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Abstract8

Torsional flows are preferred at the onset of thermal convection in fluid spheres with stress-9

free and perfectly conducting boundary conditions, in a narrow region of the parameter space for10

Prandtl numbers Pr . 0.9 and ratios Pr/Ek = O(10), Ek being the Ekman number. In this case11

the transport of heat to the exterior is supposed instantaneous. When the thermal conductivity of12

the internal fluid is large, and the external convective heat transfer or radiative emissivity are low,13

the heat transmission is less efficient, and the thermal energy retained in the interior increases,14

enhancing the onset of convection. This study is devoted to analyze the combined influence of the15

thermal conductivity and external conditions (temperature and resistance to heat transport) on16

the onset of the torsional convection by taking a Robin boundary condition for the temperature17

at the surface of the sphere. It is shown, by means of the numerical computation of the curves18

of simultaneous transitions to torsional flows and Rossby waves, that when the heat flux through19

the boundary decreases the region where the axisymmetric flows are preferred shrinks, but it never20

strangles to an empty set. It has been found that with adequate scalings the curves delimiting the21

transition to torsional flows, and those of the critical Rayleigh number, Rac, and the frequencies of22

the modes versus Ek become almost independent of the parameter of the Robin boundary condition.23

PACS numbers: 47.15.-x, 47.20.-k24

Keywords: Hydrodynamic stability, Rotation, Thermal convection, Boundary conditions, Bifurcations, Sym-25

metry breaking26

∗ juan.j.sanchez@upc.edu; Corresponding author.
† marta.net@upc.edu

1



I. INTRODUCTION27

Knowledge of the purely inertial and thermal inertial flows in rotating fluid spheres,28

spherical shells, and spheroidal objects, is fundamental for the understanding of the dy-29

namics of the fluid celestial bodies. Large-scale patterns can be recognized in many planets30

and in the Sun despite being mainly turbulent. Therefore, solving hydrodynamic stability31

problems is very useful to determine the nature of some observed astrophysical phenom-32

ena. For instance, the inertial modes obtained solving an eigenvalue problem for a fluid33

shell with stress-free boundaries [1] have been successfully compared with the equatorially34

antisymmetric retrograde propagating vorticity waves detected in the Sun from helioseismic35

and correlation-tracking analyses of ground- and space-based observations [2].36

The number of approximations that define each problem is large, as well as the number37

of parameters, and boundary conditions that can be selected, so that the fluid dynamics38

can be diverse depending on these factors. The most common preferred eigenfunctions at39

the onset of Boussinesq and anelastic thermal convection in spherical geometry give rise to40

azimuthal rotating waves (ARWs). This is so with combinations of either non-slip [3–7],41

stress-free [8–10] or mixed [11] boundary conditions for the velocity field, together with ei-42

ther perfectly conducting [10], fixed heat flux through the boundaries [10, 12], Robin [11],43

or even laterally varying [13] boundary conditions for the temperature. The eigenfunctions44

break the invariance by rotation of the conduction state, but maintain the reflection sym-45

metry with respect to the equatorial plane. Equatorially antisymmetric modes were first46

found to be preferred in a spherical shell of radius ratio η = 0.4 at small Ekman, Ek,47

and Prandtl, Pr, numbers under both non-slip and stress-free, and constant temperature48

boundary conditions [14]. More recently they were also found in thin shells [15]. In the49

first case the equatorial symmetry is maintained even when the flow is quasiperiodic, see50

for instance [16, 17] among many others. In the second, the antisymmetry is broken by the51

nonlinear terms as soon as convection starts. However, the antisymmetric components can52

remain or become significant when it is fully developed [18–20].53

In rotating double-diffusive convection the type of instability also depends on the com-54

bined direction of the compositional and temperature gradients. In spherical shells, with55

perfectly conducting boundaries and destabilizing compositional gradients, the patterns of56

convection are equatorially symmetric columnar ARWs. However, when the compositional57
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gradient is stabilizing equatorially antisymmetric ARWs were also found for high composi-58

tional gradients [21]. The same Boussinesq approximation for a fluid sphere with internal59

compositional and heating sources or sinks, zero radial temperature and concentration fluxes60

at the boundary, and destabilizing compositional sources was studied in [19]. In this case,61

both types of convection were found without changing the compositional stratification.62

The preferred eigenfunctions keep the invariance by rotation but break the equatorial63

symmetry, at the first bifurcation, for perfectly conducting fluid spheres with stress-free64

boundary conditions in the range of parameters found in [22–25]. The transition gives rise65

to axisymmetric latitudinal periodic oscillations (torsional oscillations, AP from now on),66

which are almost antisymmetric with respect to the equator. As for the ARWs, and at low67

Pr, the instability is due to the Coriolis force and consequently the angular frequency of68

the oscillations is O(Ek−1) at onset. The boundaries of the region where these oscillations69

can arise from the conduction state were determined in [26]. At low Pr the AP oscillations70

consist of a poloidal vortex, which fills the sphere and reverses its rotation every half period,71

and an azimuthal motion with opposite velocities in each hemisphere, which also changes72

its direction but with a phase shift relative to the poloidal field. This velocity field gives73

rise to a latitudinal transport of the kinetic energy on the surface of the sphere in contrast74

to the ARWs. See Fig. 5 in [25] to visualize a typical periodic torsional flow.75

It was recently found that, when the flattening of a stellar body due to the centrifugal76

force is very strong, the globally most common ARWs can switch to a zonal (axisymmetric)77

equatorially symmetric oscillation [27, 28]. Consequently, the literature shows that different78

formulations of the problem with the adequate set of parameters can give rise to patterns of79

inertial oscillations with any possible type of axial and equatorial symmetry in spherical and80

spheroidal geometry. Moreover, eigenfunctions with all possible symmetries are present in81

the leading spectra of the linear operators (eigenvalues of largest real part). Even when these82

eigenvalues are not unstable at the primary bifurcation, determining the pattern at the onset83

of the convection, they can give rise to stable large-scale flows by crossing forth and back the84

imaginary axis at a higher Ra than the critical [29, 30], or they can originate homoclinic or85

heteroclinic chains. That is, they can give rise to solutions whose trajectories evolve near a86

stable manifold, approaching a solution, and leaving their proximity by following an unstable87

direction. Then, they can approach again the same solution or another. Some examples of88

this kind of behavior were found in [20, 31]. Particularly striking is the dynamics described89
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in [10] for Pr = 1, consisting of transitions from fully developed geostrophic turbulence,90

when the non-zonal energy is large, to axisymmetric convection about the rotation axis of91

the fluid sphere, when the zonal energy is orders of magnitude larger than the non-zonal.92

The onset of convection in a differentially heated spherical shell with Robin boundary93

conditions for the temperature, ∂rT+BiT = 0, and constant gravity, was studied in Ref. [11]94

for Pr = 0.03, 0.3, 3 and 30, to simulate the former crystallization of a terrestrial magma95

ocean. It was found that the first instability is only affected by the Biot number, Bi, in96

the non-rotating case, and that the Robin condition can be replaced by a fixed flux when97

Bi . 0.03 and by a fixed temperature when Bi & 30 [11]. That is, the ARWs continue to be98

the primary periodic flows at onset.99

The present study is devoted to explore the influence of the Robin boundary conditions100

on the onset of convection in a fluid sphere, by determining the range of parameters where101

the torsional oscillations are preferred, following the methodology described in [26]. It shows102

that the existence of predominantly axisymmetric convective flows in rotating fluid spheres103

is independent of the boundary condition of the temperature. Moreover, it also shows than104

when Bi decreases the ratio Pr/Ek = O(10), found for Bi = ∞, decreases following a law,105

which is fitted numerically. Similar laws are obtained for Rac, and the frequencies at onset.106

On the other hand, the manuscript describes in detail the physical meaning of taking a Robin107

boundary condition for the temperature, emphasizing the difference between the convective108

and radiative cases.109

The remaining of the article is organized as follows: After the introduction, Sec. II110

is devoted to shortly introduce the mathematical model including the derivation of the111

temperature boundary conditions. Section IV shows the evolution of the marginal bicritical112

stability curves for several Bi, and Sec. V is the summary of the content.113

II. FORMULATION OF THE PROBLEM114

A fluid sphere rotating about the z-axis with constant angular velocity, Ω = Ωêz, and115

uniformly internally heated is considered. A radial gravity g = −γr∗, with γ > 0, cor-116

responding to a uniform density, is assumed, r
∗ is the position vector, and the asterisc117

indicates from now on dimensional quantities. The Boussinesq approximation of the mass,118

momentum and energy equations is written in the rotating frame of reference of the sphere.119
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The centrifugal force is neglected since Ω2/γ ≪ 1 in the major planets and most of the120

stars, and the density is also taken as constant in the Coriolis term. In addition, to write121

the equations in nondimensional form the radius of the sphere, r∗o, is taken as scale for the122

distances, r∗o
2/ν for the time, and ν2/γαr∗o

4 for the temperature. The new physical constants123

in these expressions are the kinematic viscosity, ν, and the thermal expansion coefficient α.124

The divergence-free nondimensional velocity field is written in terms of toroidal, Ψ, and125

poloidal, Φ, scalar potentials [32], i.e.,126

v = ∇× (Ψr) +∇×∇× (Φr).

The equations for Ψ and Φ are the radial components of the curl and double curl of the127

Navier-Stokes equations. Moreover, that for the energy is written in terms of the perturba-128

tion of the temperature, Θ, of the spherical symmetric conduction state (v = 0, T = Tc(r)).129

The latter depends on the boundary conditions at the surface of the sphere. The spher-130

ical coordinates are (r, θ, ϕ), θ measuring the colatitude and ϕ the longitude. With the131

nondimensional full temperature written as T(t, r, θ, ϕ) = Tc(r)+Θ(t, r, θ, ϕ), the equations132

are133

(∂t −∆)L2Ψ = 2Ek−1 (∂ϕΨ−QΦ)− r ·∇× (ω × v), (1)

(∂t −∆)L2∆Φ = 2Ek−1 (∂ϕ∆Φ+QΨ)− L2Θ+ r ·∇×∇× (ω × v), (2)

(Pr∂t −∆)Θ = RaL2Φ− Pr(v ·∇Θ), (3)

where ω = ∇ × v is the vorticity. The operators L2 and Q are defined as L2 = −r2∆ +134

∂r(r
2∂r) and Q = r cos θ∆ − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ). The symbol ∂∗ means local135

derivative with respect to the corresponding subscript.136

The non-dimensional parameters are the Rayleigh, Prandtl and Ekman numbers, defined137

as138

Ra =
qγαr∗o

6

3cpκ2ν
, Pr =

ν

κ
, and Ek =

ν

Ωr∗o
2
, (4)

respectively. The constant q accounts for the rate of internal heat generation per unit mass,139

cp for the specific heat at constant pressure, and κ for the thermal diffusivity. With the140

present formulation the conduction state is always a solution for any value of the parameters,141

although unstable for large enough Ra.142

Stress-free and impenetrable boundary conditions are used for the velocity field. In terms143
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of the velocity potentials they mean144

Φ = ∂2
rrΦ = ∂r(Ψ/r) = 0 at r = ro. (5)

The Robin boundary condition for the temperature is derived from a balance between the145

conductive heat flux density, q = −KT∇T∗, inside the sphere and the external convective146

or radiative heat flux [11], both normal to the external surface. In the first case, taking a147

constant temperature, T∗
a, outside the sphere of thermal conductivity KT , and a convective148

heat transfer coefficient h, the balance leads to149

∂r∗T
∗(r∗o) = −

h

KT
(T∗(r∗o)− T∗

a). (6)

Taking into account that T∗ = T∗
c + Θ∗, where T∗

c means the conductive temperature,150

solution of κ∆T∗ = −q/cp, and that T∗
c also fulfills Eq. (6), the Robin boundary condition151

for Θ∗ becomes152

∂r∗Θ
∗(r∗o) +

h

KT
Θ∗(r∗o) = 0 (7)

independent of T∗
a. In nondimensional form it becomes153

∂rΘ+ BiΘ = 0 at r = ro, (8)

the Biot number being154

Bi =
hr∗o
KT

. (9)

It is defined analogously to the Biot number used for solid surfaces in contact with a fluid. It155

introduces a measure of the external resistance to the heat transport through the coefficient156

h.157

With the boundary condition (6) the nondimensional conductive temperature is158

Tc(r) =
1

2
RaPr−1(1− r2) + Tc(ro), (10)

and Tc(ro) = RaPr−1 Bi−1 + Ta.159

A second possibility is to consider a radiative heat balance as in [11]. This leads to a160

nonlinear boundary condition because the Stefan-Boltzmann law governs the heat transport161

in the exterior of the sphere, then162

∂r∗T
∗(r∗o) = −

βσ

KT
(T∗4(r∗o)− T∗

a
4), (11)
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where σ is the Stefan-Boltzmann constant, and β the emissivity coefficient, which is β = 1163

for the black-body radiation.164

To obtain the boundary condition for Θ∗, to analyze the stability of the conduction state,165

Eq. (11), with T∗ = T∗
c +Θ∗, is first linearized about T∗

c . Then, taking into account that T∗
c166

fulfills Eq. (11),167

∂r∗Θ
∗(r∗o) +

4σT∗
c
3(r∗o)

KT
Θ∗(r∗o) = 0. (12)

In nondimensional form it can be written as Eq. (8) with the radiative Biot number168

Bir =
4r∗oσT

∗
c
3(r∗o)

KT
. (13)

By analogy with the previous case, a radiative heat transfer coefficient hr = 4σT∗
c

3(r∗o)169

can be defined. The linearized boundary condition gives formally the same expression as170

the nondimensional conductive temperature (10), but now Tc(ro) must be determined by171

solving the equation T4
c − 4T3

c Bi
−1

r RaPr−1 − T4
a = 0 at r = ro, to obtain the value of the172

full temperature. This means that at the onset of convection the change from convective to173

radiative boundary conditions only modifies the full temperature profile; however, it must174

be taken into account that in order to solve the stability problem the Stefan-Boltzmann law175

is linearized. In the nonlinear problem the full fourth degree condition should be applied,176

and the velocity and vorticity fields would also be different in the two cases.177

In any case regularity conditions are always enforced at r = 0.178

Equations (1)-(3) with boundary conditions (5) and (8) are SO(2) × Z2-equivariant,179

SO(2) generated by azimuthal rotations of an arbitrary angle ϕ0, and Z2 by reflections with180

respect to the equatorial plane, i.e., the actions181

Rϕ0
: (Ψ,Φ,Θ)(t, r, θ, ϕ) → (Ψ,Φ,Θ)(t, r, θ, ϕ+ ϕ0), (14)

ζθ : (Ψ,Φ,Θ)(t, r, θ, ϕ) → (−Ψ,Φ,Θ)(t, r, π − θ, ϕ), (15)

leave the system invariant.182

III. NUMERICAL METHODS183

We are interested in the stability of the conduction state, which in terms of the poten-184

tials and Θ is (Ψc,Φc,Θc) = (0, 0, 0). Then, since the nonlinear terms of Eqs. (1)-(3) are185
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quadratic, their linearization at the conduction state is186

(∂t −∆)L2Ψ = 2Ek−1 (∂ϕΨ−QΦ), (16)

(∂t −∆)L2∆Φ = 2Ek−1 (∂ϕ∆Φ+QΨ)−L2Θ, (17)

(Pr ∂t −∆)Θ = RaL2Φ, (18)

with boundary conditions (5) and (8). The functions (Ψ,Φ,Θ) are first expanded in spherical187

harmonic series with a triangular truncation of maximal degree L,188

(Ψ,Φ,Θ)(t, r, θ, ϕ) =

L
∑

l=0

l
∑

m=−l

(Ψm
l ,Φ

m
l ,Θ

m
l )(r, t)Y

m
l (θ, ϕ), (19)

with Ψ−m
l = Ψm

l , Φ
−m
l = Φm

l , Θ
−m
l = Θm

l , and imposing Ψ0
0 = Φ0

0 = 0 to uniquely determine189

the two scalar potentials. The spherical harmonics are normalized as190

Y m
l (θ, ϕ) =

√

2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ l ≥ 0, 0 ≤ m ≤ l,

Pm
l being the associated Legendre functions of degree l and order m. Then the eigenvalue191

problem separates into one for each azimuthal wave number m of the form192

λΨm
l = DlΨ

m
l +

2Ek−1

l(l + 1)
(imΨm

l − [QΦ]ml ) , (20)

λDlΦ
m
l = D2

l Φ
m
l −Θm

l +
2Ek−1

l(l + 1)
(imDlΦ

m
l + [QΨ]ml ) , (21)

λΘm
l = Pr−1DlΘ

m
l + Pr−1l(l + 1)RaΦm

l , (22)

for m ≤ l ≤ L, Dl being the radial operator Dl = ∂2
rr + (2/r)∂r − l(l + 1)/r2. The functions193

(Ψm
l ,Φ

m
l ,Θ

m
l ) depend now only on the radius. The boundary conditions decouple for each194

l and m, i.e.195

∂r(Ψ
m
l /r) = 0, Φm

l = 0, ∂2
rrΦ

m
l = 0, and ∂rΘ

m
l + BiΘm

l = 0 (23)

at r = ro. The square bracket [·]ml indicates extracting the spherical harmonic coefficient of196

degree l and order m. The operator Q is197

[Qf ]ml = −(l − 1)(l + 1)cml D
+

1−lf
m
l−1 − l(l + 2)cml+1D

+

l+2
fm
l+1, (24)

198

with D+

l = ∂r +
l

r
, and cml =

(

l2 −m2

4l2 − 1

)1/2

. (25)
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The final step in the discretization is applying a collocation method in the radial coordinate.199

A mesh of N+1 Gauss-Lobatto points is employed and the boundary conditions are included200

in the derivative matrices that substitute the operators Dl, D
2
l , and D+

l in the eigenvalue201

problem. Since the operator Q couples the coefficients of degrees l − 1, l and l + 1, the202

resulting matrix of the discretized problem has a block-tridiagonal structure. The operator203

Dl in the left hand side of Eq. (21) is invertible, and then the eigenvalue problem (20)-(22),204

for a given azimuthal wave number m, can be written as a standard one205

Am(Ra,Ek,Pr,Bi)Xm = λXm, (26)

Xm = (Ψm,Φm,Θm) being now a vector of dimension 3(L − m + 1)(N − 1) if m 6= 0206

and 3L(N − 1) if m = 0, containing the values of the amplitudes of the potentials and the207

perturbation of the temperature in spherical harmonics at the N−1 inner collocation points.208

When the transition curves presented depend on just one parameter, the rest are fixed209

except Ra. Its critical value, Rac, corresponds to the condition ℜ(λ) = 0. The leading210

spectra (a set of eigenvalues of maximal real part) of Am are computed by using a complex211

shift-invert strategy (see Refs. [22, 33] for details). The critical curves can also be found by212

applying continuations methods to the eigenvalue problem. This is always done to track the213

curves of double-Hopf points at which there is a simultaneous bifurcation to two different214

azimuthal wave numbers m1 and m2 (see Sect. 3 of Ref. [26]).215

IV. DESCRIPTION OF THE RESULTS216

A. Marginal stability curves versus Bi217

Figure 1 shows the dependence of Rac versus Bi for sets of parameters for which the218

torsional solutions obtained by taking the condition Θ(ro) = 0 (Bi → ∞) are preferred.219

It illustrates very well the two limit cases discussed in Sec. II, and the transition zone for220

10−2 . Bi . 102. When Bi decreases the thermal flux through the boundary drops, and221

Rac starts to decrease due to the raise of the heat stored in the fluid mass. At very low222

Pr [Fig. 1(a)] the latitudinal oscillations of angular frequency ω = 2× 106 existing at large223

Bi are superseded by prograde ARWs of azimuthal wave number m = 1 (m = 1p) and224

ω = 3.95× 105 due to the Robin boundary condition. Both ω remain almost constant along225

the curves. When Pr is increased [Figs. 1(b)-(c)] the change takes place at larger Bi. For226227
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FIG. 1. Critical Rayleigh number, Rac, versus the Biot number, Bi, for (a) Ek = 4.47 × 10−7 and

Pr = 4× 10−6, (b) Ek = 10−3 and Pr = 0.01, and (c) Ek = 2.12× 10−3 and Pr = 0.71. The curves

correspond to azimuthal wave numbers m = 0 (black), m = 1 with ω < 0 (m = 1p, violet), m = 1

with ω > 0 (m = 1r, green), and m = 2 (blue). (d) Frequency, ω, versus Bi for the parameters of

(c).

instance, it occurs at Bi = 9.63 for liquid sodium of Pr = 0.01 [Fig. 1(b)]. At this point the228

oscillations of frequency ω = 888.06 are replaced by prograde azimuthal waves of frequency229

ω = 171.96 in the asymptotic limit Bi → 0. At the moderate Pr = 0.71 of the hydrogen230

the frequency jumps at Bi = 22.33 from latitudinal oscillations of ω = 11.64 at Bi → ∞231

to nearly stationary prograde waves of ω = 0.01 at Bi → 0, before the axisymmetric mode232

becomes stationary. For this Pr the marginal frequency of the m = 1 mode changes sign233

at Bi ≈ 0.247, and there is a continuous transition from prograde to retrograde (m = 1r)234

marginal ARWs.235

The contour plots of Θ maintain the shape of those with Bi = ∞, but they expand236

towards the polar surface of the sphere when Bi decreases (see next section).237
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B. Marginal bicritical curves238

In this section the techniques used in Ref. [26] for Bi = ∞ are used to show the de-239

pendence with Bi of the region of the parameter space inside which the first bifurcation is240

to axisymmetric torsional solutions. The critical curves for the transitions to m = 0 and241

m = 1 versus Pr were first computed for a fixed value of the Ekman number Ek = 10−3,242

and for several values of Bi (10−4, 10−2, 10−1, 1, 2, 5, 10, 102 and ∞). Figure 2 shows four243

cases, the rest are similar and therefore are not shown. As seen before, there are in general244

two curves of m = 1 corresponding to prograde and retrograde traveling waves, respectively.245

The interval in which the first transition is to axisymmetric solutions is bounded by two246

double-Hopf points, the left for m = 0 and m = 1r, and the right for m = 0 and m = 1p. As247

Bi increases the interval moves to the right in the Pr axis, and the critical Rayleigh number248

also increases. To compute the full region where the torsional mode is preferred, the curves249

of double-Hopf points were tracked for every of the Bi already mentioned.250

The extended system to follow the simultaneous bifurcation to wave numbers m = m1251

and m = m2 is252

(Am1
(Ra,Ek,Pr,Bi)− iωm1

I)Xm1
= 0, (27)

(Am2
(Ra,Ek,Pr,Bi)− iωm2

I)Xm2
= 0, (28)

‖Xm1
‖2 = 1, (29)

〈ℜ(Xm1
),ℑ(Xm1

)〉 = 0, (30)

‖Xm2
‖2 = 1, (31)

〈ℜ(Xm2
),ℑ(Xm2

)〉 = 0. (32)

The first two equations establish that there are two simultaneous Hopf bifurcations to wave253

numbers m1 and m2 (0 and 1 in our case), with frequencies ωm1
and ωm2

, and eigenvectors254

Xm1
and Xm2

. The last four equations are normalizing conditions for the complex eigen-255

vectors. Two of them fix their norm and the other two their phases. If the dimensions256

of Am1
and Am2

are n1 and n2, respectively, there are 2n1 + 2n2 + 4 real equations, and257

2n1+2n2+5 unknowns (Xm1
, Xm2

, ωm1
, ωm2

,Ra,Ek,Pr) because Bi is kept fixed. Therefore258

the other three nondimensional parameters are obtained during the continuation. It turns259

out that the two double-Hopf points on the m = 0 curve in each of the plots of Fig. 2 are260

on the same bicritical curve, because it has a turning point as can be seen in Fig. 3(a). It261
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FIG. 2. Transition curves from the conduction state for Ek = 10−3 and Biot numbers (a) 10−4, (b)

1, (c) 10, and (d) ∞. The intersections of the curves provide the initial conditions for the double-

Hopf continuation. The label and color conventions are the same as in Fig. 1. The conduction

state is unstable above the lower envelope of the three curves, and the flow is axisymmetric inside

the curvilinear triangle bounded by the three curves.

shows the regions inside which the first bifurcation is to m = 0. If Pr and Ek are taken262

inside one of these regions, Bi is kept fixed to the value of the corresponding region, and263

Ra is increased from a low value, then the first transition is to an axisymmetric periodic264

solution, i.e., a torsional flow. The dot in each curve indicates the change of sign of the265

frequency ω1 for the wave number m = 1. Along the direct segment between the origin and266

the dot the frequency is negative (prograde waves). Along the rest its is positive (retrograde267

waves). The dots are concentrated close to Ek = 4.4 × 10−2. The curves for Bi = 102 and268

Bi = ∞ are cut by segments of the multicritical curves of m = 0 and m = 2, near Pr=0.9269

[it can also be seen in Fig. 4(a)]. This does not hold for the rest of Bi considered. Sect. 4 of270

Ref. [26] explains how the double-Hopf curves are explored to find other bifurcations that271

occur along them. This is what happens in the two mentioned cases, adding a new segment272
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FIG. 3. (a) Curves of double-Hopf bifurcations for the values of Bi indicated in the legend. (b)

The same curves in logarithmic scale, and with Pr/Ek in the horizontal axis. (c) Same as (b) but

with the scaling of Pr/Ek shown in (d). In all plots the arrow indicates the direction of increasing

Bi. The dots in plots (a) to (c) indicate the change of sign of the frequency ω1.

of a curve limiting the upper part of the region (higher Pr). It can be seen that the region273

shrinks when Bi decreases. Those for Bi = 10−4 and Bi = 10−2 can hardly be distinguished,274

indicating that there is a non-empty limit region when Bi → 0.275276

The shape of the curves looks very similar when the horizontal axis is scaled with Ek and277

they are represented in logarithmic scale. In addition, this scale blows up the limit Ek → 0278

[see Fig. 3(b)]. There is a multiplicative factor fPr/Ek(Bi) that makes them to almost overlap279

[see Fig. 3(c)]. The factor was found in order to move the maxima of Pr/Ek for low Ek to280

fPr/Ek(Bi)Pr/Ek = 1, and it is shown in Fig. 3(d). The dots are the computed values, and281

the curve is the best fit to a function of the form282

f(Bi) = f(∞) + (f(0)− f(∞)) /(1 + cBip), (33)

using the nonlinear least-squares Marquardt-Levenberg algorithm, implemented in Gnu-283

plot [34]. The value f(Bi = 0) was taken as that at Bi = 10−4, and Bi = ∞ was substituted,284
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FIG. 4. (a) Critical Ra along the curves of double-Hopf bifurcations of Fig. 3(a). (b) Same as

(a) but in log–linear scale, and with the scalings of Pr and Rac shown in (c) and (d). In all plots

the arrow indicates increasing Bi, which is indicated in the legends. The dots in plots (a) and (b)

indicate the same as in Fig. 3.

in this and all similar subsequent plots, by Bi = 106. In this case the fitting gives c = 1.200285

and p = 1.0587.This plot confirms that all the substantial changes take place, approximately,286

in the interval 10−2 . Bi . 102. Figure 3(c) indicates some kind of universal behavior for287

low Ek, when Pr/Ek is appropriately scaled by a function of Bi. The same holds with the288

critical Ra along the double-Hopf curves as can be seen in Fig. 4. For low Pr (which also289

means low Ek) the curves overlap when both parameters (Pr and Ra) are scaled as shown290

in Figs. 4(c) and (d). The fitting parameters are now c = 1.1813 and p = 1.0693, and291

c = 0.9992 and p = 1.0018, respectively. Fig. 4(a) shows how Rac decreases when Bi → 0,292

because in this limit the wall becomes insulating and the heat accumulated in the fluid293

makes the conduction state more unstable.294

Figures 5(a) and (c) show the absolute value of the frequencies ω0 and ω1 for the tran-295

sitions to solutions with azimuthal wave numbers m = 0 and = 1, respectively, along the296

curves of double-Hopf points. In the case of ω0 the eigenvalue problem is real, and there297
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FIG. 5. Critical frequencies (a) ω0, and (c) ω1 along the curves of double-Hopf bifurcations in

Fig. 3(a). (b) and (d) same as (a) and (c) but with the same scaling, gPr(Bi), of Pr shown in (e).

is a complex pair ±iω0 at the bifurcation whose positive imaginary part is shown. It never298

reaches zero. In the case of m = 1 the eigenvalue problem is complex and the sign of ω1299

determines, as seen before, if the waves are prograde or retrograde. The changes of sign, in-300

dicated in the previous figures with dots, are seen now as vertical peaks in logarithmic scale.301

The upper part of the curves correspond to retrograde ARWs, and the lower to prograde.302

As in the previous two figures, by scaling Pr it is possible to overlap the curves, as can be303

seen in Figs. 5(b) and (d). The common multiplicative factor gPr(Bi) is shown in Fig. 5(e).304
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FIG. 6. Time evolution of the contour plots of Θ and velocity field of the torsional mode (m = 0)

for Bi = ∞, Pr = 1.22 × 10−2, Ek = 10−3, and Ra = 7969.
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FIG. 7. Same as Fig. 6 for Bi = 10−4, Pr = 2.80 × 10−3, Ek = 10−3, and Ra = 2198.

It has been selected to overlap the turning points of all curves to gPr(Bi)Pr = 1. The fitting305

parameters to a function also of the form (33) are c = 0.2999 and p = 1.1007.306

Inside the region of preferred m = 0 solutions, the ratio Pr/Ek is close to constant [see307

Figs. 3(b) and (c)], and therefore if Pr is substituted in Fig. 5 by Ek the plots are very308

similar. A power law fitting to the curves in the low Ek limit shows that ω = O(Ek−1),309
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FIG. 8. Same as Fig. 6 but for the kinetic energy density. The superposed velocity field is the

same.

indicating that both modes are inertial; namely, that the Coriolis force is responsible for the310

instability.311

The results shown in Figs. 2 and 3 help to understand what happens in the plots of312

Fig. 1. If only Bi is decreased from a high value it is not possible to have m = 0 as the first313

bifurcation in all its range of variation. As mentioned before, the interval of Pr for which314

the first bifurcation is to m = 0 moves to smaller values as Bi decreases. For instance, the315

intervals of preferred wave number m = 0 for Bi = 1 and Bi = 10, and a common Ek = 10−3,316

are disjoint (see Fig. 2). Figure 3(b) shows that, if Bi is fixed, the ratio Pr/Ek must be kept317

almost constant to always be inside the m = 0 region. The value Pr/Ek = O(10) was318

already given in Ref. [22] and confirmed by the asymptotic calculation in Ref. [23] when319

Bi = ∞. Figure 3(c) shows that if Bi is moved the parameter that must be kept fixed to be320

in the m = 0 region is fPr/Ek(Bi)Pr/Ek.321

Figures 6 and 7 show the time evolution of the contour plots of Θ and the velocity field322

of a torsional mode for Bi = ∞ and Bi = 10−4. The rest of the parameters correspond to323

those at the intersection of the transition curves to m = 0 and m = 1p of Figs. 2(d) and (a),324

respectively. They are specified in the caption of the figures. The spherical section taken is325

indicated in the meridional section with a dashed circle, which is very close to the surface326

for the kinetic energy density, K (Fig. 8). The time shown is the fraction of the period of327
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FIG. 9. Same as Fig. 6 but for the Euclidean norm of the vorticity and the vorticity field.

the eigenfunction. Only half the period is shown since the rest can be obtained by applying328

the spatio-temporal symmetries of the torsional solutions. They are symmetric cycles, which329

satisfy, in terms of the velocity field, (vr, vθ, vϕ), and Θ330

(vr, vθ, vϕ)(t, r, θ, ϕ) = (vr, vθ, vϕ)(t, r, θ, ϕ+ ϕ0), (34)

(vr, vθ, vϕ)(t+ T/2, r, θ, ϕ) = (vr,−vθ, vϕ)(t, r, π − θ, ϕ). (35)

Θ(t, r, θ, ϕ) = Θ(t, r, θ, ϕ+ ϕ0), (36)

Θ(t+ T/2, r, θ, ϕ) = Θ(t, r, π − θ, ϕ). (37)

The main difference between both cases is that for Bi = ∞ the boundary condition for331

the temperature is Θ = 0, preventing the perturbation from reaching r = ro, while for small332

Bi (10−4 in Fig. 7) it does. The structure of the velocity field does not change, and therefore333

neither that of the vorticity. Figure 8 displays K for Bi = ∞, and the same parameters334

as in Fig. 6. It concentrates at mid latitudes close to the surface of the sphere, when the335

longitudinal velocity is at a maximum, and close to the center, when the meridional velocity336

is at a maximum. The corresponding plots for Bi = 10−4 are not presented because they337

look alike. The velocity field of these plots shows the dynamics of the torsional solutions.338

They can be seen as the superposition of a single meridional vortex that changes the sense339

of rotation each half period, and a zonal (azimuthal) wind that goes to the east in one340

hemisphere and to the west in the other, changing the direction also every half period but341
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with a phase shift of a quarter of period (see Figs. 6 and 7). This can also be seen in342

Fig. 9. It shows the contour plots of the norm of the vorticity, and the vorticity field,343

for the same parameters as in Fig. 6 . At t = 0.00 the velocity is mainly meridional,344

its azimuthal component is very small and, consequently, the largest component of the345

vorticity is longitudinal. At t = 0.20 the meridional velocity is very small and the azimuthal346

component is maximal at high latitudes, where the vorticity has a strong component along347

the axis of rotation, with opposite directions in each hemisphere. At the equator and close348

to the surface of the sphere, where the azimuthal component of the velocity changes sign,349

the equatorial component of the vorticity becomes large, signaling an increased shear.350

Figure 10 shows the eigenfunctions corresponding to the azimuthal wave number m = 1351

at the same double-Hopf points as in Figs. 6 and 7. The equatorial section has been included352

in this case, and the meridional section taken is indicated in the equatorial section with a353

dashed line. The first row for Bi = ∞ and the fourth for Bi = 10−4 display the same354

difference as in the m = 0 case. The perturbation of the temperature reaches the boundary355

in the second case but not in the first for the same reason as before. Both transitions to356

m = 0 and to m = 1 occur at lower Ra when Bi goes to zero, but the critical Ra for357

those of m = 1 decreases a little faster. This explains why the region for the onset of the358

torsional solutions becomes smaller as Bi decreases. This effect could already be seen in the359

plots of Fig. 2. The contour plots of K and the vorticity are only shown for Bi = ∞ in360

Fig. 10 because they are very similar when Bi = 10−4. The solutions are ARWs and the361

time evolution is just a rigid rotation of the scalar and vector fields in the figure, with the362

maxima of K at the surface of the sphere, and the vorticity mainly aligned with the axis of363

rotation as happens for the Taylor columns.364

V. SUMMARY AND CLOSING REMARKS365

The linear stability analysis of the conduction state and the continuation of bicritical366

points in a fluid sphere with Robin boundary conditions for the temperature field show367

that:368

- The change from perfectly conducting to Robin boundary conditions produces a signif-369

icant decrease of Rac in the range 10−2 . Bi . 102, and an expansion of the torsional370

oscillations to the boundary of the sphere, due to the fall of the heat released to the371
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(a)       

(b)       

(c)       

(d)       

FIG. 10. (a) Contour plots of Θ and velocity field of the m = 1 mode for Bi = ∞, Pr = 1.22×10−2,

Ek = 10−3, and Ra = 7969. (b) Same as (a) but for the kinetic energy density. (c) Contour plots

of the norm of the vorticity, and vorticity field for the same parameters. (d) Same as (a) but for

Bi = 10−4, Pr = 2.80× 10−3, Ek = 10−3, and Ra = 2198. The plots of K and the vorticity for the

parameters of (d) are very similar to (b) and (c), respectively.

exterior when Bi . 102.372

- The range of parameters where the torsional oscillations are preferred at onset be-373

comes smaller when the flux of heat released through the surface diminishes (compare374

the radial derivative of Θ in Figs. 6 and 7 near the boundary). However, it never375

strangles to an empty set, indicating that the existence of preferred torsional modes376
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is independent of the boundary condition of the temperature.377

- For a selected pair of parameters inside the bounds defined by Fig. 3, there is a critical378

Bi at which the torsional oscillations are superseded by ARWs of azimuthal wave379

number m = 1 or m = 2. From this point Rac becomes about three times lower than380

for Bi & 102.381

- An adequate scaling of the nondimensional parameters shows the existence of a uni-382

versal behavior of the bicritical curves for small Ek as seen in Figs. 3 and 4. It has been383

found that the ratio Pr/Ek for the appearance of the torsional solutions follows the384

law Pr/Ek ∼ 0.8/fPr/Ek(Bi), the critical Rayleigh number goes as Rac ∼ 0.85/fRa(Bi),385

and the critical frequencies as ω0,1 ∼ 10 Pr−1/gPr(Bi) ∼ 12.5 Ek−1 fPr/Ek(Bi)/gPr(Bi),386

where the functions fPr/Ek, fRa, and gPr are stated in Eq. (33), with the fitted values of387

the coefficients c and p given in the text. This suggests that an asymptotic analysis is388

possible including the Robin conditions for any value of Bi.389

- The existence of a non-empty m = 0 region in the limit Bi → 0 supports the possible390

existence of torsional oscillations in Astrophysics even when the heat released to the391

exterior of a celestial body is not optimal.392
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[25] J. Sánchez Umbŕıa and M. Net, “Torsional solutions of convection in rotating fluid spheres,”452

Phys. Rev. Fluids 4, 013501 (2019).453
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