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Abstract

The aim of this study is to determine through numerical simulations the extent and robustness of

the three-dimensional torsional dynamics of the thermal convection in rotating spherical fluids at

very low Prandtl numbers. It is known that the kinetic energy of the periodic axisymmetric flows

propagates latitudinally on the surface of the sphere. Here it is shown that when the axisymmetry

is broken at a secondary Hopf bifurcation, the flow starts to drift in the azimuthal direction

giving rise to a quasiperiodic motion that propagates the energy in latitude and longitude. The

double direction of propagation gives rise to a meandering path of the kinetic energy, which is

still concentrated on the surface, but highly localized. Several new stable states of convection with

different symmetries have been identified in a large range of Rayleigh numbers, all of them retaining

the torsional motion of the basic velocity field. Particular attention is paid to their dependence

on the Rayleigh number, and on the values of the frequencies, of the mean zonal flow, and of the

kinetic energy of the fluid.
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I. INTRODUCTION

The study of the thermal convection in rotating fluid spheres and spherical shells is

essential because it affects the dynamics and the generation of magnetic fields of planets

and stars. There are several reasons for which it is much less understood at very low

Prandtl numbers, Pr, than at moderate and high Pr. On the one hand the experiments

with liquid sodium are very expensive, of high technical difficulty and, in addition, it is not

easy to visualize directly the patterns of convection at low Rayleigh numbers, Ra. On the

other hand the numerical simulations are very expensive. Very small time steps must be

taken due to the small period of the oscillations, and the proximity of various branches of

solutions lengthen the transients. Despite the difficulties, the experimental and numerical

studies have intensified in recent years, reaching low Ekman numbers at the very low Pr

of liquid metals, E, [1–4], or taking into account new phenomena such us the precession of

the rotating spheres [5], the compressibility of the fluid [6, 7], the influence of Robin [8]

and fixed-flux [9] boundary conditions for the temperature, or attaining the fully developed

turbulence [10, 11].

Of particular interest in the context of the present work are the numerical studies [12, 13].

They have shown that with stress-free and impenetrable boundary conditions, radial gravity,

internal heating, and when the ratio of Pr to E, is O(10), the onset of convection takes

place after a Hopf bifurcation that gives rise to periodic axisymmetric flows (ϕ-independent

in spherical coordinates (r, θ, ϕ), θ being the colatitude and ϕ the longitude), of period T ,

nearly antisymmetric with respect to the equator. The antisymmetric component of the

velocity field fulfills (var , v
a
θ , v

a
ϕ)(t, r, θ, ϕ) = (−var , v

a
θ ,−vaϕ)(t, r, π−θ, ϕ+ϕ0), and that of the

temperature Ta(t, r, θ, ϕ) = −Ta(t, r, π−θ, ϕ+ϕ0), ϕ0 being any arbitrary azimuthal angle).

Moreover the velocity field retains the spatio-temporal symmetry (vr, vθ, vϕ)(t, r, θ, ϕ) =

(vr, vθ, vϕ)(t+ T/2, r, π− θ, ϕ+ ϕ0) and T(t, r, θ, ϕ) = T(t+ T/2, r, π− θ, ϕ+ ϕ0). The flow

consists of a meridional (poloidal) vortex, which fills the sphere and reverses its rotation

every half period, and an azimuthal motion with opposite velocities in each hemisphere,

which also changes its direction but with a phase shift relative to the poloidal field. This

type of flow is known as torsional. The periodic axisymmetric solutions are stable in a very

narrow range of Ra [14], and they lose stability to three-dimensional velocity fields. It can

seem at first sight that the conditions for the existence of the torsional motion are very

2

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
6
4
4
6
5



restrictive to be relevant in geophysics and astrophysics. However, a recent study of the

onset of convection in a fluid sphere heated from the inside [15] delimited the bounds of

the region of parameters where the first bifurcation from the conduction state leads to a

torsional pattern of convection. It was shown that below E ≈ 6× 10−2, and in particular in

the limit E → 0, there is always an interval of Pr in which the first transition is to torsional

solutions. The fit of the stability curves is potential, i.e., E ∝ Prn, narrowing when E → 0.

In addition, a second point of interest to study these flows is that the non-periodic torsional

velocity fields are able to generate and sustain strong magnetic fields [16].

The three- and two-dimensional dynamics of the torsional convection at low Ra was stud-

ied numerically by Kong et al. [14], and Sánchez Umbŕıa and Net [17], respectively. Both

simulations found a wave of kinetic energy propagating latitudinally when the nonlinear ef-

fects weakly break the exact anti-symmetry with respect to the equator of the eigenfunction.

The main aim of the following study is to deep in the influence of the axisymmetric bifurca-

tion on the three-dimensional flows, after a secondary bifurcation on the branch of torsional

flows takes place. In this way this work complements that by Kong et al. [14], who describe

the dynamics on the branch arising at the second bifurcation from the conduction state with

Pr = 10−2, E = 10−3 and a very small ratio of radius η = 0.001. The convection following

that branch is an equatorially symmetric wave of azimuthal wavenumber m = 1, traveling

in the retrograde direction with constant kinetic energy, that bifurcates to a quasiperiodic

branch of mixed dynamics.

The remainder of the paper is organized as follows. After the introduction, Sec. II is de-

voted to introduce the mathematical model. Some resolution tests are presented in Sec. II B.

Section III studies the temporal dependence and mean properties of the flow from the onset

of convection to, approximately, twice the critical Ra. Section IV describes the dynamics

of the quasiperiodic torsional flows, and in Sec. V the comparison of this dynamics with

that found in low-dimensional models is established. Finally, Sec. VI summarizes the main

results together with the conclusions of the work.

II. FORMULATION, NUMERICAL METHODS AND TESTS

The dynamics arising in internally heated fluid spheres or spherical shells of dimensional

internal radius r∗i , and external, r∗o, rotating about a symmetry axis with constant angular
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FIG. 1. Geometry and physical settings of the problem. The symbol ρ accounts for the density of

the fluid, and q for its internal heating.

velocity Ω = Ωk, and subject to radial gravity g = −γr, can be studied by using the

Boussinesq approximation of the mass, momentum and energy equations. In the definition

of the gravity acceleration γ is a constant (corresponding to a uniform density), and r the

position vector. The number of equations can be reduced by writing the velocity field in

terms of toroidal, Ψ, and poloidal, Φ, potentials as

v = ∇× (Ψr) +∇×∇× (Φr) . (1)

In order to emulate the thermal convection in fluid spheres it is a common practice to take

wide spherical shells of very small radius ratio η = r∗i /r
∗
o. For instance, η = 0.001 was used

in [14]. It was shown that the presence of a very small internal sphere does not affect the

supercritical Hopf bifurcation, which maintains the axisymmetry of the conduction state,

and only slightly modifies the value of the critical Ra. This approach has been adopted in

this study by setting η = 0.01. An scheme of the geometry and physical formulation of the

problem is included in Fig. 1.

The nondimensional equations in the rotating frame of reference, written for both poten-

tials and the temperature perturbation from the basic state, Θ = T− Tc, are

(∂t −∆)L2Ψ = 2E−1(∂ϕΨ−QΦ)− r ·∇× (ω × v), (2)

(∂t −∆)L2∆Φ = 2E−1(∂ϕ∆Φ +QΨ)− L2Θ+ r ·∇×∇× (ω × v), (3)

(Pr ∂t −∆)Θ = RaL2Φ− Pr (v ·∇)Θ. (4)

The operators L2 and Q are defined by L2 ≡ −r2∆ + ∂r(r
2∂r), Q ≡ r cos θ∆ − (L2 +

r∂r)(cos θ∂r − r−1 sin θ∂θ). In addition, ω = ∇× v is the vorticity.
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The units employed in Eqs. (2)-(4) are the gap width, d = r∗o − r∗i , for the distance,

ν2/γαd4 for the temperature, and d2/ν for the time. With this scaling Pr, Ra, and E are

Pr =
ν

κ
, Ra =

qγαd6

3cpκ2ν
, E =

ν

Ωd2
. (5)

The coefficients q, cp, ν and κ are the rate of internal heat generated per unit mass,

the specific heat at constant pressure, the kinematic viscosity and the thermal diffusiv-

ity, respectively. The spherical symmetric conduction state is then given by v = 0 and

Tc(r) = T0 − (Ra/2Pr)r2 (state S0 from now on), so it fulfills

T(t, r, θ, ϕ) = T(t + t0, r, θ + θ0, ϕ+ ϕ0),

for arbitrary t0, θ0 and ϕ0. The centrifugal force is omitted from the formulation because in

many self-gravitating bodies the rotational Froude number, Fr = Ω2R/g, and the flattening,

fl = (Rmax − Rmin)/Rmax, are much less than one. For instance, taking the rotation

Ω⊙ = 2.69 × 10−6 s−1, the radius R⊙ = 6.96 × 108m, and the gravity g⊙ = 274.4m/s−2 of

the Sun, Fr⊙ = 1.84 × 10−5. The difference between its equatorial and the polar radii is

about 10 km, so fl = 1.44× 10−5. Moreover, in this problem the negligible centrifugal force

does not introduce any component in a direction different from those already given by the

projections of g, so it cannot produce any new dynamics.

Stress-free, impenetrable (vr = 0), and perfect thermally conducting boundary conditions

in terms of the potentials

Φ = ∂2

rrΦ = ∂r(Ψ/r) = Θ = 0 at ri = η/(1− η) and ro = 1/(1− η) (6)

close the formulation of the problem. However, they require enforcing the conservation of

the angular momentum in the domain, L, during the time integration.

Although this study does not consider the deformation of the surface of the sphere, there

are numerous studies ([18–22], among others) devoted to find complete sets of inertial modes

(oscillations and waves generated by the Coriolis force) in ellipsoidal fluid volumes, motivated

by understanding the liquid core dynamics of deformed planets, and moons. Maffei et al.

[21] found complete bases for the inertial waves assuming a quasi-geostrophic motion in a

spheroid of stress-free and impenetrable boundaries, and compared the z-independent results

with those of the three-dimensional problem. Chan et al. [23] investigated the motion of a

homogeneous fluid confined in the core of a latitudinally librating planet with finite polar
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excentricity. Inviscid analytical solutions were derived and three-dimensional numerical

simulations for viscous fluids at low E were carried out.

The above system is SO(2)×Z2-equivariant, SO(2) generated by azimuthal rotations of

an arbitrary angle ϕ0, and Z2 by reflections with respect to the equatorial plane, i.e., the

actions

Rϕ0
: (Ψ,Φ,Θ)(t, r, θ, ϕ) → (Ψ,Φ,Θ)(t, r, θ, ϕ+ ϕ0), (7)

and

ζθ : (Ψ,Φ,Θ)(t, r, θ, ϕ) → (−Ψ,Φ,Θ)(t, r, π − θ, ϕ), (8)

leave the system invariant.

To discretize the system, the functions X = (Ψ,Φ,Θ) are expanded in spherical harmonic

series up to degree and order L (triangular truncation), namely

X(t, r, θ, ϕ) =
L
∑

l=0

l
∑

m=−l

Xm
l (r, t)Y m

l (θ, ϕ), (9)

with Ψ−m
l = Ψm

l , Φ−m
l = Φm

l , Θ−m
l = Θm

l , Ψ0
0 = Φ0

0 = 0 to uniquely determine the

two scalar potentials, and Y m
l (θ, ϕ) = Pm

l (cos θ)eimϕ, Pm
l being the normalized associated

Legendre functions of degree l and order m with the norms
√

2l + 1

2

(l −m)!

(l +m)!
with l ≥ 0, −l ≤ m ≤ l. (10)

A collocation method on a mesh of Nr + 1 Gauss-Lobatto points is used in the radial

direction. The equations are written in the Nr − 1 inner points by constructing the linear

operators fulfilling the boundary conditions. The matrix-vector products to evaluate the

radial operators and the Legendre transforms are computed with the optimized GotoBLAS

library [24]. More details are given in Ref. [17].

There are different ways of implementing the conservation of L. By using an angular

discretization in spherical harmonics, the conservation of the components of the angular

momentum only depends on the toroidal part of the velocity field, specifically on Ψ0
1
(r),

ℜ(Ψ1
1(r)) and ℑ(Ψ1

1(r)) [25, 26]. By initially taking L = 0, these radial functions can be

treated as Ψ0
1
(r) in the Appendix of [17], i.e., by modifying in Eq. (2) the parts of the vector

field corresponding to these variables. Finally, the system is integrated with the fully implicit

BDF method implemented in the subroutine DLSODPK from the ODEPACK package [27],

with variable time step and order, and tolerances as low as 10−12.
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A. Output data definitions

Aside the analysis of the time series, the dynamics of the three-dimensional flows bifur-

cating from the axisymmetric periodic branch of solutions are analyzed by monitoring global

data obtained by averaging some physical properties of the flows over the whole volume of

the sphere, V . The volume average of the kinetic energy density, k = 1/2 (v · v), is

K(t) =
1

2V

∫

V

k(t, r, θ, ϕ) dV =
3
√
2

4(r3o − r3i )

∫ ro

ri

r2[v2]0
0
(r, t) dr, (11)

where v2 = v ·v, and [v2]00 means the spherical harmonic coefficient of order and degree zero

of v2. The same expression can be used for computing the corresponding toroidal, KT (t),

poloidal, KP (t), zonal (axisymmetric), Kz(t), and nonzonal (non-axisymmetric), Knz(t),

parts by replacing v by the corresponding component. In addition, the zonal flow, defined

as

〈vϕ〉 =
1

2π

∫

2π

0

vϕ dϕ, (12)

is also tracked.

The temporal average of any of the above functions, F , over a time interval ∆t is computed

as

F =
1

∆t

∫

∆t

0

F (t) dt. (13)

The time integral is approximated by the trapezoidal rule during the time integration. From

now on the time and space averaged quantities will be called ’mean quantities’ for short.

B. Validation of the results

To check the convergence of the solutions, some frequencies and mean properties of three

quasiperiodic flows were computed with different resolutions.

The initial conditions of the simulations of Table I were obtained by interpolating the

coarse grids to finer meshes, and starting the averages once the new solutions reached satura-

tion. The resolution Nr×L = 48×64 was finally used for Ra < 12000, and Nr×L = 64×80

for the highest Ra, although the change was not strictly necessary because the values given

by the two finest grids differ about 1.2% in the worse case. Moreover, it has been checked

that the dynamics described below can be reproduced by using 32 × 54 points but with a

slight shift of the bifurcation points to lower values.
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TABLE I. Comparison of the main frequencies, f1 and f2, the mean zonal flow, 〈vϕ〉, the total, K,

toroidal, KT , and poloidal, KP , mean kinetic energies, with different resolutions and values of Ra

for a time interval ∆t > 0.5.

Nr × L Nθ Nϕ Ra f1 f2 〈vϕ〉 K × 10−4 KT × 10−4 KP × 10−4

32× 54 84 168 7400 1422.66 366.13 4.672 × 10−2 1.868 0.9615 0.9068

48× 64 98 196 7400 1422.69 365.91 7.018 × 10−2 1.647 0.8394 0.8071

64× 80 128 256 7400 1422.70 365.88 7.047 × 10−2 1.633 0.8316 0.8017

32× 54 84 168 9000 1440.08 312.17 −5.598 9.204 5.237 3.967

48× 64 98 196 9000 1439.75 312.81 −5.506 9.635 5.441 4.193

64× 80 128 256 9000 1439.66 312.70 −5.444 9.668 5.455 4.213

48× 64 98 196 12000 1451.56 322.53 −12.379 5.804 3.800 2.005

64× 80 128 256 12000 1451.58 322.51 −12.371 5.806 3.800 2.006

1420

1430

1440

1450

1460

7 8 9 10 11 12 13 14

(a)

f 1

10
-3 Ra

280

303

326

349

372

7 8 9 10 11 12 13 14

SQ1

SQ2

SQ3

SQ4

(b)

f 2

10-3 Ra

75

105

135

165

195

7 8 9 10 11 12 13 14

(c)

f 3

10-3 Ra

FIG. 2. (a) First (b) second and (c) third main frequencies of the solutions computed.

The solutions of Table I reach better accuracy with 48 × 64 points at Ra = 12000 than at

Ra = 9000 because, as will be seen below, the time dependence of the former is simpler.

III. FREQUENCIES AND MEAN VALUES

The calculations shown below correspond to a fluid shell with a small gap η = 0.01. In

addition Pr = 10−3, E = 10−4 are taken, to ensure that the first bifurcation from S0 is

axisymmetric and that the dynamics is dominated by torsional flows.

The integration was started from an interpolated periodic torsional solution obtained for
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the thermal convection of a fluid sphere at Ra = 8100 by a continuation method and the

parameters and conditions previously mentioned [17]. Therefore, since this bifurcation is

supercritical, only solutions above the critical Ra of the onset of convection in this sphere

(Rac = 7640) were expected. However, by evolving temporally Eqs. (2)-(4) with boundary

conditions (6), the first axisymmetric periodic solution (state S1) was found at Ra ≈ 7300.

By increasing Ra from this value, the periodic two-dimensional flow bifurcates quickly to

three-dimensional quasiperiodic flows in a second Hopf bifurcation, although the torsional

motion is retained. Figures 2(a) and (b) show the two main frequencies of the stable solutions

found when Ra is increased from the lowest solution. Figure 2(a) is that of the main

frequency f1, associated to the thermal inertial oscillations existent at very low Pr, i.e.,

it is that of the torsional oscillations. Only the leftmost symbol of Fig. 2(a) corresponds

to an axisymmetric solution, but it is impossible to ascertain just by temporal integration

whether it is stable or not. The next bifurcation is so close that the transients are too long

to conclude something in any sense. When the invariance by rotation is broken the solution

starts to drift in the azimuthal direction. The frequency f2 of Fig. 2(b) is related to the

drift. It is almost four times lower than f1, therefore this azimuthal drift is much slower

than that of the thermal inertial waves found as primary bifurcation from S0 outside the

region found in [15].

The change of slope of the first two curves, mainly that of Fig. 2(b), reflects that four se-

quences of solutions have been found. They are marked on this figure with red straight lines,

and also with labels SQi, with i = 1, . . . , 4. Solutions belonging to SQ1 were found in the

range of Ra [7300, 7550], SQ2 in [7600, 7675], SQ3 in [7700, 8900], and SQ4 in [9000, 14000].

The first change drives to a slight increase of f1, and a decrease of f2, and takes place close

to Rac = 7640, i.e. the value expected for the onset of convection in the full sphere. From

Ra ≈ 7600 (SQ2) both frequencies increase substantially up to a second change. Then from

Ra ≈ 7700 (SQ3) there is a decrease of the slope of the curve of frequencies up to a third

change that introduces a new slight decrease. From Ra ≈ 9000 (SQ4) the slope of the curves

of frequencies diminish until torus chaos (temporal chaos confined close to the quasiperiodic

solution that loses the stability) is reached (last point). However, Fig. 2(c), which shows

the main frequency f3 of the solutions, suggests that SQ3 includes two different branches.

In this interval the frequency f3 increases rapidly from Ra = 7700, and suddenly recovers

its initial value, f3 ≈ 84, around Ra = 8500. In any case, these solutions will be analyzed
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FIG. 3. Mean values of: (a) the zonal flow, 〈vϕ〉, (b) the full kinetic energy (black pluses), K,

its toroidal (red crosses), KT , and poloidal (blue asterisks), KP , components, of the sequences of

stable solutions. Below in (c-d) zonal, Kz, and nonzonal, Knz, contributions to KT and KP .

together.

No multiplicity of stable solutions by increasing and decreasing the parameter at the

jumps between SQ was detected, i.e. hysteresis was not found. However, it is very com-

mon to find this phenomena in thermal convection. For instance, the origin of bistability of

axisymmetric flows confined between differentially heated spheres at large Pr was studied

in [28]. They found that bistability depends on the relative strength of heating and differen-

tial rotation, and that the nature of the transition between bistable states depends strongly

on Pr.

The same SQi, i=1,· · · 4, can be seen by depicting the mean zonal flow, 〈vϕ〉, (Fig. 3(a)),
and the mean kinetic energy, K, together with its mean toroidal, KT , and mean poloidal,

KP , components (Figs. 3(b)-(d) respectively).
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TABLE II. Mean values of the zonal flow at selected points (r, θ) for a solution in each of the four

sequences shown in Fig. 3. Columns from left to right correspond to Ra = 7375, 7650, 8450, 12000.

θ r 0.26 0.76 1.01 0.26 0.76 1.01 0.26 0.76 1.01 0.26 0.76 1.01

π/6 0.659 -0.313 -2.732 0.498 -7.742 -19.03 -7.336 -26.29 -37.42 -31.46 -73.36 -75.79

π/3 1.251 0.607 -2.125 1.644 0.751 -6.863 -11.45 -6.819 7.627 -52.17 -38.24 47.52

π/2 1.466 1.511 -1.059 2.200 8.517 1.036 -12.43 11.42 25.25 -58.75 -6.541 130.43

2π/3 1.254 0.631 -2.084 -1.698 1.209 -6.060 -11.45 -6.811 7.643 -52.15 -38.07 47.83

5π/6 0.662 -0.294 -2.691 0.547 -7.316 -18.28 -7.335 -26.28 -37.41 -31.44 -73.21 -75.51

The mean zonal flow is prograde in SQ1, but very small. After, it becomes retrograde, and

its absolute value increases with the increase of Ra. An inspection of the time evolution of

〈vϕ〉 and 〈vϕ〉 very near to the points (r, θ) = (0.26, π/6), (0.76, π/6), (1.01, π/6), (0.26, π/3),

(0.76, π/3), (1.01, π/3), (0.26, π/2), (0.76, π/2), (1.01, π/2), and to the symmetric points with

respect to the equator in the south hemisphere, shows that, in general, its intensity (either

prograde or retrograde) increases from the interior of the sphere to ro = 1.01. Table II shows

typical values at these points for the four sequences found. The mean zonal flow in the north

hemisphere and the equator (first three lines) is always very small in SQ1, prograde in the

interior and retrograde near and on ro. The changes of sign take place between r = 0.26

and 0.76 at θ = π/6, between r = 0.76 and 1.01 at θ = π/3, and between r = 0.76 and

1.01 at θ = π/2. In the second the highest values are retrograde, located at high latitudes

(low θ) on ro. The sign of 〈vϕ〉 changes in SQ2 at the low and mid θ, however it remains

prograde at the equator, very small in the most internal part and at ro. The sequence SQ3 is

characterized by a retrograde 〈vϕ〉 on r = ro at high latitudes, and prograde at the equator,

except in the most internal part. At θ = π/3 there is a change of sign between r = 0.76 and

ro. The zonal flow in SQ4 is as in SQ3 except in the equator, with a stronger intensity that

increases with Ra. Moreover, 〈vϕ〉 in the south hemisphere is almost symmetric to that of

the north (two last lines in Table II).

The mean kinetic energy (Full), and its toroidal (T) and poloidal (P) components (Fig. 3(b))

are small at the beginning, growing quickly in SQ2. K becomes almost constant in SQ3,
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FIG. 4. Oscillation of K (black), KT (magenta solid line) and KP (blue dashed line) around their

mean values, which can be seen in Table I. K has been amplified a factor 10 to visualize the

oscillation. Ra = 9000.

due to a small rise of KT and reduction of KP , with two tiny minima that possibly signal

the presence of two different branches of solutions. The sequence SQ4 shows a diminution

of the mean kinetic energies, tending finally to an almost constant value.

The contribution of the zonal (axisymmetric), Kz, and nonzonal (non-axisymmetric),

Knz, parts of KT and KP are shown in Figs. 3(c)-(d). The mean zonal energies are much

more important than the nonzonal in SQi, i=1,2,3, despite the opposite slope of the curves

from the beginning of SQ3 at Ra ≈ 7700. The decrease of Kz is almost compensated by the

increase of Knz in SQ3, explaining the almost constant mean energies in the third interval

of Fig. 3(b). While the curve of Knz is quite smooth that of Kz shows a cusp at Ra ≈ 8500,

also present in the three curves of Fig. 3(b). In the last segment, both Kz and Knz tend to

a constant value while the solutions are quasiperiodic. In any case, the mean zonal energies

have a similar value, but the toroidal part of Knz is at the end of the interval about three

times larger than all the others, giving the main contribution to the full kinetic energy. The

increase of Kz in the last point is compensated by the decrease of Knz maintaining the full K

almost constant when the flow becomes temporally chaotic. This balance of energies differs

from that described in Ref. [29] for the thermal Rossby waves and bifurcated flows. They

found that the contribution of the zonal KP to K is more than an order of magnitude lower

than that of the other three components, while for the torsional flows it is of the same order

(see also Table I).
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Although the instantaneous toroidal and poloidal components of the velocity field, vT and

vP , are not orthogonal, the volume integral of vT ·vP vanishes [30], and then K = KT +KP

as show Table I and Fig. 3(b). On the other hand there is a periodic interchange of kinetic

energy between the toroidal and poloidal parts, inherited from what already happens with

the eigenfunction at the onset. Then KT (t) and KP (t) are almost out of phase, and K(t)

oscillates with a very low amplitude. Figure 4 illustrates this property for Ra = 9000. The

volume averaged total energy K(t) has been amplified a factor 10 in order to see clearly the

oscillation.

IV. ANALYSIS OF THE SOLUTIONS

To analyze the bifurcations and transitions that take place along the above curves is

difficult because the system has a large size, Pr is very low, and the number of transitions is

large in short intervals of Ra, i.e. the solutions are always near a bifurcation or a breakdown.

A. First sequence of solutions (SQ1)

As said before, the first axisymmetric periodic solution was found at Ra = 7300. The

frequency of the solution is f1 = 1422.7, which matches the period, T1 = 7.029 × 10−4,

of the inertial oscillations found in the axisymmetric full sphere problem with the same

parameters [17]. For this type of solutions it is known that the torsional velocity field

gives rise to a latitudinal propagation of k on the outer surface of the sphere, and to an

oscillation of the hot core in the direction of the axis of rotation when Ra is large enough.

The periodic oscillations break the equatorial anti-symmetry of the eigenfunction, although

near the onset of convection the antisymmetric component is much more important than

the symmetric [17]. As said in the introduction, they keep the invariance by rotations, Rϕ0

and the spatio-temporal symmetry, then S1 fulfills

(vr, vθ, vϕ)(t, r, θ, ϕ) = (vr, vθ, vϕ)(t + T/2, r, π − θ, ϕ+ ϕ0), (14)

T(t, r, θ, ϕ) = T(t+ T/2, r, π − θ, ϕ+ ϕ0, ) (15)

i.e., they are symmetric cycles, which keep the axisymmetry.

The contour plots of the upper row of Fig. 5 correspond to the S1 found at Ra = 7300.

The first three (a)-(c) are snapshots of Θ(t) and (d)-(f) of k together with the velocity field
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

FIG. 5. Contour plots of: (a)-(c), (g)-(i) and (m)-(o) the perturbation of the temperature, Θ, and

(d)-(f), (j)-(l) and (p)-(r) the kinetic energy density, k, together with the velocity field (arrows),

on a spherical surface, the equator and a meridional section, respectively. The first row (a)-(c)

and (d)-(f) for Ra = 7300, the second (g)-(i) (Multimedia view) and (j)-(l) (Multimedia view) for

Ra = 7375, and the third (m)-(o) (Multimedia view) and (p)-(r) (Multimedia view) for Ra = 7475.

The place where each projection is taken is marked with dotted lines in the other two.

(arrows). The place where the projections are taken is shown on the own figures. The

spherical surfaces (a) and (d) are taken cutting the maximum of the solution, (b) and (e)

are equatorial and (c) and (f) meridional sections. The color is global in each group of three

projections, but the arrows of the velocity field are scaled for each projection. This criteria

will be maintained along the paper. The two local maxima of k, one in each hemisphere,

are due to the larger weight of the antisymmetric component of the velocity field.

The secondary Hopf bifurcation from S0 breaks the axisymmetry of S1 (symmetry Rϕ0
),

but the emerging invariant two-dimensional tori, T2, retain the spatio-temporal symmetry

as sets, and the instantaneous invariance under arbitrary azimuthal rotations of ϕ0 = π

(Rπ). It makes the fluid to start to drift in the azimuthal direction (state S2). An analogous
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FIG. 6. Projections of the Poincaré sections showing the value of vθ(0.26, π/6, 0) versus that of

vϕ(1.01, π/6, 0) on the hyperplane vϕ(0.76, π/6, 0) = 0. The values of Ra from the smaller to the

larger sections are 7325 (black), 7375 (purple), 7450 (teal), and 7475 (blue).

Ra=7300f1 (a)

Ra=7375f1f2
(b)

Ra=7475f1f2f3
(c)

A
m
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de
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(d)

Frequency

FIG. 7. Spectra of vϕ(1.01, π/6, 0) for (a) Ra = 7300, (b) 7375, (c) 7475, and (d) 7500.

drift appears when the axisymmetry of a steady flow is broken in a Hopf bifurcation (see

for instance [31]). The difference is that in this case the transition leads to a quasiperiodic

flow (trajectory on a T2) instead of a periodic orbit. The bifurcation takes place around

Ra = 7312. Since it keeps the invariance Rπ, only the spherical harmonics of order multiple

of m = 2 contribute to the expansion (9) of the new solution. The inverse of the frequency f2

15

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
6
4
4
6
5



 0  30  60  90  120  150

Ra=7500

A
m

pl
itu

de
Frequency

FIG. 8. Detail of Fig. 7(d) around the peak f3 = 84.95.

approximates the time taken by k to drift an angle π. The state S2 satisfies instantaneously

(vr, vθ, vϕ)(t, r, θ, ϕ) = (vr, vθ, vϕ)(t, r, θ, ϕ+ π), (16)

T(t, r, θ, ϕ) = T(t, r, θ, ϕ+ π). (17)

and as a set ζθ(T
2) = T2. This means that if X is a point on the torus, then so is ζθ(X).

The second row of Fig. 5 shows the same snapshots for Ra = 7375 as for Ra = 7300.

The two-fold symmetry and the prograde drift of the solutions can be clearly observed in

the animations of the equatorial projection of Θ(t) in Fig. 5(g)-(i) (Multimedia view), and

in the projection of k on the outer surface of Fig. 5(j)-(l) (Multimedia view). The wave of

k traveling latitudinally from the equator to mid-latitudes is better seen in the meridional

section. The maxima of k, one in each hemisphere, travel from mid latitudes to the equator,

joining and splitting there at each torsional oscillation. Their double direction of propagation

gives rise to a meandering path on the outer spherical surface. This solution has f1 = 1422.7

and f2 = 365.88.

The state S2 loses stability through a third Hopf bifurcation that breaks the invariance

Rπ, and gives rise to a branch of quasiperiodic solutions with three fundamental frequencies,

then the trajectories are on invariant three-tori, T3, (state S3). The transition takes place

around Ra = 7450. The third row of Fig. 5 shows the contour plots of the new solution at

Ra = 7475, for which f1 = 1422.7, f2 = 366.02 and f3 = 83.25. Once again the equatorial

section of Θ(t) and the projection of k on the outer surface reflects the symmetry breaking.

Despite this fact, hints of the previous symmetry can still be seen following the waves on
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FIG. 9. Time evolution, close to a heteroclinic chain, of the modes (a) Θ0
0, (b) Θ

1
1 and (c) Θ2

2, at

the radial point r = 0.76, and (d) azimuthal component vϕ(1.01, π/6, 0). Ra = 7500.

the animations of Fig. 5(m)-(o) (Multimedia view) and on Fig. 5(p)-(r) (Multimedia view).

Near the bifurcation point the splitting of k, traveling simultaneously up and down between

the equator and both poles, remains because the growing modes of order m = 1 are still

small.

The projection of the Poincaré sections (PS from now on) in Fig. 6 and the Fourier spectra

of the solutions in Fig. 7(a)-(c) confirm this sequence of bifurcations. The first three sections

are closed curves indicating that they correspond to states S2. The state S3 is represented

by a wide band of points. The new frequencies appearing at each bifurcation are labeled on

Fig. 7(a)-(c), which contains the spectra of vϕ(1.01, π/6, 0).

The last solutions lose stability soon. By increasing Ra, instead of getting a chaotic

attractor with a continuum spectrum of frequencies, solutions whose main peaks coincide

with those of Fig. 7(a)-(c) are found (see Fig. 7(d)). However, the quasiperiodicity is broken

by a very low new frequency that introduces noise around the peaks found at lower Ra. For

instance, at Ra = 7500 this frequency is 0.21. Figure 8 shows a detail of this noise around

the peak f3 ≈ 85. The temporal evolutions of Fig. 9 of one of the stable solutions found in

the range 7475 < Ra < 7600 reveals that the solution is close to a heteroclinic chain jumping

among low and high amplitude states. Figure 9(a)-(c) correspond to the modes Θ0
0
, Θ1

1
and

Θ2
2 at r = 0.76, respectively, and the lower row to vϕ(1.01, π/6, 0). The three-dimensional

projection of the PS close to the heteroclinic chains confirm this hypothesis (see Fig. 10).
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FIG. 10. Three-dimensional projection of the Poincaré section showing the values of vθ(0.26, π/6, 0),

vϕ(1.01, π/6, 0), and vr(0.76, π/6, 0) on the hyperplane vϕ(0.76, π/6, 0) = 0 for Ra = 7500.

The section shows the three components of the velocity field vθ(0.26, π/6, 0), vϕ(1.01, π/6, 0),

and vr(0.76, π/6, 0) when the hyperplane vϕ(0.76, π/6, 0) = 0 is crossed. The trajectories of

this type of solutions spiral, approaching two different tori of high amplitude and a periodic

orbit that would be at the vertex of the cone-like structure of Fig. 10. In addition, the

snapshots show that during the time intervals of the highest amplitude of the m = 2 modes,

the contour plots resemble a S2 state, nearly satisfying the π-invariance by rotations, while

during the time intervals of the highest amplitude of the m = 1 modes, the contours plots

resemble a S3 state. When all these modes have a low amplitude the orbit approaches a S1.

B. Second sequence of solutions (SQ2)

As shown in Fig. 2 and Fig. 3 the main frequencies and mean kinetic energies along SQ1

are almost constant. From Ra > 7550, a second sequence SQ2 characterized by a fast increase

of 〈vϕ〉 and K is found. It is a branch of states S3 without spatial symmetries, therefore the

modes of order m = 1 are not null. The contour plots of Fig. 11 show the solution obtained

at Ra = 7650. The equatorial projection of Θ and those of k reflect the decrease of the

weight of the modes m = 2 in this sequence, but some hints of their contribution remain,

as can be observed in Fig. 11(a)-(c) (Multimedia view) and in Fig. 11(d)-(f) (Multimedia

view). Most of the time there is only a maximum of k on the surface of the sphere, and

the torsional dynamics and the meandering propagation of k is maintained. However, as
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(a) (b) (c) (d) (e) (f)

FIG. 11. Same contour plots as in Fig. 5 for Ra = 7650. (a)-(c) for Θ (Multimedia view) and

(d)-(f) for k (Multimedia view).

can be seen in the animation of Fig. 11(d)-(f) when the flow is affected by the perturbation

introduced by f3 there is an enlargement of the spot forming a double maxima at similar

latitudes, and recovering the original shape after approximately half a turn. The rotation

of the velocity field on the spherical section is quite constant, as happens for S1 after the

onset.

By increasing Ra it is relatively easy to find resonances that can only be identified by

looking at the PS. It is not possible to distinguish these solutions by the spectra because they

have essentially the same main peaks, and neither to appreciate differences in the velocity

field with the naked eye. For instance, in the two spectra of Fig. 12 one of them belongs to

a S3, with the trajectories on an invariant T3, and the other to a resonant (or mode-locked)

solution (state RS3). However, the PS of Fig. 13 evidence the dissimilarity between them.

The solution at Ra = 7650 is resonant since the PS is a closed curve. This means that there

is a linear combination of the three frequencies verifying m1(f1/f3) +m2(f2/f3) = m3, with

non-null integers m1, m2, and m3, and f1/f3 and f2/f3 not rationals [32, 33]. The inverse

of the frequency f2 approximates the time taken by the spot of k to drift a full turn, so

its propagation is much faster than in SQ1. In contrast the solutions at Ra = 7600 and

7675 fill densely a band because the linear combination is only fulfilled with m1 = m2 =

m3 = 0. Apart from computing the spectra via FFTs, their main frequencies were also

calculated by the NAFF method (numerical analysis of fundamental frequencies) [34], and

some of them by a DMD method (dynamic mode decomposition method) [35], to identify

the resonances. Since the accuracy of the frequencies is limited, the resonance conditions can

only be established in an approximate way. For instance, for Ra = 7650 the best low-order

combination m1(f1/f3)+m2(f2/f3) = m3 with m1 = −1, m2 = 6 and m3 = 4 gives an error
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of 11%. However, other resonances were determined with the same criteria, giving much

higher precision (see below the case of Ra = 12000).

0 750 1500 2250 3000 3750 4500

Ra=7675
Ra=7650f1

f2f3

A
m

pl
itu

de
Frequency

FIG. 12. Spectra of vϕ(1.01, π/6, 0), the upper for Ra = 7650 (purple), and the lower for 7675

(teal).

-80

-40

 0

 40

 80

 160  225  290  355  420

vϕ 

vθ 

FIG. 13. Idem Fig. 6 for Ra = 7600 (black), 7650 (purple), and 7675 (teal).

C. Third sequence of solutions (SQ3)

The third sequence, SQ3, includes the interval 7700 < Ra < 9000, and it is characterized

by a drastic decrease of the modes of order m = 2. The perturbation of the temperature

looks similar to that of Fig. 11(a)-(c), and k is much more localized than before, with a

single spot meandering on the surface of the sphere between high mid-latitudes of both

hemispheres.
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Ra=7900f1f2

f3

(a)

Ra=8450f1f2

f3

(b)

Ra=8500f1f2
f3

(c)
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Ra=8600f1f2

f3
(d)

0 1000 2000 3000 4000 5000

Ra=8900f1f2
f3

(e)

Frequency

FIG. 14. Spectra of vϕ(1.01, π/6, 0) for (a) Ra = 7900, (b) 8450, (c) 8500, (d) 8600, and (e) 8900.
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FIG. 15. Idem Fig. 6, the smallest for Ra = 7900 (black), 8200 (purple), 8450 (dark blue), 8600

(blue), 8800 (teal), and the largest for 8900 (golden).

The Fourier spectra of Fig. 14 and the Poincaré maps of Fig. 15 show the transitions

on SQ3. There are three main frequencies in the spectra from the beginning. All of them

are of the order of those found in Sec. IVB. The first two display a weak increase, but the

third grows much faster with Ra in the interval 7700 < Ra < 8450 (see Fig. 2). The PS are

bands of tiny width, which need and enlargement to be seen (shown in Fig. 15 and in the
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details of Figs. 16(a)-(d)). The third frequency f3 just introduces a slight perturbation to the

two-frequency flows. However, the ratios f1/f3 and f2/f3 have a strong variation among the

solutions due to the fast increase of f3. These ratios determine the type of quasiperiodicity

on the T3 [36, 37]. Despite the spectra of Figs. 14(a) and (b) have the same high peaks, at

Ra = 7700, f3 = 84.5 and at Ra = 8450 it is already 107.1, and the PS look very different,

mainly when they are RS3 (or near) as those of Figs. 16(c)-(d). These sections were drawn

once very long transients are passed, and any of them contains more than 30000 points

corresponding to long integrations of O(10) viscous time units.

When Ra > 8450 the mean value of K starts to decrease, the solutions recover the third

frequency f3 ≈ 84 and in addition new peaks below that of f3 appear for the first time

in the spectra (see Fig. 14(c)-(d)). The PS become clear wide bands (see the wider blue

band of Fig. 15 belonging to Ra = 8600), but their structure changes a lot in the solutions

studied. At Ra = 8500 the lower frequency is f4 = 23.4, while at higher values a new

additional order one frequency appears, which introduces clusters of peaks in the spectrum

around the already existent (see Fig. 14(d)). At Ra ≈ 8750, which is very close to the second

minimum of SQ3 in Fig. 3(b), the spectra change again. The order one frequency disappears

for Ra > 8750 (two biggest thin bands in Fig. 15). At Ra = 8800 the solution is close to a

RS3 (Fig. 16(e)), and it is a RS3 at Ra = 8900 (Fig. 16(f)), near the crossing with SQ4 (see

Fig. 3).

D. Fourth sequence of solutions (SQ4)

The sequence SQ4 begins with a spectra of three main frequencies, but the small frequency

about 84 never appears in the spectra. The first stable solution was found at Ra ≈ 9000

with the frequencies f1, f2 of Table I and f3 = 124.19. The flow does not retain any

instantaneous symmetry, and its dynamics is very similar to that of states S3 described in

Sec. IVC. Along SQ4 the torsional oscillations and the drift become more intense and faster.

Fig. 17(a)-(c)(Multimedia view) illustrates the oscillations of the hottest core of the fluid

when Ra increases. The eccentricity of the core (in red) is clear by comparing its contour

line with the dotted lines, which mark the place where the spherical projection is taken.

Fig. 17(d)-(f)(Multimedia view) evidences that if Ra increases k becomes more and more

confined.
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FIG. 16. Details of Fig. 15 showing states: (a) and (b) S3 at Ra = 7900 and Ra = 8200, (c) RS3

at Ra = 8400, (d) and (e) near RS3 at Ra = 8450 and Ra = 8800, and (f) RS3 at Ra = 8900.

         (a) (b) (c)          (d) (e) (f)

FIG. 17. (a)-(c) Total temperature, T = Tc + Θ, (Multimedia view) and (d)-(f) k (Multimedia

view) for Ra = 14000.

When Ra grows f3 starts to grow as well, while the frequency of the next peak of the

spectrum starts to decrease (Figs. 18(a)-(c)). Finally both peaks collide at Ra = 12000

(Fig. 18(d)). It has been checked that when this happen there is a quasiperiodic frequency-

locking with m1 = 1, m2 = −4 and m3 = 1. The main frequencies are f1 = 1451.56,

f2 = 322.53, already included in Table I, and f3 = 161.47, giving a relative error for the

resonance condition below 10−3. At higher Ra the peaks separate again, they interchange

their positions (Fig. 18(e)), and finally at Ra = 14000 a noisy spectrum of lowest significant

frequency f = 15.76 is found. In this case the peaks f1 and f2 can be identified in the

spectrum because they almost keep the value of the previous computed solution, but not f3

(Fig. 18(f)).

23

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
6
4
4
6
5



Ra=9500f1f2
f3

(a)

Ra=10000f1f2
f3

(b)

Ra=11000f1f2f3
(c)

A
m

pl
itu

de
Ra=12000f1

f2f3 (d)

Ra=13000f1f2
f3

(e)

0 1000 2000 3000 4000 5000

Ra=14000f1f2 (f)

Frequency

FIG. 18. Spectra of vϕ(1.01, π/6, 0) for (a) Ra = 9500, (b) 10000, (c) 11000, (d) 12000, (e) 13000,

and (f) 14000.

Figure 19(a) shows the growth of the PS of the solutions on SQ4. In this case the

hyperplane vϕ(0.76, π/6, 0) + vϕ(1.01, π/6, 0) = −142 was taken because the transversality

of the trajectories to that given by vϕ(0.76, π/6, 0) = 0 is lost. The enlargement of the PS

shows that the behavior of the quasiperiodic tori is similar to that found in Sec. IVC, with

rotation numbers even lower. Figure 19(b) shows a detail of the section at Ra = 12000

when the two peaks merge. The frequency-locking gives rise to a closed curve. The cloud

of disperse points corresponds to Ra = 14000. The appearance of very low frequencies

leads to a wide section of disperse points, which is an indication that the flow is temporally

chaotic (see Sec. V). Even in this case the torsional dynamics and longitudinal direction of

propagation are maintained.
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FIG. 19. (a) Projection of the Poincaré section showing vϕ(1.01, π/6, 0) versus vθ(0.26, π/6, 0) on

the hyperplane vϕ(0.76, π/6, 0) + vϕ(1.01, π/6, 0) = −142 for Ra = 9000 (smallest black), 9500

(purple), 10000 (dark blue), 11000 (blue), 12000 (teal), 13500 (golden), and 14000 (brown disperse

points). (b) Detail of (a) for Ra = 12000.

V. BREAKDOWN OF THE THREE-DIMENSIONAL TORI AND CHAOTIC AT-

TRACTORS

In order to clarify the complex behavior described, on the one hand we have computed

the distance from the points of a trajectory on the attractor to those of another trajectory

started by perturbing the initial condition of the former. Past a fast initial decrease of the

distance due to the attracting nature of the invariant solutions, it must increase linearly if

the solution is quasiperiodic, and it must increase exponentially for chaotic solutions. On

the other hand the results have been compared with those found in Refs. [32, 36–38], which

study the dynamics in three-tori of low-dimensional systems, and the transition from high-

dimensional tori to torus chaos or more complex chaotic attractors. These models allow

to explore deeply the range of parameters, and to compute the Lyapunov exponents to

determine when and how the dynamics becomes chaotic.

The distance between trajectories was computed for solutions with very different Poincaré

maps. Those for Ra = 8400, 8600, 12000 and 14000 were selected. As expected, the best

fit of the distance for solutions at Ra = 8400 and 12000 is linear, but the same happens

with the solution found at Ra = 8600 whose spectrum seemed to belong to temporal chaotic

solutions. Figure. 20(a) shows a temporal evolution of the distance for this Ra, including the
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linear fit (red straight line). It is probably a four-dimensional tori, despite N-dimensional

tori with N ≥ 3 become exponentially rare when N is increased [37]. To confirm this

hypothesis, linear combinations of the frequencies of the spectrum taking 3 (f1 = 1436.24,

f2 = 309.15, f3 = 82.75) or 4 (f1 = 1436.24, f2 = 309.15, f3 = 82.75, f4 = 0.832) main

frequencies were calculated, and the resulting errors were compared. The combination with

4 frequencies, with the same restriction in the order of the combination as those of 3, gave

errors at least two orders of magnitude lower for any of the frequencies, suggesting the

presence of high-dimensional tori in SQ3. The existence of high-dimensional torus in a wide

range of parameters is in agreement with the results of Ref. [32]. On the contrary, Fig. 20(b)
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FIG. 20. Distance between two trajectories (the second started by perturbing the initial condition

of the former), and in red the corresponding fit, linear for (a) Ra = 8600, and exponential for (b)

Ra = 14000.

shows that at Ra = 14000 the distance grows exponentially confirming that the solution

is chaotic. The red curve is the fit to the temporal increase of the distance. The different

structure between both attractors was also supported by the fact that other projections of

other variables on the same hyperplane maintain the toroidal form at Ra = 8600, while at

14000 disperse clouds of points filling the volume around the torus are found. Yamagishi

and Kaneko [37] suggest the fractalization of the three-torus at the transition to chaos. No

hint of this behavior was found here.

The comparison of ours results, mainly the structure of the PS, with those plotted in

Ref. [36], which study the dynamics on three-dimensional tori and in quasiperiodic Arnold

tongues of a four-dimensional coupled delayed logistic map, shows that the dynamics found

here from Ra ≈ 7600 is what must be expected in the vicinity of codimension-two quasiperi-
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odic Hopf and saddle-node bifurcations [38]. The two-dimensional tori are located inside the

quasiperiodic Arnold tongues, just as periodic solutions are located inside the conventional

ones. In order to have clearer sections for the solutions like those of Figs. 16(c) and (d),

which are very close to a quasiperiodic Arnold tongue, they should be computed several times

until reaching the parameters corresponding to the tongues. Simulating high-dimensional

systems with long relaxation transients due to small and very different diffusive scales is too

expensive, and out of the scope of this study. In any case, we have checked, by recomputing

some of the results of Ref. [36] and finding the frequency spectra, that they resemble those

of our solutions with similar PS.

VI. CLOSING REMARKS

Although the purely S1 flows are either stable in a very short range of Ra or they could

even be unstable from the beginning due to a subcritical Hopf bifurcation if the domain is

a spherical shell, this study shows that the bifurcated flows maintain the torsional motion

when they travel azimuthally due to the breaking of the axisymmetry, and even when they

become temporally chaotic. The two main frequencies, f1, linked to the inertial oscillations,

and f2, linked to the azimuthal drift of the wave, are present in the spectra of all the flows.

This study does not clarify if the introduction of a small inner core leads to a subcritical

bifurcation from S0 or simply advances the onset of convection with respect to that of the

full sphere. Both scenarios are compatible with SQ1. The origin of other sequences remains

unclear since they seem disconnected from the basic branch. In any case, the stability

problem of the initial axisymmetric solutions should be solved to clarify the bifurcation

diagram.

Table II shows that the torsional flow generates only a weak retrograde zonal flow on the

surface of the sphere at high latitudes at the onset of the convection. When Ra > 7700

a strong prograde jet is located at the equator. In addition two retrograde jets of high

intensity coexist at high latitudes, like the zonal flows found by Christensen [39], among

others, for Pr = O(1). Due to this mixed motion in latitude and longitude, the maximum

of the kinetic energy travels meandering on the surface of the sphere.

Quasiperiodic tori, heteroclinic chains, alternating quasiperiodic solutions of three, two

(frequency-locked), or even four main frequencies, and chaotic attractors were found along
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the sequences of solutions obtained by increasing Ra and depending on the ratios of frequen-

cies. However, new frequencies, from the third, only introduce long time perturbations to

the torsional-azimuthal wave motion, highlighting its robustness. It is known that quasiperi-

odic and chaotic axisymmetric torsional motions generate and sustain magnetic fields [16],

therefore it would be interesting to find out if the three-dimensional torsional flows traveling

azimuthally are also able to generate the same type of magnetic fields, and what is their

structure.

The comparison of the results found in this work with those of Ref. [14] show that low

Pr fluids have very different three-dimensional dynamics when the parameters are changed.

In Ref. [14] the azimuthal waves seem to bifurcate directly from the conduction state and

travel in the retrograde direction, while in the present case, at least at the beginning, they

come from a Hopf bifurcation on the branch of S1 states, and in any case they travel in

the prograde direction. The azimuthal waves subject to torsional dynamics are completely

different to the very well known Taylor columns and bifurcated flows, so they can contribute

to understand other phenomena like the dynamics of the torsional oscillations in the Sun,

whose origin is not completely explained or the formation of localized spots of high kinetic

energy on the atmospheres of the planets.

The transition from high-dimensional tori to chaos is not fully understood even in low

dimensional systems. Examples appearing in particular physical problems, like those shown

here, can help to establish what are the generic mechanisms of these transitions. In addition,

the existence of flows that evolve to more complex temporal dynamics, when the parameters

are moved, through consecutive Hopf bifurcations or via the appearance of heteroclinic

chains visiting different invariant objects (equilibria, relative equilibria, periodic orbits, tori,

etc.), described by some authors as coherent structures, reinforces the idea that this could

be a path to the generation of some kinds of turbulence in fluids [40, 41].
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