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Abstract
Particles moving on perfect periodic surfaces under the influence of external
forces may move along directions that deviate from that of the force. We briefly
recall previous results for transport of particles on surfaces with periodic traps
or periodic obstacles driven by a constant external force,and present new results
for particles moving in a harmonic periodic potential. The sorting properties
are explored as a function of a number of control parameters, specifically the
friction, force amplitude and direction, temperature, and lattice constants.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion processes of passive particles, viewed as the erratic motion of particles caused by
finite temperatures, were documented more than a century ago by Brown [1], and continue
to attract wide interest. The seminal work of Einstein [2] relating macroscopic transport and
diffusion to the microscopic structure of matter was the starting point of research that has never
abated. Transport (i.e., average motion) is a direct result of deterministic Newtonian dynamics,
but random motion is a natural consequence of the temperature as a prime source of disorder.
Einstein’s approach, based on the derivation of an equation for the probability density of the
velocity of a particle, inspired Langevin’s derivation of a more familiar Newtonian mechanical
scenario incorporating a friction term complemented with a stochastic force [3]. Careful
experiments confirmed the theoretical predictions [4].

Nowadays the rich phenomenology of transport of particles on crystalline surfaces is
attracting enormous interest for its technological relevance at scales ranging from the atomic
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and molecular to the colloidal and even the cellular. The advance of nanoscopic technologies
such as the scanning tunnelling microscope (STM) has made it possible experimentally to
follow the random motion of single particles or molecules on surfaces [5]. Over the past few
years, interest in the transport properties of Brownian particles on solid surfaces has flourished
and has included adsorbates on crystal surfaces [6], sorting of colloidal spheres [7–9] and of
DNA macromolecules [10], polymer diffusion at interfaces [12], dimers of Si on a Si(100)
surface [13, 14], long random jumps of organic molecules on a Cu(110) surface [15], and
anomalous diffusion [16, 17] of gold nanoclusters on graphite planes [18] and in intracellular
transport [19].

Of the very rich variety of transport problems, here we focus on sorting phenomena when
particles in a thermal bath and in the presence of an external force or field flow move on a
surface modelled by a two dimensional periodic potential. This work is motivated by recent
experiments in colloidal transport in a periodic potential landscape generated with an array of
optical tweezers [7–9], or via microfabricated technology to create an array of obstacles [10].

It is now possible to create a landscape with multiple traps or wells of any geometry
(periodic or random) with the use of diffractive optical elements to build holographic
tweezers [7–9]. The hologram (phase modulated pattern) for a particular distribution of
wells is generated by a computer and etched on a glass plate using standard lithographic
procedures. Dynamical holograms are also possible. A hologram of optical traps can produce
a surface to which colloidal particles respond as would atoms to a crystalline surface structure.
The parameters of these wells such as their width and depth are also controlled. Thus one
can study transport properties of mesoscopic particles in a well-controlled scenario in which
individual particles can be tracked. These ideas have been applied to the transport of colloidal
spheres [7–9]. An alternative technique consists of the creation of periodic obstacles on a
surface by microfabricated technology. DNA fragments [10] or disperse microspheres [11] in
a fluid are then drifted across the surface by a forced laminar flow.

One of the outcomes of these experiments in the case of wells (traps) and also in the case
of obstacles is the phenomenon of sorting [7–11, 20, 21]. A static array of wells or of obstacles
can be used to sort a mixture of particles drifted by a steady fluid flow or an external force
field. Particles are deflected with respect to the main streaming direction according to some
individual characteristic of the particles (size, index of refraction, etc). It has been seen in
these experiments that some particles are strongly deflected from the flow trajectory, others
are less deflected, and some do not change their direction at all. As a result, an ensemble of
different particles segregates in different directions and can be collected at different angles in the
output flow. In the optical experiments a set of wells or traps is generated according to a desired
spatial symmetry [7–9]. Here the particles move from one well to another over the intermediate
plateaus. The wells ‘compete’ with the external force and cause the particles to move along
directions that may not coincide with that of the force. The role of fluctuations in these
experiments is especially relevant if the external force is not strong enough to prevent trapping
in the potential wells, in which the particles would remain forever in the absence of thermal
fluctuations. If the force is sufficiently strong and, in general, in the microfabricated obstacle
technology where impenetrable obstacles (cylindrical towers) deviate the particle trajectories,
the role of fluctuations is less crucial [10, 11]. Different configurations of obstacles as well as
obstacle asymmetry have been used to enhance the sorting capability.

The sorting phenomenon is generic and will occur for any periodic configuration of wells
and obstacles. In particular, in this paper we extend earlier work and explore its occurrence with
a simple harmonic potential with both maxima and minima. Our scenario is an ensemble of non-
interacting classical Brownian particles of mass m obeying a standard Langevin equation in the
presence of thermal noise and its associated Stokes friction. Particles feel a two-dimensional
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periodic potential with two lattice constants λx and λy , and are driven by a constant force of
variable direction. This scenario corresponds to the canonical ensemble with a Boltzmann
equilibrium distribution.

In section 2 we introduce the principal equations of our approach, briefly review our
results for traps and obstacles, and specify the harmonic potential to be used to generate
our new results. In section 3 we present our numerical results for symmetric and asymmetric
lattices with harmonic potentials. We end in section 4 with some conclusions and perspectives.

2. Periodic potentials

We start with the equations of motion for the components (x, y) of the particle position on a
surface,

mẍ = − ∂

∂x
V

(
x

λx
,

y

λy

)
− µẋ + fx + ξx(t)

mÿ = − ∂

∂y
V

(
x

λx
,

y

λy

)
− µẏ + fy + ξy(t).

(1)

Here V (x/λx , y/λy) = V0V(x/λx, y/λy) is a periodic potential of height or depth V0 (V is a
potential of unit height or depth), and a dot denotes a derivative with respect to t . The parameters
λx andλy are characteristic lengths, the fi are the Cartesian components of the constant external

force whose magnitude is f0 =
√

f 2
x + f 2

y , the parameterµ is the phenomenological coefficient

of Stokes friction, and the ξi (t) are mutually uncorrelated white (thermal) noises that obey the
equilibrium fluctuation–dissipation relation,

〈ξi (t)ξ j (t
′)〉 = 2µkBT δi jδ(t − t ′). (2)

The transformation of variables

rx = x

λx
, ry = y

λx
, τ =

√
V0

m

t

λx
, (3)

leads to transformed Langevin equations in terms of dimensionless variables,

r̈x = − ∂

∂rx
V(rx, ry/a)− γ ṙx + Fx + ζx(τ ),

r̈y = − ∂

∂ry
V(rx, ry/a)− γ ṙy + Fy + ζy(τ ),

(4)

where a = λy/λx , and the noise terms obey the fluctuation–dissipation relation

〈ζi (τ )ζ j(τ
′)〉 = 2γ T δi jδ(τ − τ ′). (5)

In addition to lattice geometry parameters, the independent (dimensionless scaled) parameters
of the problem are the temperature T , the dissipation γ , the magnitude F0 of the external force,

T = kBT/V0, γ = µλx/
√

mV0, F0 = λx f0

V0
, (6)

and the angle θ between the external force and the x axis. Our interest lies in the mean particle
velocity 〈v〉 as a function of these parameters.

For any given potential, our numerical simulations yield the Cartesian components of the
average velocity,

〈vi 〉 = lim
τ→∞

〈ri (t)〉
τ

, (7)



S4154 J M Sancho et al

y

x

(d)

(c)

(b)

(a)

Figure 1. Left panel: a finite portion of a two-dimensional potential with periodically located
traps (wells) of depth V0 connected by flat plateaus. Right panel: particle trajectories for forces
applied at different angles represented by the dotted lines. Parameter values are A = 5, B = 0.7,
T = 10−4, γ = 20, F0 = 8. From [21].

from which we construct the components parallel and perpendicular to the force F :

〈v‖〉 = 〈vx 〉 cos θ + 〈vy〉 sin θ, 〈v⊥〉 = −〈vx 〉 sin θ + 〈vy〉 cos θ. (8)

The magnitude of the deviation of the direction of the average particle velocity from that of the
force can be characterized by either of the angles α (called the deflection angle) andψ = α+ θ
(called the velocity angle), defined as

tan α = 〈v⊥〉
〈v‖〉 , tanψ = 〈vy〉

〈vx 〉 . (9)

In [21] we focused on an array of wells or obstacles separated by plateaus, modelled by
the potential (with λx = λy ≡ λ)

V
( x

λ
,

y

λ

)
= ±V0

1 + e−g(x,y)
, (10)

where g(x, y) is the periodic two-dimensional function

g(x, y) = A [cos (2πx/λ) + cos (2πy/λ)− 2B] . (11)

The parameter V0 controls the depth or height of wells or obstacles, A controls the steepness
of these features, and B determines the relative size of a well or obstacle with respect to the
spatial period λ. The potential in the case of wells is illustrated in the left panel of figure 1,
as are typical particle trajectories in this potential in the right panel. The parameter B can
be associated with the size of the diffusing particle; larger values of B lead to shallower and
narrower wells and are therefore associated with larger particles. The potential and associated
trajectories in the case of obstacles are shown in figure 2.

We exhibit two particularly important simulation results, specifically obtained previously
for the case of wells [21] but qualitatively very similar for the case of obstacles. One, shown
in figure 3, shows the deflection angle α versus the direction of the force, and is important
because it demonstrates that there is a direction of the force that leads to maximal deviation of
α from zero for a given particle size, while other force directions also lead to pronounced but
smaller deviations. It is also clear that the optimal angle for sorting depends on the sizes of the
particles to be sorted. In the case of wells (but not of obstacles) with increasing temperature
the trajectories become more erratic as thermal fluctuations agitate the particles away from
the direction of the force and of the nearest wells. As seen in the lower panel of the figure,
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Figure 2. Left panel: a finite portion of a two-dimensional potential with periodically located
obstacles of height V0 connected by flat plateaus. Right panel: typical particle trajectories for
forces applied at different angles represented by the dotted lines. Parameter values as in figure 1.
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Figure 3. Deflection angle versus field direction for the case of potential wells separated by plateaus,
for F0 = 8, γ = 20, different values of the potential parameter B (increasing B is associated with
increasing particle size), and two temperatures. Upper panel, T = 0.01; lower panel, T = 0.1.
Data correspond to B1 = 0.5 (solid lines), B2 = 0.7 (dashed lines) and B3 = 0.9 (dotted lines).
From [21].

the deflection angle is now smaller than before, but there is still an angle θ for maximum
deviation from α = 0 that varies with particle size. This figure compares favourably not only
qualitatively but even quantitatively with figure 4 of [7]. At sufficiently high temperature the
effect disappears as the wells become irrelevant.

The other result, shown in figure 4, is a terrace phenomenon in the dependence of the
absolute velocity angle on the direction of the force. This phenomenon was first predicted
in [20] and has since been observed and discussed extensively [7, 8] (see figure 5 in [7] and
figures 2 and 3 in [8]). The terrace steps have been called ‘kinetically locked-in states’ and can
be understood on the basis of the trajectories in figures 1 and 2. All the trajectories included in
a small cone pointing toward a particular well will emerge out of this well within an identical
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Figure 4. Terraces in the absolute velocity angle for a surface of potential wells separated by
plateaus, for F0 = 8, different values of the parameter B , and two temperatures. Upper panel
T = 10−4, lower panel T = 10−2. Data correspond to B = 0.5 (solid lines), 0.7 (dashed lines),
and 0.9 (dotted lines). From [21].

cone, as illustrated by the cone between lines (b) and (c) in the figures. In the case of wells,
the terraces are clearly pronounced at low temperatures, but as the temperature increases the
particle agitation disturbs and washes out the smaller cones (this corresponds to the notion of
‘statistically locked-in transport’ in [8]), leading to the eventual disappearance of the terraces.
Understandably, the terraces are more pronounced for smaller particles.

In our new work we focus on surfaces described by the following generic two-dimensional
periodic potential:

V (x, y) = V0 V
(

x

λx
,

y

λy

)
= V0

2

[
cos

(
2πx

λx

)
+ cos

(
2πy

λy

)]
, (12)

where V0 is the barrier height at the saddle points, and the ratio λy/λx ≡ a characterizes the
symmetry of the potential (square when a = 1). The two potential symmetries used here are
shown in figure 5 along with some examples of particle trajectories. Further simulation results
for this potential are presented in the next section.

3. Numerical results

We start with some observations about the trajectories in figure 5. Note that the particles
are attracted to each nearby potential well encountered as the particle moves along. Similarly,
each potential maximum deflects the particle along its journey. Both of these lead to deviations
from motion along the direction of the force. The trajectories shown here correspond to a high
value of the friction.

Typical deviation angles for the trajectories are plotted in figure 6. The deviations in the
square potential are symmetric about the diagonal (at θ = π/4 the particles follow the direction
of the force). For the asymmetric potential this is not the case, and indeed there is moderate
sorting when the force lies along the diagonal (a = √

2 puts the diagonal at tan θ = √
2 so that

θ ≈ 55◦). In this lattice there is no sorting at tan θ = 1/
√

2 (θ ≈ 35◦), that is, when the force
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Figure 5. Surface plots of the potentials (12) showing several trajectories. The open circles are the
locations of the minima and the solid circles indicate the maxima. Left panel: symmetric potential;
the pairs (A′,A), (B′,B), etc indicate the direction of the force and the associated particle trajectory.
θ = π/6 (A,A′), θ = π/4 (B,B′), and θ = π/3 (C,C′). Right panel: asymmetric potential for
a = √

2; θ = π/9 (A,A′), θ = 2π/9 (B,B′), and θ = π/3 (C,C′). Parameter values: F0 = 6,
T = 0.01 and γ = 10.
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Figure 6. tan α versus θ for the symmetric (open symbols, F0 = 6) and asymmetric (solid symbols,
F0 = 5) potentials. Other parameters: γ = 10, and T = 0.01.

is perpendicular to the diagonal. Along this direction one observes a ‘dynamical symmetry’:
as the particle advances, there is an alternating spatial asymmetry that causes the particle to
zigzag around the direction of the force so that on average its trajectory lies along this direction.
The forces chosen for the two geometries in the plot are different for reasons that will become
clear subsequently. The effect of friction for both lattices is illustrated in figure 7. While one
must be cautious about comparisons in absolute behaviour because the two curves correspond
to different parameter values and different geometries, the general qualitative behaviour is the
same for both. In both lattices, inertial effects lead to persistence in the direction of the motion
and thus contribute to the tendency of the particles to follow the direction of the force. The
deflection angle therefore increases with increasing friction, and saturates when the inertial
contributions no longer play a role. The largest deviation is obtained for particles with high
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Figure 7. tan α versus γ for the symmetric (open symbols) and asymmetric (solid symbols)
potentials. For the symmetric potential the parameters are F0 = 6 and θ = π/3 (tan θ = 1.732).
For the asymmetric potential F0 = 5 and tan θ = √

2. For both, T = 0.01.
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Figure 8. Left panel: tan α versus tan θ . Right panel: tan� versus tan θ . Parameters in both
panels: γ = 20, F0 = 10, T = 0.01, and for two of the potentials, A = 5 and B = 0.7. Solid
curves, periodic potential considered in this paper; dashed curves, potential with wells and flat
plateaus; dotted curves, potential with obstacles.

friction. On the other hand, particles with high friction are not effectively sorted on the basis
of their friction because they are all deflected equally.

It is also interesting to compare the sorting capability of the systems considered in our
earlier work with that of the periodic lattice of the same symmetry (square) as considered here,
at least for some specific parameter values. Such a comparison is shown in the two panels
of figure 8. The sorting as measured by the angle α is very similar for the two potentials
considered in our previous work but distinctly more effective for the simple harmonic periodic
potential introduced in this paper.

To assess the sorting capabilities of our surfaces it is useful to focus on the dependence
of the trajectories on θ , F0, and γ . The first two will yield information on the externally
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Figure 9. tan α versus tan θ in a square lattice for four forces: F0 = 10 (solid), 8 (dotted),
6 (dashed) and 4 (dot–dashed). Other parameters: γ = 10 and T = 0.01.
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Figure 10. tan α versus tan θ for four values of the friction parameter: γ = 0.4 (solid), 2 (dotted),
4 (dashed), and 10 (dot–dashed). Other parameters: F0 = 6 and T = 0.01.

controllable parameters, and the third on the particle sorting capability of the potential on the
basis of the friction coefficient as the differentiating feature.

In figure 9 we present the deviation angle as a function of the direction of the force for the
square lattice. The deviation is zero (particles move in the direction of the force) when θ = 0
and, as noted earlier, also when θ = π/4 (tan θ = 1). As θ increases from zero, the particles
continue to move along the x axis (indicated by the diagonal line in the figure). The deviation
angle reaches a maximum at an angle that decreases with increasing F0 (a stronger force is
better able to pull the particles along its direction). Note that the deviation angle becomes
quite sizable. Figure 10 shows the deviation angle as a function of the direction of the force
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Figure 11. Sorting of particles with different friction coefficients when θ = π/3 in the symmetric
potential. The β on the vertical axis is different for each curve: β = α1 for γ = 2 (solid line),
β = α2 for γ = 10 (dashed line), and β = α1 − α2 (full circles). The temperature is T = 0.01.

for different friction coefficients. Again, at small angles the particle moves along the x axis.
At large θ (near π/4), the particle moves nearly in the direction of the force, more so for lower
friction. The deviation angle varies rapidly with θ over a narrow range of θ .

Of particular interest for sorting is the difference in the deviation angle of different
particles. Figure 10 shows that if friction is the sorting parameter, this difference is greatest for
0.4 � tan θ � 0.6 for the parameter values used in the figure. Figure 11 quantifies the sorting
behaviour more clearly by showing the difference in the deviation angles of two particles
with different friction coefficients as a function of the magnitude of the force. The maximum
occurs at F0 ≈ 6, in agreement with the maximum deviation seen in figure 10 for the parameter
values indicated in the caption of figure 11. The maximum becomes less pronounced (sorting
becomes more difficult) and shifts to smaller values of tan θ with increasing temperature; see
figure 12.

The sorting capabilities of the asymmetric potential surface are similar to those of the
symmetric surface but for different values of the control parameters. In figure 13 we show
the results comparable to those of figure 11, but now the optimal sorting occurs at a smaller
value of the force, F0 ∼ 5. Recall that in figures 6 and 7 we chose different forces to illustrate
the trajectory deviations for the two lattices. Now we see that these forces were chosen to
correspond to the optimal forces for sorting for each of the lattice geometries.

4. Conclusions and perspectives

We have investigated sorting phenomena of an ensemble of particles in two-dimensional
symmetric and asymmetric harmonic potentials subject to thermal fluctuations and
external forces.

We have observed that the particle trajectories deviate from the direction of the external
force by angles that depend on the symmetry of the lattice, the magnitude and direction of the
external force, and the friction coefficient of the particles, and we have found larger deviations
in the harmonic potentials than those observed in other potentials used in recent experiments.
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Figure 12. Sorting for a symmetric potential as measured by |α2 − α1| for two temperatures:
T = 0.1 (solid) and T = 0.01 (dashed). Parameters: γ1 = 10, γ2 = 2, and F0 = 6.
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Figure 13. Sorting of particles with different friction coefficients when tan θ = √
2 in the

asymmetric potential. The β on the vertical axis is different for each curve: β = α1 for γ = 2
(solid line), β = α2 for γ = 10 (dashed line), and β = α1 − α2 (full circles). The temperature is
T = 0.01.

We find that the symmetry of the harmonic potential does not affect the sorting behaviour in
any essential way, and that one can adjust force parameters so that symmetric and asymmetric
surfaces lead to the same sorting effectiveness. We also note that sorting is principally a
deterministic phenomenon even in the presence of diffusion provided the temperature is not
too high.

We investigated in some detail whether particles of different friction coefficients can be
sorted in this way. We have shown that it is indeed possible to do so in appropriate parameter
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Figure 14. Un-normalized histograms of the y-position of 5000 particles collected at x = 120
for γ1 = 10 (lower multimodal distribution) and γ2 = 2 (upper unimodal distribution). Other
parameters: tan(θ) = 0.65, F0 = 6 and T = 0.01.

regimes, and specifically illustrate this capability once again in figure 14. Here a sharp initial
distribution of two sets of particles, each set characterized by a different friction coefficient,
is clearly segregated when they arrive at the other end of our lattice. We see in this figure that
the output distribution for the smaller friction is essentially monomodal on the scale of the
figure, while that of the particles with the larger friction is spatially multimodal with maxima
separated by the spatial period λ, but that one set of particles is clearly separated from the
other set.
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