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Abstract. We study the initial transient during the directional solidification of a
dilute mixture in the symmetrical constant-gap approximation. We perform phase-
field simulations of the transient recoil stages and compare the results with pre-
dictions obtained from the sharp-interface model. In particular, we focus in the
evolution of the front position and of the transient dispersion relation, obtaining
quantitative agreement between theory and simulations. Results are applied to the
destabilization of the front by fluctuations.

1 Introduction

The selection of a dendritic pattern during the directional solidification of
a dilute binary alloy is a complex problem which depends on initial condi-
tions[1], and in particular on the first wavelengths that appear in the desta-
bilization of the planar front induced by fluctuations[2,3]. Recent work has
focused in the importance of internal fluctuations in solidification patterns
[4,5]. Quantitative agreement with experiments has only been obtained for
the solidification of pure substances, whereas in solutal growth the origin it-
self of the fluctuations is still an open problem [6,7]. The aim of this work is to
use phase-field techniques to study the effects of transients and fluctuations
in the selection problem of directional solidification. For this objective we
have performed a quantitative comparison between phase-field simulations
and predictions for the sharp-interface model.

2 The sharp-interface model

In a directional solidification experiment, a thermal gradient Gz is moved in
the Z direction along the sample at constant pulling velocity Vz. Provided the
sample is thin, we take the system as 2D and describe the interface position in
the moving frame of the gradient by z = £(p, {), where p = % +§j§. The solid
phase is located in the region where z < &, and the liquid where z > £. We
will consider the particular case of symmetric directional solidification, which
assumes the same solute diffusivity D in both phases. We introduce diffusion
length [ = D/V and time 7 = D/V2 to scale variables as r = 7/l and t = /7.
We also introduce a diffusive field in each phase u;(r,t) = % (i=1 solid,
i=2 liquid), where C; is the solute concentration, C, the concentration far
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away from the solid-liquid interface, and ACy = [C2—C]int the concentration
jump across the interface. In the moving frame and in reduced variables, the
fields u; evolve according to the diffusion equation
0 0
= — =— — V)u,(r,t) =0. 1
The diffusion fields u; must satisfy some moving boundary conditions at
the interface position which can be written as

[ug — ug)int = —1 (2)
Usline =1 — ﬁ&‘f‘ dl—ofﬁ (3)
- [Vuy — Vuy],  =-n.(1+ £) 4)

Equations (1-4) define the so called sharp-interface description of the sym-
metric directional solidification problem. Equation (2) relates solute concen-
trations at both sides of the interface. We have assumed the additional ap-
proximation of having a constant concentration jump across the interface.
This particular assumption is equivalent to suppose that the mixture has
parallel solid and liquid branches in the T'(C) coexistence diagram, which is
valid only for liquid crystals and alloys with a partition coefficient close to 1.
Eq. (3) is the Gibbs-Thompson equation (local equilibrium at the interface).
In this relation Iy = |mg|ACy/G is a thermal length imposed by the tem-
perature gradient, and do is the capillary length. Eq. (4) describes the solute
conservation across the interface, and 7t represents a normal unitary vector
pointing to the liquid. Using Green’s function techniques [8], it is possible
to derive a closed integral expression for u; at each side of the interface. In-
troducing the notation p = (p, 2,t), ps = (p,&,t), the concentration at the
interface verifies

Lui(ps) = (=) ( JS 5y dr' - Gi(ps, ', to) - us(r”, to)
— [Lat' [dp’ - [1+E(p' )] - wi(ps) - G(ps, ps) (5)
t ~
— [ dt' [ dS' - [Gi(ps, Pls) V'ui(pls) — ui(ps) V'Gi(ps, ps')])

where G;(p,p') is the retarded Green’s function of the diffusion problem

Gp,p) = — =) exp{—(p_f")2+(z—z'+t—t’)2}- (6)

[4r(t — t')]3 At —t')
Summing Eq. (5) over ¢ = 1,2, and using the moving boundary conditions

Egs. (2-4), an integro-differential equation can be obtained for the interface
position during the transient

l oo
—&(p,to) = — ffg:’to) dr'G(ps; 7’ to)us(r’,to) — fE(p,to) dr'G(ps; ', to)uz(r’, to) +

Ir
Juy @t [ dp' (1+£(p',1)G(ps, p}) + 5(1 + er f(SLElpdodtty) (7
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where ¢ = 0 stands for the steady position of an unperturbed planar interface.
Note that Eq. (7) includes transients from the initial condition at to.

The next step is to perform a linear stability analysis of the problem to
obtain a transient dispersion relation describing the time evolution of a si-
nusoidal modulation with wavevector kl. Within an adiabatic approximation
[2,3] we derive the growth ratio of the mode as

(k1,0 = = (146 + L+ = @ +a) [+ Pw2], ®

where

7 ="20 +é)+\/§(1+£)2+(kl)2+w(kl,t)- (9)

Therefore the prediction of the transient dispersion relation consists of two
steps. Firstly the numerical resolution of Eq. (7) for a planar interface is per-
formed by a Newton-Raphson method, yielding the transient front position
&(t). This function is then introduced into Eq. (8) to obtain w(kl,t) in this
adiabatic approximation.

3 The phase-field model

In the last few years, phase-field models have become a quantitative technique
to numerically simulate solidification phenomena [9]. This method introduce
a continue variable (the phase-field) ¢(r,t) which takes different constant
values in the solid and liquid phases, and that localizes the solid-liquid inter-
face in a diffuse region of thickness W. This field is coupled with the solute
diffusion field, and the parameters are chosen in such a way that in the limit
e = W/l — 0 the interface dynamics recovers the behavior described by
the sharp-interface model. We will use a phase-field model introduced by
Karma et. al. [10] for symmetric directional alloy solidification with constant
concentration gap. For isotropic solidification with no kinetic dynamics, the
equations in reduced variables take the form

M1 39,6 = 202 + (1 - ¢7)(9— ey (L - $)(u+ £50))  (10)

6tu = Vzu + %6t¢ (1].)
In this model, a1 = 58ﬁ, az = 0.6267 are integral constants obtained when
performing a thin-interface limit [9]. Note that the equation for the phase-
field evolution contains three parameters: two main control parameters com-
ing from the sharp-interface model (I7/! and dy/I), and the model-specific
parameter €.
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4 Results and discussion

We will consider the transient from the rest, i.e. for an initial condition at
to = 0 consisting of an equilibrium solid-liquid planar interface located at
&t = 0) = Ip/l. In this case Ci(r,0) = Cox — ACy (u1(r,0) = —1), and
C3(r,0) = Co (u2(r,0) = 0).That corresponds to taking u(r,0) = —1 as
initial condition for the phase-field model. Trying to mimic a real experiment,
we consider here that at ¢ = 0 the pulling velocity suddenly takes the final
value V (1 in scaled variables).

We perform numerical integration of the phase-field Egs. (10,11) with
an explicit finite-differences scheme with Az = 0.8 and At = 0.08 . We first
study the 1D dynamical evolution during the transient, comparing the results
with the sharp-interface predictions. Fig. 1 presents the front position for two
different values of the control parameter I1/l = 12.5 and 2.5. For each case,
we compare simulations for three different values of ¢ (¢ = 0.5, ¢ = 0.25
and £ = 0.125) with the front position obtained with direct resolution of
the integral equation (7). Convergence to the sharp-interface limit can be
observed as € decreases, and good agreement is found for a value of £ = 0.125.
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Fig. 1. Evolution of the interface position during the transient for (a) Ir/l = 12.5
and (b) Ir/l = 2.5, and convergence to the sharp-interface as ¢ — 0.

We now estimate the transient dispersion relation w(kl,t) from phase-
field simulations and compare it with the sharp interface prediction of Egs.
(8, 9). To this end we simulate for each desired value of ¢ a (planar) 1D
interface evolving from to = 0 to ¢. At that moment we introduce a sinusoidal
interface perturbation with wavevector kl, and continue the simulation in 2D.
The spectral analysis of the front allows us to locate the regime where the
mode evolution is linear. This is represented in Fig. 2.a, where three definite
regions can be observed. From the linear region the value of the transient
growth rate w(kl,t) is calculated. Fig. 2.b shows the growth rate at different
times obtained for two different modes kl = 1.25 and kI = 2.5 in the case of
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I/l = 12.5 and dy/l = 0.06923. Quantitative agreement is observed for all
times.
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Fig. 2. a) Localization of the linear growth regime of the mode kI = 1.25. b) Time
evolution of two different modes k! = 1.25 and kl = 2.5 for Ir/l = 12.5.

In the last part of this work we have introduced internal fluctuations in the
diffusion equation of the phase-field by following the formalism introduced in
Ref. [11]. In simulations the growth of a range of wavelengths can be observed
until a selected mode dominates. The spectral analysis of the front reveals a
good agreement during the linear regime between the growth of each mode
and the transient dispersion relation predicted by the sharp interface model.
In Fig. 3 we present the amplitude of one of the modes (kI = 2.5, I1/l = 12.5)
averaged for 15 different noise realizations. The agreement is quite good in
the regime with positive w (i.e. where an increasing Ay (t) is predicted).
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Fig. 3. Time evolution of the mode ki = 2.5 (I7/l = 12.5) with the phase-field with
noise, and comparison with the sharp-interface prediction.



6 Rail Benitez et al.

5 Concluding remarks

In this paper we have studied the initial stages of a directional solidifica-
tion experiment in the context of the symmetric model. We have presented
predictions for the transient recoil of the sharp interface model and for the
transient dispersion relation by using an adiabatic approximation. We have
performed phase field simulations of this initial regime. Simulations quanti-
tatively agree with theoretical calculations. In particular the analysis of the
evolution of single modes and of fronts with fluctuations, both from theory
and from simulations, should be of relevance in the dendritic selection prob-
lem. Work in progress [12] are extending these results to the one-side model
and to the Langevin formalism for the modes of Ref. [2].
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