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We present a numerical and partially analytical study of classical particles obeying a Langevin equation that
describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic
or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion,
diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases
transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random po-
tentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as
metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary
Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.

DOI: 10.1103/PhysRevE.70.051104 PACS number(s): 05.40.2a, 68.35.Fx, 68.43.Jk

I. INTRODUCTION

Diffusion processes of atoms, molecules, and clusters of
molecules on surfaces have been subjects of research for
many decades due to their intrinsic interest and their techno-
logical importance. Some examples of modern applications
include self-assembled molecular film growth, catalysis, and
surface-bound nanostructures[1,2]. Also, many techniques
that are used to characterize the growth of surfaces are based
on the diffusion and subsequent adsorption of particles or
molecules. These applications have led to a recent resurgence
of interest in such processes, but now involving the motion
of small and large organic molecules[3,4] and of adsorbed
metal clusters composed of tens and even hundreds of atoms
[5,6].

Recent research activity has been both experimental and
theoretical[1–12], the principal questions in these studies
being the determination of the jump lengths of large mol-
ecules or clusters on surfaces, and the diffusion asymmetry
along some surface crystallographic directions or along par-
ticular paths when there are many obstacles such as steps
and/or impurities to negotiate. One of the more exciting ex-
periments has involved the direct observation of the surface
mobility of fairly large organic molecules using a newly de-
vised method of independently measuring the mean square
displacement and the hopping rate of these molecules, and
then taking advantage of a well known relation between
them to extract the root mean square jump lengths[4]. These
experiments seem to indicate that, as with single atoms in
some cases[13,14], long jumps spanning multiple lattice
spacings may play a dominant role in the diffusion of these
molecules. Another “experiment,” this one numerical(mo-
lecular dynamics), has led to the prediction that clusters of
hundreds of Au atoms will exhibit Lévy-type power-law
flight length and sticking time distributions[6]. On the other
hand, the theoretical literature on the subject of surface dif-

fusion tends to be rather complex and, most importantly,
tends to invoke Lévy walks or flights[15] as a modelinput.
While these approaches can provide insights on the effects of
other elements of the model on the dynamics of particles on
surfaces, they provide little insight on how the motion in-
volving long jumps comes about in the first place. These
simulations, which aim to reproduce realistic systems, do not
stress the generic, minimal ingredients of such behavior.

While a microscopically accurate analysis of surface dif-
fusion requires extensive calculations(e.g.,ab initio or mo-
lecular dynamics), even the most powerful currently avail-
able computers cannot carry such calculations to anywhere
near experimentally relevant time scales[14,16]. Moreover,
current experimental probes of the topography of surfaces,
scanning tunneling microscopy and atomic force microscopy,
are usually carried out at relatively high temperatures, which
leads to additional difficulties for first-principles calcula-
tions. Therefore, simpler approaches are essential and valu-
able [17]. The scenario developed in this paper is of the
simple Langevin type. It models classical particles moving in
a two-dimensional potential, periodic or random, under the
action ofd-correlated Gaussian thermal fluctuations and the
associated linear dissipation, the important control parameter
of the model being the friction coefficient. In our search for
different behaviors as a function of the control parameter, we
must be mindful of the fact that experimental observations
are not necessarily strictlyasymptotic, that is, that a particu-
lar behavior may be transient. Transient behaviors may of
course persist for very long times, but to find them theoreti-
cally it is not enough to carry out an asymptotic analysis. We
find that, in spite of the simplicity of the model, it is able to
reproduce the entire range of experimentally and computa-
tionally observed phenomenologies, ranging from superdif-
fusion through large-step diffusion all the way to subdiffu-
sion. In particular, we show that Lévy-like statistics appear
quite naturally within the usual Langevin scheme for under-
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damped motion in a periodic potential. It is important to
stress that in this case the Lévy-behavior emerges as anin-
termediateasymptotic for an ensemble of particles with a
Maxwell-Boltzmann distribution of velocities.

Our paper is organized as follows. In Sec. II we present
the Langevin model and briefly list the quantities to be con-
sidered in subsequent sections to characterize the motion of
an ensemble of particles on a surface. In Sec. III numerical
results are presented for the periodic surface potential, as are
analytic results for the dependence of the diffusion coeffi-
cient on friction obtained in detail in the Appendix. Section
IV shows our results for the random surface potentials. Fi-
nally, we conclude with a summary and some future direc-
tions in Sec. V.

II. THE MODEL

We study the diffusion of a particle in a two-dimensional
potentialVsx,yd of characteristic length scalel, in the pres-
ence of thermal noise and the associated dissipation. The
model is embodied in the equations of motion,

mẍ= −
]

] x
VS x

l
,
y

l
D − mẋ + jxstd,

mÿ= −
]

] y
VS x

l
,
y

l
D − mẏ + jystd, s1d

wherem is the mass of the particle and an overdot denotes a
derivative with respect tot. The generalization to distinct
length scaleslx andly is straightforward. The parameterm
is the coefficient of friction, and thejistd are mutually uncor-
related white noises that obey the fluctuation-dissipation re-
lation

kjistdj jst8dl = 2mkBTdi jdst − t8d. s2d

Equations(1) can be written in terms of the scaled dimen-
sionless variables

rx =
x

l
, ry =

y

l
, t =ÎV0

m

t

l
, s3d

whereV0 is some measure(e.g., the maximum or the mean
maximum) of the potential. In terms of these variables, and
with an overdot now denoting a derivative with respect tot,

r̈x = −
]

] rx
Vsrx,ryd − gṙx + zxstd,

r̈ y = −
]

] ry
Vsrx,ryd − gṙ y + zystd, s4d

whereVsrx,ryd=Vsx/l ,y/ld /V0 is the dimensionless poten-
tial, and the scaled noise obeys the fluctuation-dissipation
relation

kzistdz jst8dl = 2gTdi jdst − t8d. s5d

This scaling serves to stress that there are only two indepen-
dent parameters in this model, the scaled temperatureT and
the scaled dissipationg:

T = kBT/V0, g = ml/ÎmV0. s6d

The scaled temperature will be fixed at a value smaller than
unity so that the thermal fluctuations do not overwhelm the
potential, but not too much smaller than unity so that acti-
vated passage over potential barriers is possible within a rea-
sonable time.

The model(1) is a “standard” Brownian motion model. It
relies on well-established ideas of statistical mechanics and
invokes nothing special about the fluctuations and the dissi-
pation. The random forces are normal thermal fluctuations,
Gaussian andd correlated, and the dissipative forces that
accompany the fluctuations are constructed so as to ensure
thermal equilibration. Nevertheless, we argue that many of
the dynamical features of a particle evolving under these
equations of motion have not been investigated until recently
[18]. Furthermore, we assert that it is not necessary to inject
special assumptions such as Lévy flights or special memory
effects into models of surface diffusion, but that these fea-
tures appear naturally from this standard model, thus placing
the entire range of phenomena observed in surface diffusion
on an equal common footing. Furthermore, since recent ex-
perimental and theoretical results have been presented for a
variety of surfaces, we explore periodic as well as random
surface potentials, the latter generated according to a given
distribution and with a given short-range spatial correlation.

The most straightforward quantity to characterize the sur-
face diffusion process is the familiar mean square displace-
ment of the particle,

kr2stdl = kfrxstd − rxs0dg2l + kfrystd − rys0dg2l. s7d

Normal diffusive behavior is characterized by a linear depen-
dence on time,kr2stdl,Dt, whereD is the diffusion coeffi-
cient, while nondiffusive behavior shows a different time de-
pendence,kr2stdl,ta, with a,1 for subdiffusive behavior
anda.1 for superdiffusive motion. Not only do we seek to
establish the nature of the motion as a function of the friction
coefficient as measured by moments such as the mean square
displacement, but we seek to establish a theoretical frame-
work that will allow us to fully understand and predict the
nature of the motion under realistic circumstances that may
include more complex geometries. Toward this purpose we
will explore the dependence of the diffusion coefficientD on
friction at large time scales.

Another characterization of the process at intermediate
time scales is obtained from the probability density function
(PDF) Psr ,td of particle displacementsr at time t. In par-
ticular, this PDF reflects the long stretches of ballistic motion
evident in the intermediate time dynamics in the low friction
regime. Indeed, long ballistic excursions lead to a specific
behavior of this distribution that in turn implies that the ve-
locity of these particles remains correlated over considerable
time intervals. The best way to characterize such correlations
is in terms of the velocity power spectrumSsvd
=kvsvdvs−vdl. We note that this spectrum is directly con-
nected with the asymptotic diffusion coefficient of the par-
ticle. According to the Taylor-Kubo formula,D=e0

`Cstddt,
whereCstd=kvst8dvst8+tdl is the velocity-velocity correla-
tion function. The latter is connected withSsvd by the
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Wiener-Khinchin relation,Ssvd=eCstdeivtdt. These various
observables are studied below for both periodic and random
surface potentials.

III. PERIODIC POTENTIAL

We consider the periodic potential

Vsx,yd = V0cosSpx

l
+

py

l
DcosSpx

l
−

py

l
D

=
V0

2
FcosS2px

l
D + cosS2py

l
DG , s8d

which has maxima at positionssnl ,mld and minima at(sn
+ 1

2
dl , sm+ 1

2
dl), where n and m are integers. The barrier

height at the saddle points isV0. This potential is shown in
Fig. 1. In Fig. 2 we show examples of trajectories obtained
for two different friction coefficients upon numerical simu-
lation of the equations of motion. In our simulation we have
usedl=4 andm=1, with a fixed scaled temperatureT=0.2
and the scaled dissipation as the independent parameter. Note
that since the potential can be generated analytically and the
equations of motion are continuous, the system is infinite and
it is not necessary to specify boundary conditions. One of the
trajectories[panel(a)] is for large friction, and the particle is
seen to follow what appears to be typical diffusive motion
characterized by short steps of lengthl along the crystallo-

graphic directions. The other trajectory[panel (b)] corre-
sponds to small friction and clearly shows the preponderance
of long s@ld tracks along one crystallographic direction be-
fore turning to another.

The evolution of the mean square displacementkr2l, av-
eraged over a set of 5000 particles, is shown in Figs. 3 and 4
for several friction coefficients and different initial condi-
tions. In Fig. 3 the particles are initially deposited in a square
of side 2p around the center of the system according to a
Boltzmann equilibrium distribution for the positions and for
the velocities, while in Fig. 4 they are initially located at the
center of the system with zero initial velocity. Differences in
the two cases are observed at short times. At very long times

FIG. 1. A finite portion of the much larger two-dimensional
periodic potential in which a particle diffuses.

FIG. 2. Left: A trajectory forg=1 over t=20 000 time units.
Right: A trajectory forg=0.04 overt=15 000 time units. The period
of the potential isl=4. Note the different scales in the two panels.

FIG. 3. Mean square displacement vs time for an ensemble of
5000 particles in the periodic potential with a Maxwell-Boltzmann
initial distribution. g=0.0004(solid line), 0.004(dotted line), 0.04
(dashed line), and 0.4(dot-dashed line).

FIG. 4. Mean square displacement vs time for an ensemble of
5000 particles in the periodic potential with zero velocity, and lo-
cated at the origin.g=0.0004(solid line), 0.004(dotted line), 0.04
(dashed line), and 0.4(dot-dashed line).
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the memory of the initial condition is lost, and in all cases
the motion is diffusive, as expected. Regardless of initial
condition, for smallg and at intermediate times there is clear
superdiffusiveballistic sa=2d behavior over several decades
of time, reflective of the long straight stretches seen in the
low-g trajectory in Fig. 1. The ballistic behavior is observed
over a time range ofOsg−1d, and one might be tempted to
conclude that it is therefore a trivial generalization of the
motion of a free damped particle. However, the situation here
is quite different. The motion is of an ensemble of particles
whose initial energy distribution is either the Boltzmann dis-
tribution appropriate to the temperatureT (Fig. 3), or all of
which initially have zero velocity(Fig. 4), and the mean
square displacement is an average over all the particles. The
particles with energies lower than the barrier height, which
includes most of the particles, are at first trapped in the origi-
nal potential well. Others(those with a higher initial energy,
and those that get kicked up sufficiently in energy by the
thermal fluctuations) move out of one well only to be quickly
trapped again, perhaps into a neighboring well. A few par-
ticles, those that either start with or acquire the highest ve-
locities according to the Maxwell-Boltzmann distribution,
escape the initial well and move over longer distances even
as they slow down through friction, until they are once again
trapped. That this complex ensemble behavior should give
rise to a mean square displacement that behaves as shown in
Fig. 3 is not self-evident, and in fact can only be understood
in more detail if we analyze the distribution of particle dis-
placements as a function of time. We do so later in this
section.

As noted above, for very long times the motion is diffu-
sive in all cases. The diffusion coefficientD, evaluated nu-
merically at long time as

D = lim
t→`

kr2stdl
4t

, s9d

is shown in Fig. 5 as a function of the frictiong. The solid

lines correspond to theoretical predictions evaluated in the
Appendix. There we show that in the overdamped regime
[largeg; see Eq.(A6)]

D ,
p

g
expS−

1

TD . s10d

In the opposite limit[small g; see Eq.(A20)], we have

D ,
pT
4g

expS−
1

TD . s11d

Both predictions fit our numerical results rather well. Note
that there areno free parametersin these results. Note also
that whileD,g−1 at both high and low friction, the physical
reasons are quite different. As seen in the Appendix, at high
friction the mean square distance traveled between trapping
events is unity independently ofg, and the mean time to
escape a well and be trapped in another is proportional tog.
At low friction the mean square distance is proportional to
g−2 and the mean time goes asg−1. The ratio of the two is
therefore in any case proportional tog−1.

The diffusion coefficient characterizes only the very long-
time asymptotic dynamics. To characterize the process at in-
termediate time scales we introduce the probability distribu-
tion functionPsr ,td of particle displacementsr at timet. In
particular, this PDF reflects the long stretches of ballistic
motion evident in the intermediate time dynamics in the low-
friction regime. The PDF is shown in Fig. 6(top) for g
=0.0004 and three different time intervalst for an initially
equilibrated ensemble. For comparison, we also show typical
PDF’s for high damping(g=1, bottom) for the three time
intervals. In the high-g curves the highest maximum corre-
sponds to no jumps(by far the most likely event at short
times). The next is associated with jumps to a nearest neigh-

FIG. 5. Diffusion coefficient as a function ofg for the periodic
potential.

FIG. 6. Log-log plot ofPsr ,td for g=0.0004(top) and for g
=1 (bottom) and three different values of time intervals:t=20
(squares), 100 (open circles), 1000(triangles). Note the strong dif-
ference in scales.
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bor well, and so on. In contrast, the low-g curves show a
very different behavior, with features strongly resembling
those of a Lévy-walk model[19,20]: a peak at small dis-
placements, a power-law intermediate regime, and a side
hump at high displacements. Each of these is a distinct sig-
nature of Lévy-walk-like dynamics, but one must be cautious
in the detailed interpretation of these components, because in
our results they are not attributable to exactly the same
sources as in the Lévy walk, nor do the exponents fit the
Lévy walk scheme directly. In our system the persistent
small-displacement peak is associated with long trapping pe-
riods during which a particle does not move at all because its
energy is not sufficient to overcome the barrier. The high
displacement peak, which moves outward with velocity of
order unity, is associated with ballistic motion of those par-
ticles that acquire enough energy to move(and lose it very
slowly). Genuine Lévy-walk dynamics also exhibit a low
displacement peak and a superdiffusive peak. In the Lévy
walk, the persistent small-displacement peak stems from the
distribution of excursion lengths, whereas the high-
displacement peak is associated with laminar events in which
a particle started moving before the observations started and
are still moving without interruption at timet.

These small- and large-displacement domains are sepa-
rated by a power-law behavior. However, here some impor-
tant differences must also be stressed. In the Lévy walk there
is a particular relation between the exponenta of the time in
the mean square displacementkr2l, ta and the slopem of the
power-law regime of the distribution,Psr ,td,t / rm, namely,
a=4−m. Furthermore, the distribution with the features that
we are describing is observed in the regime 2,m,3, that is,
1,a,2. In our distribution the intermediate power-law re-
gime reflects ballistic transport, and yet the slope in our
power-law regime is smaller than unity(approximately 0.7).
Nevertheless, the qualitative features of our distribution track
those of the Lévy walk. Our side hump is strongly broadened
whereas the side hump in the Lévy-walk model is associated
with motion at a single constant velocity. In our case the
velocity varies according to the equilibrium Maxwell-
Boltzmann distribution. Note that the existence of the pro-
nounced side hump moving with the velocity of the order of
unity reflects the fact that the particles performing long steps
(“flights” ) are those in the tail of the Maxwellian velocity
distribution. This contribution to the PDF in a potential sys-
tem arises from a small subset of particles and is thus to be
distinguished from that of a typical underdamped free
Brownian particle[21]. In summary, in our underdamped
system the slower particles are trapped and localized around
a potential minimum. They do not contribute to transport and
lead to the first peak in the PDFPsr ,td. Particles with higher
energies begin moving essentially ballistically, thus contrib-
uting to the side hump of the PDF that moves toward the
right with increasing times in the first panel in Fig. 6. These
particles eventually become trapped due to friction, and these
trapping events lead to the power-law portion of the PDF.
Fewer and fewer particles(only those in the ever smaller
highest-velocity tails of the distribution) continue moving
ballistically. The side hump thus becomes narrower and
lower with time. At long times,t@1/g, both the long-
trapping and ballistic features are of course no longer present
as diffusive motion dominates the behavior.

We emphasize that the behavior described above is uni-
versal and is not strongly dependent on whether the initial
conditions are equilibrium or zero-velocity ones(although
the exact heights of the peaks do). In Fig. 7 the velocity
probability distributions of our system at finite times are
compared to a Maxwell distribution. When we implement
Maxwell-Boltzmann initial conditions, the overall velocity
distribution obtained in our simulations by time sampling is
purely Maxwellian at all times. For the nonequilibrium initial
conditions where we start with zero velocity at the saddle
point of the potential, some nonequilibrium transient phe-
nomena are observed in the small deviations from the Max-
well form. We also note that the velocity distribution ther-
malizes at times of the order of 10g−1. The times in Fig. 7
correspond tot=2g−1 and 4g−1.

The long, ballistic excursions that lead to the power-law
and side hump contributions to the particle displacement dis-
tribution function imply that the velocities of these particles
remain correlated over considerable time intervals. This as-
pect is most directly characterized by a study of the velocity
power spectrumSsvd=kvsvdvs−vdl. In the case of diffusive
motion one can extract the diffusion coefficients as

D =
1

4
fSxxsv = 0d + Syysv = 0dg, s12d

whereSiisvd is the power spectrum of the Cartesian compo-
nenti of the velocity vector. The behavior ofSsvd for differ-
ent values of the friction coefficientg is shown in Fig. 8. The
structure of the power spectrum mirrors the underlying dy-
namics. Thus, an evident feature ofSsvd is the existence of
pronounced peaks at the frequencyv0=pÎ2 of small oscil-
lations in one well performed by particles trapped in a well.
At low frequencies,v0!1, a power-law growth ofSsvd is

FIG. 7. Probability distribution of the velocity for two different
initial conditions compared with a Maxwell distribution(solid
curve) for the same temperature. Triangles: distribution att=50 for
zero velocity initial condition. Circles: distributions att=100 for
zero velocity(solid circles) and Maxwell(open circles) initial dis-
tributions (g=0.04).
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observed. This is reflective of the persistent time correlations
associated with ballistic excursions. The slope,1 of this
growth corresponds toCstd<const and to the ballistic
growth of the mean square displacement. At even smaller
frequencies the power spectrum crosses over toSsvd
=const=4D, indicating full decorrelation and emergence of
pure diffusion.

IV. RANDOM POTENTIAL

Surfaces are usually not completely crystalline or regular
because of the presence of vacancies, defects, and other
types of disorder. One type of surface disorder is represented
by a random potential with spatial correlations that can
model the presence of some spatial finite-ranged order. An
algorithm that can be used to generate surfaces with any
given spatial correlation has been presented in Refs.[22–24].
We have implemented this algorithm for a random potential
surface with a Gaussian distribution and exponential correla-
tion function. In terms of the vectorsx=sx,yd and x8
=sx8 ,y8d, our potential surface has the correlation property

kVsxdVsx8dl = gsx − x8d, s13d

with

gsx − x8d =
«

2pl82e−ux − x8u2/2l82
, s14d

which is parametrized by the intensity« and the characteris-
tic lengthl8 that we take to be the same as the length scale
in the periodic potentialsl8=4d. Note that the average po-
tential height is a combination of the parameters. A typical
surface generated with this algorithm and of average poten-
tial heightV0 equal to that of the periodic potential is shown
in Fig. 9. In our particular case, we have done our simula-
tions on a square grid of sizeL=4096 with dx=1.0. Even
though our potential is generated on a grid, extrapolation of
forces can be used to calculate the force at any point, which

is a necessary step in the dynamical simulation. We have
used the parameter«=100. In this case we must generate
finite systems. Rather than impose boundary conditions, we
stop each simulation sequence whenever the first particle
reaches a boundary.

Typical trajectories associated with this potential at high
and low friction are shown in Fig. 10. Again, the trajectories
are entirely different, that associated with high friction con-
sisting of extremely short steps followed by random changes
in direction while that associated with low friction again
shows a pronounced directional persistence.

An analysis of the exponents in the mean square displace-
ment formula shows the entire range of behaviors from sub-
diffusive to superdiffusive with changing friction. In Fig. 11
we showkr2stdl, averaged over 5000 particles, as a function
of time for several values ofg. A detailed analysis of these
trajectories presents a rich phenomenology of possible differ-
ent regimes. In the overdamped regime we observe clearly
subdiffusive behaviorsa,1d, already known from over-
damped simulations presented earlier[24]. An interesting
outcome is the superdiffusivesa.1d behavior seen for small
values ofg. This again is a signature of the Lévy-walk-type
behavior. The exponenta as a function ofg is plotted in Fig.
12. Each exponent is obtained as an average over 500 par-
ticles in each of 20 different realizations of the random po-
tential, the error bars indicating the standard deviations over
these statistics. For largeg our simulations run for a long

FIG. 8. Ssvd for g=0.004, 0.04, 0.4, and 4 in decreasing
order.

FIG. 9. Random potential with the same average potential
height as in the periodic case.

FIG. 10. Left: A trajectory forg=0.1 overt=250 000 time units.
Right: A trajectory forg=0.0001 overt=2000 time units. The char-
acteristic length scale of the potential isl8=4. Note the different
scales in the two panels.
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time and the value ofa has been calculated on the basis of
the behavior ofkr2l over the last time decade of the simula-
tion for each run. In the medium- and low-damping cases the
simulations do not extend over such long times(since each
simulation ends when a particle reaches the system bound-
ary). The standard deviations are larger for smallg. In part
this is due to the fact that for smallg it is more likely for a
particle to reach the boundary of the system during the time
of a run. Not only are the run times shorter for smallerg, but
they are also more broadly distributed asg decreases. In any
case, the trend in the behavior ofa as a function of the
friction is clear. An unexpected result is the absence of a
diffusive regimesa<1d except in a small range of values.

The behavior ofSsvd for the random potential is seen in
Fig. 13 for several values ofg. For small g the spectral
density grows with decreasing frequency, indicating super-
diffusion, while at largeg it decays with decreasingv, which
is a signature of subdiffusion. For the intermediate valueg
=0.003(close to the value at whicha<1 is observed in Fig.
12) it flattens, as appropriate for diffusive behavior at long
times.

In Fig. 14 the PDFPsr ,td for the random potential is
plotted. This PDF looks very different from the one for a
periodic potential. Nevertheless, for the case of small friction
it still exhibits some features of Lévi-walk-like dynamics.

FIG. 11. Mean square displacement for a particle in the random
potential with Maxwellian initial velocity distribution, forg
=0.0001(solid line), 0.001 (dotted line), 0.003 (dashed line), and
0.008(dot-dashed line).

FIG. 12. Exponentsa versus friction coefficientg. Each point is
obtained from an average over 20 realizations of the random poten-
tial and 500 particles per realization. The error bars indicate the
standard deviation over these statistics.

FIG. 13. Ssvd for g=0.0001, 0.003, and 0.08(decreasing order)
in the random potential with Maxwellian initial velocity
distribution.

FIG. 14. Log-log plot ofPsr ,td for g=0.0001(top) and for g
=0.08 (bottom) and various different values of time intervals:t
=10 (squares), 20 (open circles), 100 (triangles), and 1000
(rhombuses).
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The main difference here is the absence of the pronounced
central peak due to trapping in the nearest potential well.
This trapping is still evident in the high friction trajectory in
Fig. 10. However, for small friction the corresponding peak
in the PDF is smoothed out by the broad distribution of
depths of the sampled minima. Instead, the distribution re-
sembling a smoothed form of the genuine ballistic Lévy-
walk PDF appears, characterized by the central power-law
dip and side peak. The side peak moves outward with a
constant velocity and becomes broadened by scattering and
trapping. At long times the PDF develops the tentlike central
peak typical of trapping.

V. CONCLUSIONS

We have investigated the behavior of an ensemble of par-
ticles in a two-dimensional potential subject to thermal fluc-
tuations described by ordinary Langevin dynamics. Our pur-
pose has been to determine whether such an ordinary
description is sufficient to produce the entire range of behav-
iors, from subdiffusive to superdiffusive, that has been ob-
served in the motion of molecules on surfaces[1–12]. In-
deed, we found that it is not necessary to add any further
assumptions to the model to observe the full range of behav-
iors, at least on intermediate time scales. For a given surface
potential one can introduce scaled parameters such that the
only control parameters in a periodic potential are the tem-
perature(which we have held fixed in this analysis) and the
dissipation parameterg. In the case of a random potential we
introduced an additional parameter(which we also hold fixed
in this analysis) to characterize the intensity of the spatial
correlation function of the potential variations.

For the periodic surface potential we found that in the
underdamped regime the motion of the particles includes a
ballistic range that can extend over many decades of time.
The probability distribution function of the displacement of
the particles exhibits a structure reminiscent of that associ-
ated with Lévy walks. The PDF has a peak at short distances
that arises from those particles that are trapped in their origi-
nal well. The PDF also exhibits a hump that moves outward
linearly with increasing time, and that is due to those par-
ticles whose energy is sufficiently high for ballistic motion
over the time of observation. As these particles in turn get
trapped, the amplitude and width of this hump decrease. Par-
ticles that start out moving ballistically eventually lose
enough energy through damping to get trapped, and these
progressive trapping events give rise to a power-law interme-
diate regime connecting the trapped particle peak and the
ballistic particle hump. These behaviors are not observed in
the case of high dissipation. The long stretches of essentially
ballistic motion of the more energetic particles also make
themselves apparent in the velocity power spectrum. We
have ascertained that the Lévy-like features in the low-
damping case arise from a subset of energetic particles by
confirming that throughout the evolution the velocity distri-
bution of particles remains Maxwellian if the initial distribu-
tion is Maxwellian. If initially the particles have zero veloc-
ity, the distribution rather quickly settles into an essentially
Maxwellian distribution. Thus, we stress again that in our

model these features arise not because the average particle is
subjected to any esoteric fluctuations, but rather from the fact
that the energetic particles in an ordinary Maxwell distribu-
tion can move over long distances when the system is under-
damped. At long times(low frequencies) the motion of the
particles eventually becomes diffusive. This is most clearly
seen in the behavior of the mean square displacement(which
eventually grows linearly with time), and in the plateau of
the velocity power spectrum at low frequencies.

While most of the results reported above are obtained
numerically, we are able to calculate the diffusion coefficient
D that describes the long-time behavior of the system ana-
lytically for high damping(a well-known result) and also for
low damping. The agreement of our analytic results forD
with numerical ones is good over the entire range of damp-
ing coefficients.

The case of random potential gives rise to a large variety
of regimes ranging from superdiffusion to subdiffusion.
While the superdiffusive behavior is probably a transient,
just as in the periodic potential, subdiffusion due to multiple
trapping is known to be a true asymptotic behavior when the
temperature is low. However, in the case of a random poten-
tial the restrictions imposed by our numerical procedure are
tighter, so that the true asymptotic behavior is difficult to
reach. At short times and for weak damping the Lévy-walk-
like features arising from long stretches of motion of ener-
getic particles are still evident in our simulations. For strong
damping this regime is pertinent only for the shortest times
and then crosses over to that typical of subdiffusive, disper-
sive transport.

ACKNOWLEDGMENTS

This work was supported by the MCyT(Spain) under
Project No. BFM2003-07850, by the Engineering Research
Program of the Office of Basic Energy Sciences at the U.S.
Department of Energy under Grant No. DE-FG03-
86ER13606, and by a grant from the University of California
Institute for México and the United States(UC MEXUS) and
the Consejo Nacional de Ciencia y Tecnología de México
(CoNaCyT). A.H.R. acknowledges support from Millennium
Initiative, Conacyt-Mexico, under Grant No. W-8001. I.M.S.
acknowledges the hospitality of the University of Barcelona
under a CEPBA grant, as well as partial financial support by
the Fonds der Chemischen Industrie.

APPENDIX: DIFFUSION COEFFICIENT FOR HIGH AND
LOW FRICTION IN A PERIODIC POTENTIAL

We start with the assumption that a particle that has suf-
ficient energy to move away(“escape”) from a potential well
will in general preferentially move along directions of lowest
potential barriers, that is, along therx direction atry=1/2 (or
an odd multiple thereof) or along thery direction with rx
=1/2 (or an odd multiple thereof). Choosing the former, we
then have the particle moving along a line in the periodic
potential

Vsrxd ; Vsrx,ry = 1/2d = − sin2prx. sA1d

Only those particles with energyE.0 can move. As they
move they lose energy through dissipation, until they be-
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come trapped. We calculate the diffusion coefficient for the
ensemble of particles according to the formula

D = kl2l/s2td. sA2d

Here kl2l is the mean square displacement from the initial
well to the well associated with the next trapping event,t is
the mean time for such a journey, and the numerical factor in
the denominator is 2 instead of 4[cf. Eq. (9)] because the
motion along each stretch is one dimensional. The average is
over all the particles in the ensemble, which includes those
that initially have sufficient energy to move away from a
potential well and also those that do not, as dictated by the
Maxwell-Boltzmann distribution. For low-energy particles to
be able to jump out they must acquire enough energy from
the thermal fluctuations.

The mean timet in general includes the time for a particle
to acquire enough energysE.0d to move out of a well, and
the time to become trapped again in a new well once it has
escaped. We can calculatet using arguments for the calcu-
lation of transition rates of the Kramers problem[25] by
associating it with the inverse of a transition rate that con-
sists of two contributions

t =
1

2k
=

1

2ktstk
. sA3d

One contribution is the transition state theory rate,

ktst =
v0

2p
e−1/T, sA4d

wherev0 is the angular frequency at the well bottom, which
in our dimensionless variables and for our potential is given
by v0;fV9s1/2dg1/2=pÎ2. The other is the transmission fac-
tor k, which depends in a nontrivial way on the damping.

Consider first the case of high friction. In the overdamped
regime(largeg) we assume thatkl2l=1, and the transmission
factor k has the well-known form[25]

k =
1

vb
FSg2

4
+ vb

2D1/2

−
g

2
G , sA5d

where vb
2=V9srbd=2p2 and rb is the position of the maxi-

mum of the potential. Thus the diffusion coefficient in this
regime is

D =
1

2p
FSg2

4
+ 2p2D1/2

−
g

2
Ge−1/T ,

p

g
e−1/T. sA6d

Now consider the diffusion coefficient in the small-g limit
or infradamped regime. In this regime a more elaborate
analysis is required to calculatekl2l. The equations of motion
of a particle in the potential Eq.(A1) can be expressed in the
standard momentum-position form as the pair,

ṙx = p,

ṗ = − gp − V8srxd + zstd. sA7d

In the small-g limit the energy variation of a particle is slow,
and it is more convenient to rewrite the dynamical equations
in terms of the displacement and the energyE=p2/2+Vsrxd:

ṙx = h2fE − Vsrxdgj1/2, sA8d

Ė = − 2gfE − Vsrxdg + h2fE − Vsrxdgj1/2zstd. sA9d

Two quantities needed for our estimate of the diffusion co-
efficient can be calculated from these dynamical equations.
One is the timetsEd that it takes a particle of energyE to
traverse a unit distance(the scaled spatial period). The other
is the energyDE lost by the particle when it traverses this
distance[26]. To calculatetsEd we assume that the energyE
remains fixed during the traversal, so that we can simply
integrate Eq.(A8) for constantE. With the potential(A1)
one obtains a standard integral:

tsEd =E
0

1 drx

Î2fE − Vsrxdg
=

Î2l

pÎ1 + E
KSÎ 1

1 + E
D ,

sA10d

where K is the complete elliptic integral of the first kind
[27]. For E!1 the elliptic integral can be approximated by a
logarithmic leading term, which leads to

tsEd <
1

pÎ2
ln

16

E
. sA11d

Next, we estimate the energy loss that occurs during this
traversal. This has been calculated in many ways, but a par-
ticularly transparent argument[26] is to neglect the fluctua-
tions in Eq.(A9) (since particles above the barrier primarily
lose energy) and integrate over a time intervaltsEd. The rx

dependence in Eq.(A9) even after this approximation still
poses a problem because it leads to incomplete elliptic inte-
grals amenable only to numerical integration. Sincerx
changes rapidly compared toE, it is reasonable to perform an
average of therx-dependent term over a traversal from 0 to 1.
This leads to the approximate equation,

Ė = − 2gFsEd sA12d

where

FsEd ; E
0

1

drxPEsrxdfE − Vsrxdg sA13d

with

PEsrxd =
1

tsEdfE − Vsrxdg1/2. sA14d

The result is

FsEd =
Î2s1 + Ed

ptsEd
ESÎ 1

1 + E
D , sA15d

whereE is the complete elliptic integral of the second kind
[27]. Retention of terms to leading order inE and DE/E
leads to

DE < −
gÎ8

p
, sA16d

which is independent ofE.
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From the result forDE we can now calculate the mean
square distancekl2l traveled by a particle that starts with an
energy above the barrier. Since the particle loses energyDE
in each traversal of a unit distance, the distance traveled by
such a particle of initial energyE before being trapped is

lsEd < −
E

DE
<

pE

gÎ8
. sA17d

Averaging over a Boltzmann distribution of energies, we ob-
tain,

kl2l = skBTd−1E
0

`

dE l2sEde−E/T =
spTd2

4g2 . sA18d

When a particle of positive energyE moves from one
potential well to the next, it does so in a timetsEd and it
loses energyDE in the process. If its energy is now below
the barrier, it will be trapped. If not, it will keep moving, and

will take a timetsE−DEd to get to the next potential well.
The particle moves on until its energy is too low to continue
moving. The energies have a Boltzmann distribution, so dif-
ferent particles will take different times to be trapped both
because they are moving progressively more slowly and be-
cause they get trapped at different times in their journey.
Taking these effects into account, one finally arrives at the
following expression for the transmission factork [26]:

k = tanhS uDEu
2T D <

− DE

2T , sA19d

where the last expression holds for very low damping. We
thus finally obtain the following result for the diffusion co-
efficient in this regime:

D ,
pT
4g

e−1/T. sA20d
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