r
ca
ri-
ed
ts
s
n
bl
he
ha
of

ns

-
ial
f
to
is

d

u-
ctra
si-
or-

ve
tant

fre-

e
ed
ed-
the
-
Be-
fre-
or

1321Phys. Fluids, Vol. 15, No. 5, May 2003 From stationary to complex time-dependent flows
dependent, but four symmetry-breaking, bifurcations. Wi
out any remaining symmetry the fifth one leads to chaos
will be seen that the aperiodic solutions maintain the th
columnar structure until they reach much higher Rayle
numbers.

B. Nonlinear solutions with basic dominant
wavenumber nÄ4

We have seen in Sec. III that theN4 branch is stabilized
at Rac

1254779 giving rise to steady columns of basic wav
numbern54, which have the same symmetry properties
the steadyn53 columns. Then54 steady stable solution
coexist with the DRTW of basic wavenumbern53 until
Rac'6897, where they undergo a Hopf bifurcation th
keeps the spatial periodicity. Both then53 andn54 steady
solutions have the same symmetry properties, and the
pattern of convection is again a DRTW, like that of Fig. 3~a!,
but with four columns and a frequencyf 155.46, confirmed
also by the eigenvaluesl I5634.3 that cross the imaginar
axis, in the linear stability problem. From Rac56897, the
new stablen54 DRTW coexists with the periodic solution
described in Sec. IV A until Ra'10 500. Preliminary calcu-
lations of the stability of the periodic orbit, and also eno
mously long transients of the time-dependent codes, indi
that at this point there exists a pitchfork bifurcation of pe
odic orbits that, ultimately, give rise to branches of mix
DRTW. In spite of the symmetry-breaking, the contour plo
of all these waves are very similar because the amplitude
the growingn52 and aftern51,3 modes are small. Whe
the mixed DRTW bifurcates, we have not found any sta
branch of new solutions locally connected with either t
mixed DRTW or the pure DRTW branches. We suspect t
high codimension bifurcations take place in the vicinity

FIG. 7. For the puren54 DRTW at Ra514 000, ~a! contour plots of the
perturbation of the temperature,~b! of the streamfunction, and~c! Fourier
spectrum of the temporal series of the Nusselt number. As in then53
DRTW, the main frequency for the velocity field isf 1 .
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the points where the solutions are lost. Then54 DRTW
solutions remain almost stable up to Ra'14 800, because the
simple multiplier that first crosses the unit circle remai
very close to 1.0.

For Ra.18 400, twobranches ofR-conjugate quasi-
periodic solutions with dominant wavenumbern54 and sec-
ond frequencyf 250.83 ~VP! at Ra518 500 have been de
tected independently, by changing the integration init
conditions. Becausef 2! f 1 , it is easy to check that one o
them can be obtained by applying a reflection symmetry
the other. In this case we have found that the reflection
through theu0'2p/4 plane. These solutions are mixe
modulated direction reversing traveling waves~mixed-
MDRTW!, whose periodT2 and maximum amplitude in-
crease with Ra until Ra'20 000, where they seem to sat
rate. The comparison of the contour plots and Fourier spe
of the n54 pure and mixed DRTW and those of the qua
periodic solution leads us to believe that this scenario is
ganized by later bifurcations of the DRTW. See Figs. 7~a!–
7~c! and Figs. 8~a!–8~c! as examples. On one hand, we ha
checked that the contour plots of the variables at any ins
of time are very similar~except for the phase of the wave!
and, on the other hand, that the main frequencyf 1 of Fig.
8~c! almost corresponds to a continuous increase of the
quency of the DRTW, shown in Fig. 7~c!, due to the increase
of the Rayleigh number. To confirm this point with a tim
evolution code, we have taken as initial condition for a fix
Rayleigh number, where the solution is unstable, the prec
ing solution before it stabilizes, and we have integrated
equations until only the dominantn54 modes and its har
monics saturate, but the other modes are still negligible.
cause the transients are very long, we can calculate the
quency of the unstable solutions we are following. F

FIG. 8. For the quasi-periodic solution at Ra518 900, ~a! contour plots of
the perturbation of the temperature,~b! of the streamfunction, and~c! Fou-
rier spectrum of the temporal series of the Nusselt number. As in then53
quasi-periodic solution, the main frequency of the solution isf 1 .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. ~a! and~b! Poincare´ sections of twoR-conjugate tori and of the near homoclinic toroidal structure at Ra520 150, respectively, and~c! detail of ~b!
near the origin. An odd mode of the azimuthal component of the velocity vs an odd mode of the radial component of the velocity is represented, f
radial point.
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example, at Ra514 000, 16 500, and Ra518 000 the fre-
quencies aref 158.15, 8.81, and 9.25, respectively, while f
the quasi-periodic stable solutions it isf 159.79 for Ra
518 900. Both facts indicate that these branches are rel
in some way with then54 DRTW. Figure 9~a! shows the
Poincare´ section of the above-mentionedR-conjugate tori at
Ra520 150. At the same Ra we have also found~with the
two time evolution codes! a solution whose Poincare´ section,
which is represented in Fig. 9~b!, is a reflection-symmetric
figure-eight homoclinic attractor. We plot odd modes of the
components of the velocity field, so that the unstable DRT
cross the hyper-plane at the origin. At first sight, it wou
seem that the figure-eight structure appears in a gluing b
cation of the twoR-conjugate tori, but they coexist, main
taining their amplitude, until Ra'20 200, where the pair o
quasi-periodic solutions disappears. We include in Fig. 9~c! a
blow up of the return map of Fig. 9~b! near the origin. From
these figures it is clear that the system spends a lot of t
near the DRTW and escapes very fast, jumping rando
from one side to the other@see also Figs. 10~a! and 10~b!#.
The small difference that can be appreciated in the tor
Fig. 9~a! is due to the rotational invariance of the system.
fact, there exists an infinite number ofR-conjugate tori and
also homoclinic attractors that only differ in the azimuth
orientation of the columns; so generically, with random i
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tial conditions, the solutions we found are rotated in an ar
trary phase~in the case of the figure, a small one!.

From Ra'20 070, the dynamics is very complex. W
have found several stable quasi-periodic solutions of diff
ent periods and symmetries in a small region of the para
eter space. In Figs. 10~a! and 10~b! we show a sample of the
type of flows found. They correspond to the time series
the Nusselt number and to the real part of then51 mode of
the radial velocity, respectively, for different values of th
Rayleigh number. The upper two are quasi-periodic soluti
of different amplitude and radial component velocity sig
like those of Fig. 9~a!. The next is a chaotic solution, like
that of Fig. 9~b!. After the random switches, the flow relam
narizes giving rise toR-invariant quasi-periodic solution
whose long periods, in Fig. 10, quadruples that of a single
theR-conjugate torus. For Ra'20 900 there is no doubt tha
at least one quasi-periodic orbit homoclinic to the puren
54 DRTW is formed. As can be seen in the last but one r
of Figs. 10~a! and 10~b!, then51 azimuthal mode~in fact all

thenÞ4̇ modes! vanishes during the long periods where t
flow behaves like the periodic unstable DRTW at the orig
This is an indication that the bigR-invariant torus nearly
intersects the origin. Furthermore, there are some signs
other pairs ofR-conjugate solutions glue to form homoclin
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1323Phys. Fluids, Vol. 15, No. 5, May 2003 From stationary to complex time-dependent flows
quasi-periodic orbits, at almost the same value of the R
leigh number. The last row of the same figure correspond
a quasi-periodic orbit whose period is double that of
torus of Fig. 9~a!. All these tori behave like MDRTW.

If we try to follow the branch of quasi-periodic solution
below Ra'18 250 by decreasing the Rayleigh number,
system evolves to the chaotic solution with the abo
mentioned basic azimuthal wavenumbern53.

FIG. 11. Contour plots of the mixed-mode steady column~a! of the pertur-
bation of the temperature and~b! of the streamfunction. The solution corre
sponds to Ra55200.

FIG. 10. Time series of~a! the Nusselt number and~b! the real part of the
n51 Fourier coefficient of the radial velocity at a fixed radial point. T
solutions from top to bottom correspond to Ra519 000, Ra520 000, Ra
520 200, Ra520 500, Ra520 900, and Ra522 000.
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C. Nonlinear solutions on the mixed-mode branch

For a Rayleigh number Ra'4850, we have found an
other branch of mixed-mode steady stable columns, whic
not connected with the conduction state. The existence
this branch is in agreement with a recent work,17 in which
two-dimensional non-Boussinesq convection is analyzed
the case of a strong 1:2 spatial resonance. According to th
authors, in a saddle node bifurcation point the solut
ceases to exist. In our case, by decreasing the Ra below
'4850, there is a transition to the mainn53 branch of
solutions. The structure of the new solution is shown in F
11. As in the case of the mixed-mode branchN2 of Fig. 1,
the solutions keep a spatial reflection symmetry, so th
group of symmetry isZ2 . The vertical plane of symmetry
crosses the temperature contour plot through the middle
the big negative temperature vortex.

Between Ra56800 and Ra57150, the system under
goes a Hopf bifurcation that breaks the spatial reflect
symmetry,R, of the steady solutions, giving rise to a stab
mixed DRTW, which has a weak azimuthal mean flow. T
new solution is a symmetric cycle, then the main frequen
of the Fourier spectrum of the Nusselt number is again tw
that of the velocity fieldf 1 . At Ra57150, its frequency is
f 155.80, which is very similar to that found for then54
DRTW. Figure 12 displays the dependence of this numb
averaged in time for the periodic solutions, on the Rayle
number. The solid and dashed lines correspond, respecti
to the basicn53, n54 solutions found by increasing th
Rayleigh number. The dotted lines are the mixed stable
lutions that also coexist with the others. It is clear that t
convection is more efficient if then53 column is selected
while for the other two patterns it is very similar. After th
Hopf bifurcation, there is a significant decrease in the slo
of the curves. This slowing down in the efficiency of th
radial heat transport is caused by the appearance of the
cillatory mass flow in the azimuthal direction that increas
the kinetic energy of the flow. Therefore, the bigger the me

FIG. 12. Nusselt number as a function of the Rayleigh number for ste
state and periodic solutions. The solid, dashed, and dotted lines corres
respectively, to the basicn53, n54, and the mixed stable solutions. For th
time-dependent solutions we have plotted the averaged period. The l
stand for: PS pure steady, PP pure periodic, MS mixed steady, MP m
periodic solutions.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



of
i-
a
y

1324 Phys. Fluids, Vol. 15, No. 5, May 2003 Net, Alonso, and Sánchez
FIG. 13. ~a! Fourier spectrum of the temporal series
the Nusselt number for the two-frequency quas
periodic solution on the mixed-mode branch at R
57450 and~b! same plot for the stable three-frequenc
quasi-periodic solution at Ra515 000. As in then53
DRTW, the main frequency for the velocity field isf 1 .
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flow the larger the decrease in the slope of the Nusselt n
ber.

The periodic orbit turns out to be stable in a very sh
range of Rayleigh numbers. At Ra'7400, the system under
goes a Neimark–Sacker bifurcation, giving rise to qua
periodic solutions that are mixed-MDRTW. So, at a fix
instant, the contour plots of the quasi-periodic solutions lo
like those of Fig. 11. The Fourier spectrum of Fig. 13~a!
corresponds to a solution at Ra57450, the second frequenc
being f 251.27. At Ra515 000 a solution with a small third
frequencyf 350.13 is found. The peak of this frequency c
be seen in Fig. 13~b! and, moreover, linearly combined wit
other peaks. However, its Poincare´ section@Fig. 13~c!# re-

FIG. 14. Sketch of the sequence of bifurcations found in the tw
dimensional annular geometry. Any type of solutions are represente
lines. As usual, dashed for the unstable flows and solid for the stable
spectively. The labels stand for: PS pure steady, PP pure periodic, MS m
steady, MP mixed periodic, QP2 two-frequency quasi-periodic, and CH
otic solutions.
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veals that the flow is still a two-tori. This fact, together wi
the long new periodf 3

21, indicate that the system is crossin
a region of phase locking in the parameter space. This s
tion is stable at least up to Ra518 000 and when it become
chaotic, a broadband of frequencies appears in the spect

V. DISCUSSION

To clarify the scenario presented in the preceding s
tions, a self-explanatory sketch of the sequence of bifur
tions leading to stable flows up to Ra520 150 is plotted in
Fig. 14. As usual, dashed and solid lines refer to unstable
stable solutions, respectively. The branches not leading
stabilization~as far as our calculations reveal! are cut near
the bifurcation point and only branches that are relevan
the later global dynamics at higher Rayleigh numbers h
been prolonged. Despite the complexity of the diagram,
existence of other branches of stable solutions in this reg
of the parameter space cannot be ruled out. We hope to
able to obtain detailed results about the stability of the p
odic orbits in the near future, and therefore clarify the co
nection between the mixed DRTW branch, which reaches
highest Rayleigh numbers, and the quasi-periodic soluti
of basic azimuthal wavenumbern54.

As far as the influence of the reflection symmetry
concerned, we have found two types of nonlinear dynam
The first one is not affected by the symmetries, and co
sponds to the behavior of the main branches of solution
basic azimuthal wavenumbern53. The onset of tempora
chaotic dynamics takes place with the appearance of a t
time-dependent bifurcation that introduces a new incomm
surate frequency. In spite of the existence of a pitchfork
furcation of periodic orbits between the first periodic and t
quasi-periodic regimes, the sequence can be considere
example of the Ruelle and Takens theory. This type of tr
sition was first observed in a Taylor–Couette apparatus28 and
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since then has been observed in numerous experimen
thermal convection in rectangular boxes and in other
namical systems with different symmetries. It is an univer
route to chaos, and experiments confirm that is indepen
of the symmetry group of the system. Thus we must c
clude thatO(2) symmetry would not modify the tempora
dynamics of then53 dominant thermal columns. In con
trast, the nonlinear dynamics of the solutions of domin
wavenumbern54 depends on the reflection symmetry, l
cally for the steady and periodic solutions and globally
those quasi-periodic. The spatial interaction between
modes with wavenumbersn52 and n54 that we have
found is an example of a spatial 1:2 resonance, in wh
modes with wavenumbersn and 2n in the periodic direction
interact nonlinearly. The 1:2 spatial resonance in syste
with O(2) symmetry was first studied by several authors.29,30

Some aspects of the dynamics predicted by the normal f
equations are reproduced here, although slightly modified
the initial existence of the stablen53 branch. The presenc
of wavenumber gaps in which no steady solutions with
given wavenumber exist is a typical feature of this re
nance. This is what happens in the range of Rayleigh n
bers 2889,Ra,4779, where then52 solution disappears
The existence of traveling waves bifurcating from the mix
n52,4 mode, which correspond to the bifurcation point
Rac

552478 in our case, is also a characteristic of this re
nance. Moreover, in agreement with Ref. 17, the third sta
mixed-mode branch disconnected from the conduction s
completes our 1:2 standard resonant bifurcation diagr
The transition to turbulence through quasi-periodic states
the phase locking phenomenon with three frequencies
Rayleigh–Be´nard convection have also been known for
long time,31,32 but are not easy to observe in laboratory e
periments. Our results confirm the existence of such regi
in natural thermal convection, but a detailed study of
transition to temporal chaotic flows from three-tori is outsi
the scope of this paper. In any case, we would like to po
out that we have also found theR and Ru-symmetric
branches of solutions, but no hint that it could affect t
complex global dynamics at higher Rayleigh numbers.

The quasi-periodic solutions and the homoclinic attr
tors found at Ra'20 150 and Ra'20 900 are not directly
related with the standard interaction of then52 andn54
azimuthal modes; i.e., they have no direct relation to the
and heteroclinic cycles16 found from the normal form equa
tions of the 1:2 resonance. In this reduced system, they
always found below the point where the stabilization of t
n54 steady column takes place. The following dynamics
globally organized by then54 periodic orbit and two
reflection-symmetric time-dependent branches of solutio
In this sense, it would also be characteristic ofZ2 symmetric
systems. See for instance, Lopez and Marques’33 results for a
periodically forced Taylor–Couette apparatus. The global
namics described in this paper is also present in other
tems with discrete symmetry groups. Most of the solutio
we found are in consonance with the results of Armbrus
et al.34 The authors analyzed the sequence of global bifur
tions for partial differeintial equations withD4 symmetry.
They use a Karhunen–Loe`ve analysis to identify the struc
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tures in phase space that generate the behavior of low R
nolds number Kolmogorov flow, in a two-dimensional pe
odic domain. Our results are in agreement with the existe
of a gluing bifurcation of limit cycles~four in their case! that
generate aD4-invariant attractor. Gluing bifurcations are th
symmetry-increasing mechanism that probably generate
inverse period-doubling cascade leading to the chaotic att
tor at Ra'20 150. It is difficult to explore a large range o
the parameter space for quasi-periodic solutions in detail,
this mechanism of period-doubling in Rayleigh–Be´nard con-
vection has already been carefully described by Massag
et al.35 for a subharmonic period-doubling cascade of pe
odic orbits. They found that the scenario was generated b
sequence of gluing bifurcations between asymmetrical orb
which gave rise to symmetrical orbits of double period an
subsequently, pitchfork bifurcations of the new periodic
bits return to the asymmetrical situation. It is important
notice that global bifurcations involving solutions related
the symmetries of the problem require the real existence
these symmetries. It is not enough that a single solution
covers locally a symmetry under special circumstanc
Thus, in the three-dimensional problem, even if the bound
layers remains laminar and attached to the lids of the an
lus, and the fluid remains nearly two-dimensional becaus
rotation, the dynamics of the almostn54 thermal columns
should be completely different to that described here.

Finally, we would like to point out that although pur
steady columns, forced by a radial temperature gradient,
not be experimentally observed on the Earth’s surface,
cause of vertical gravity, there are some old36 and new ex-
periments designed to be carried out in radial grav
conditions in a space station. The most recent of thes
currently being designed at the University of Colorado~see
http://nimbus.colorado.edu/hart/science.htm! in order to
study shear flow instabilities in a ferromagnetic Taylo
Couette apparatus, whose walls are maintained at diffe
temperatures. We trust that our results contribute to a gen
understanding of the influence of the radial gravity on co
vective systems with curvature.
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