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From subdiffusion to superdiffusion of particles on solid surfaces
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We present a numerical and partially analytical study of classical particles obeying a Langevin equation that
describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic
or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion,
diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases
transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random po-
tentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as
metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary
Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.
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[. INTRODUCTION fusion tends to be rather complex and, most importantly,
dends to invoke Lévy walks or flightsi5] as a modelnput
Yyhile these approaches can provide insights on the effects of
ther elements of the model on the dynamics of particles on

Diffusion processes of atoms, molecules, and clusters
molecules on surfaces have been subjects of research f
many decades due to their intrinsic interest and their technd? o S N
logical importance. Some examples of modern applicationStrfaces, they provide little insight on how the motion in-
include self-assembled molecular film growth, catalysis, an plvmg_long JUmps comes about in th?‘ f_|rst place. These
surface-bound nanostructurgs,Z]. Also, many techniques Simulations, which aim to reproduce realistic systems, do not
that are used to characterize the growth of surfaces are basé[f‘\a/sa.lthe generic, m'.n”ﬂal ingredients c:f S.UChf beh?woraT
on the diffusion and subsequent adsorption of particles Ofusionlr¢eau?:elgr%i?gﬁg\?eycgﬁzﬂf;%fénagglisnﬁiosgrr ‘;"ncg_ It
molecules. These applications have led to a recent resurgen(e q 9

of interest in such processes, but now involving the motio Cular dynamicp even the most powerful currently avail-
P ; ’ 9 Mble computers cannot carry such calculations to anywhere
of small and large organic molecul§3,4] and of adsorbed

near experimentally relevant time scald<l,1§. Moreover,
metal clusters composed of tens and even hundreds of ator§rent experimental probes of the topography of surfaces,
[5.6]. . . scanning tunneling microscopy and atomic force microscopy,
Recent research activity has been both experimental angle ysually carried out at relatively high temperatures, which
theoretical[1-12, the principal questions in these studies|eads to additional difficulties for first-principles calcula-
being the determination of the jump lengths of large mol-tions. Therefore, simpler approaches are essential and valu-
ecules or clusters on surfaces, and the diffusion asymmetible [17]. The scenario developed in this paper is of the
along some surface crystallographic directions or along parsimple Langevin type. It models classical particles moving in
ticular paths when there are many obstacles such as stepstwo-dimensional potential, periodic or random, under the
and/or impurities to negotiate. One of the more exciting ex-action of 5-correlated Gaussian thermal fluctuations and the
periments has involved the direct observation of the surfacassociated linear dissipation, the important control parameter
mobility of fairly large organic molecules using a newly de- of the model being the friction coefficient. In our search for
vised method of independently measuring the mean squauifferent behaviors as a function of the control parameter, we
displacement and the hopping rate of these molecules, andust be mindful of the fact that experimental observations
then taking advantage of a well known relation betweerare not necessarily strictigsymptoticthat is, that a particu-
them to extract the root mean square jump lengdhsThese lar behavior may be transient. Transient behaviors may of
experiments seem to indicate that, as with single atoms icourse persist for very long times, but to find them theoreti-
some case$13,14, long jumps spanning multiple lattice cally it is not enough to carry out an asymptotic analysis. We
spacings may play a dominant role in the diffusion of theseind that, in spite of the simplicity of the model, it is able to
molecules. Another “experiment,” this one numeri¢alo-  reproduce the entire range of experimentally and computa-
lecular dynamicg has led to the prediction that clusters of tionally observed phenomenologies, ranging from superdif-
hundreds of Au atoms will exhibit Lévy-type power-law fusion through large-step diffusion all the way to subdiffu-
flight length and sticking time distributiorj$§]. On the other sion. In particular, we show that Lévy-like statistics appear
hand, the theoretical literature on the subject of surface difquite naturally within the usual Langevin scheme for under-
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damped motion in a periodic potential. It is important to T=KgT/V,, 7=;L)\/\s"m_\/(). (6)
stress that in this case the Lévy-behavior emerges as-an
termediateasymptotic for an ensemble of particles with a The scaled temperature will be fixed at a value smaller than
Maxwell-Boltzmann distribution of velocities. unity so that the thermal fluctuations do not overwhelm the
Our paper is organized as follows. In Sec. Il we presenpotential, but not too much smaller than unity so that acti-
the Langevin model and briefly list the quantities to be con-vated passage over potential barriers is possible within a rea-
sidered in subsequent sections to characterize the motion §pnable time.
an ensemble of particles on a surface. In Sec. Il numerical The model1) is a “standard” Brownian motion model. It
results are presented for the periodic surface potential, as afelies on well-established ideas of statistical mechanics and
analytic results for the dependence of the diffusion coeffiinvokes nothing special about the fluctuations and the dissi-
cient on friction obtained in detail in the Appendix. Section pation. The random forces are normal thermal fluctuations,
IV shows our results for the random surface potentials. FiGaussian andy correlated, and the dissipative forces that
nally, we conclude with a summary and some future direcaccompany the fluctuations are constructed so as to ensure
tions in Sec. V. thermal equilibration. Nevertheless, we argue that many of
the dynamical features of a particle evolving under these
Il. THE MODEL equations of motion have not been investigated until recently
We study the diffusion of a particle in a two-dimensional [18]. _Furthermor_e, we assert thfilt it is_ not necessary to inject
potentialV(x,y) of characteristic length scake in the pres- special assumptions such as Levy fl!ghts or special memory
ence of thermal noise and the associated dissipation. Tt}%ﬁeCtS into models of surfacg diffusion, but that these fe_a-
model is embodied in the equations of motion, Ures appear naturally from this standard model, thus plac[ng
the entire range of phenomena observed in surface diffusion
. . on an equal common footing. Furthermore, since recent ex-
mX== (XK) — X+ E(Y), perimental and theoretical results have been presented for a
variety of surfaces, we explore periodic as well as random
surface potentials, the latter generated according to a given
. J Xy . S . . . -
my=— —V(—,—) - uy+ &), (1)  distribution and Wlth a given short'—range spatial gorrelaﬂon.
AN The most straightforward quantity to characterize the sur-
wherem is the mass of the particle and an overdot denotes fpce diffusion Process is the familiar mean square displace-
derivative with respect td. The generalization to distinct ment of the particle,
length scales\, and\, is straightforward. The parametgr (r}(D) =([rdn) =103 +{[r(1) = 1,(0)]?. (7)
is the coefficient of friction, and th&(t) are mutually uncor-

related white noises that obey the fluctuation-dissipation re
lation

Normal diffusive behavior is characterized by a linear depen-
dence on time(r%(7))~ D, whereD is the diffusion coeffi-
cient, while nondiffusive behavior shows a different time de-
(&(D)&(t)) = 2ukgTs; ot - t). (2 pendence(r?(7)) ~ 7%, with a<1 for subdiffusive behavior
anda>1 for superdiffusive motion. Not only do we seek to
establish the nature of the motion as a function of the friction
coefficient as measured by moments such as the mean square
X y Vot displacement, but we seek to establish a theoretical frame-
=X YEY TN (3 work that will allow us to fully understand and predict the
nature of the motion under realistic circumstances that may
whereV, is some measurge.g., the maximum or the mean include more complex geometries. Toward this purpose we
maximurm) of the potential. In terms of these variables, andwill explore the dependence of the diffusion coefficienon
with an overdot now denoting a derivative with respectto friction at large time scales.
Another characterization of the process at intermediate
Po=- iV(rx,ry) — i+ 0, time scales is obtained from the probability density function
Ty (PDP P(r,7) of particle displacements at time 7. In par-
ticular, this PDF reflects the long stretches of ballistic motion
. d ) evident in the intermediate time dynamics in the low friction
ry=- é—rV(rx,ry) — Ay (), (4)  regime. Indeed, long ballistic excursions lead to a specific
Y behavior of this distribution that in turn implies that the ve-
whereV(r,,ry)=V(x/\,y/\)/V, is the dimensionless poten- |ocity of these particles remains correlated over considerable
tial, and the scaled noise obeys the fluctuation-dissipatiotime intervals. The best way to characterize such correlations
relation is in terms of the velocity power spectrun8w)
N , =(v(w)v(-w)). We note that this spectrum is directly con-
(G(ng(7) = 2y18 7= 7). ®) hected with the asymptotic diffusign coefficient of t%/e par-
This scaling serves to stress that there are only two indepeiticle. According to the Taylor-Kubo formuld)=[;C(7)dr,
dent parameters in this model, the scaled temperdfimed ~ WhereC(7)=(v(7")v(7’ + 1)) is the velocity-velocity correla-
the scaled dissipatio: tion function. The latter is connected witS(w) by the

Equationg1) can be written in terms of the scaled dimen-
sionless variables
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FIG. 1. A finite portion of the much larger two-dimensional
periodic potential in which a particle diffuses.
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Wiener-Khinchin relationS(w) = C(7)€“7dr. These various
observables are studied below for both periodic and random FIG. 3. Mean square displacement vs time for an ensemble of

surface potentials. 5000 particles in the periodic potential with a Maxwell-Boltzmann
initial distribution. y=0.0004(solid line), 0.004(dotted ling, 0.04
Ill. PERIODIC POTENTIAL (dashed ling and 0.4(dot-dashed ling
We consider the periodic potential graphic directions. The other trajectofpanel (b)] corre-

sponds to small friction and clearly shows the preponderance
X Ty X Yy N
V(X,y) = VOCOS<— + —)cos(— - —) of long (>\) tracks along one crystallographic direction be-
Ao A fore turning to another.
Vo 21X 2my The evolution of the mean square displacemgf, av-
=58 +Co /| (8)  eraged over a set of 5000 particles, is shown in Figs. 3 and 4
for several friction coefficients and different initial condi-
which has maxima at position®\,mA) and minima at((n tions. In Fig. 3 the particles are initially deposited in a square
+%))\, (m+%)>\), wheren and m are integers. The barrier Of side 27 around the center of the system according to a
height at the saddle points \%. This potential is shown in Boltzmann equilibrium distribution for the positions and for
Fig. 1. In Fig. 2 we show examples of trajectories obtainedhe velocities, while in Fig. 4 they are initially located at the
for two different friction coefficients upon numerical simu- center of the system with zero initial velocity. Differences in
lation of the equations of motion. In our simulation we havethe two cases are observed at short times. At very long times
used\=4 andm=1, with a fixed scaled temperatufe=0.2
and the scaled dissipation as the independent parameter. No
that since the potential can be generated analytically and th:
equations of motion are continuous, the system is infinite anc
it is not necessary to specify boundary conditions. One of the
trajectoriegpanel(a)] is for large friction, and the particle is
seen to follow what appears to be typical diffusive motion
characterized by short steps of lengttalong the crystallo-
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FIG. 4. Mean square displacement vs time for an ensemble of

FIG. 2. Left: A trajectory fory=1 overt=20 000 time units. 5000 particles in the periodic potential with zero velocity, and lo-
Right: A trajectory fory=0.04 overt=15 000 time units. The period cated at the originy=0.0004(solid line), 0.004(dotted ling, 0.04
of the potential is\=4. Note the different scales in the two panels. (dashed ling and 0.4(dot-dashed ling
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FIG. 5. Diffusion coefficient as a function of for the periodic r
potential.

FIG. 6. Log-log plot ofP(r,7) for y=0.0004(top) and for y
=1 (bottom) and three different values of time intervals=20
I(square}s 100 (open circleg 1000(triangles. Note the strong dif-
ference in scales.

the memory of the initial condition is lost, and in all cases
the motion is diffusive, as expected. Regardless of initia
condition, for smally and at intermediate times there is clear
superdiffusiveballistic («=2) behavior over several decades ) o )
of time, reflective of the long straight stretches seen in thdines co_rrespond to theoretical p_red|ct|ons evaluated m_the
low-v trajectory in Fig. 1. The ballistic behavior is observed APPendix. There we show that in the overdamped regime
over a time range 0D(yY), and one might be tempted to [large »; see Eq(A6)]
conclude that it is therefore a trivial generalization of the -
motion of a free damped particle. However, the situation here D~ —exp(
is quite different. The motion is of an ensemble of particles
whose initial energy distribution is either the Boltzmann dis-In the opposite limifsmall y; see Eq(A20)], we have
tribution appropriate to the temperatufgFig. 3), or all of

which initially have zero velocity(Fig. 4), and the mean w1 p<—£> (11)
square displacement is an average over all the particles. The 4y '

particles with energies lower than the barrier height, which . ' .

includes most of the particles, are at first trapped in the origi-BOth predictions fit our numerlc_:al results rather well. Note
nal potential well. Othergthose with a higher initial energy, that there areno free parameterin these results. Note also

and those that get kicked up sufficiently in energy by thethat whileD ~ 7’_.1 at .bOth high and IOW friction, the p_hysica!
thermal fluctuationsmove out of one well only to be quickly €2Sons are quite different. As seen in the Appendix, at high

trapped again, perhaps into a neighboring well. A few par_friction t.he mean square distance traveled between trapping
ticles, those that either start with or acquire the highest ve€Vents Is unity mdependently_qf, and the mean time to
locities according to the Maxwell-Boltzmann distribution, €S¢@Pe @ well and be trapped in another is proportional to
escape the initial well and move over longer distances eveft! OW friction the mean square distance is proportional to
as they slow down through friction, until they are once again” and th_e mean time goes a5, Tr_]f ratio of the two is
trapped. That this complex ensemble behavior should giv&1€refore in any case proportional 40°.

rise to a mean square displacement that behaves as shown in The diffusion coefficient characterizes only the very long-
Fig. 3 is not self-evident, and in fact can only be understoodiMe @symptotic dynamics. To characterize the process at in-

in more detail if we analyze the distribution of particle dis- termediate time scales we introduce the probability distribu-

placements as a function of time. We do so later in thigion function P(r,7) of particle displacementsat time 7. In
section. particular, this PDF reflects the long stretches of ballistic

As noted above, for very long times the motion is diffu- mpt?on evident in the intermediate time dynamics in the low-
sive in all cases. The diffusion coefficieBt, evaluated nu- fiction regime. The PDF is shown in Fig. @op) for y
merically at long time as :O.QQO4 and three different time mtervazfs‘or an initially '

equilibrated ensemble. For comparison, we also show typical
(X)) PDF’s for high dampingy=1, bottonm) for the three time
D=1 ' ©) intervals. In the highy curves the highest maximum corre-
sponds to no jumpsby far the most likely event at short
is shown in Fig. 5 as a function of the friction The solid times. The next is associated with jumps to a nearest neigh-

o) -

T—00 4T
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bor well, and so on. In contrast, the loweurves show a 1 ' ' '
very different behavior, with features strongly resembling
those of a Lévy-walk mode]19,2Q: a peak at small dis-
placements, a power-law intermediate regime, and a sidgg |
hump at high displacements. Each of these is a distinct sig
nature of Lévy-walk-like dynamics, but one must be cautious
in the detailed interpretation of these components, because i
our results they are not attributable to exactly the same™
sources as in the Lévy walk, nor do the exponents fit the
Lévy walk scheme directly. In our system the persistent
small-displacement peak is associated with long trapping pe0.4
riods during which a particle does not move at all because its
energy is not sufficient to overcome the barrier. The high
displacement peak, which moves outward with velocity of 5, |
order unity, is associated with ballistic motion of those par-
ticles that acquire enough energy to maead lose it very
slowly). Genuine Lévy-walk dynamics also exhibit a low
displacement peak and a superdiffusive peak. In the Lévy 0*
walk, the persistent small-displacement peak stems from the
distribution of excursion lengths, whereas the high- FIG. 7. Probability distribution of the velocity for two different
displacement peak is associated with laminar events in whichiitial conditions compared with a Maxwell distributio¢solid
a particle started moving before the observations started angirve) for the same temperature. Triangles: distribution=ab0 for
are still moving without interruption at time zero velocity initial condition. Circles: distributions at=100 for
These small- and large-displacement domains are sepaero velocity(solid circley and Maxwell(open circles initial dis-
rated by a power-law behavior. However, here some importributions (y=0.04.
tant differences must also be stressed. In the Lévy walk there
is a particular relation between the exponardf the time in
the mean square displacemérf) ~t* and the slope. of the
power-law regime of the distributiof®(r,7) ~ 7/r#*, namely,
a=4-pu. Furthermore, the distribution with the features that

we are describing is observed in the regime 2<3, that is, probability distributions of our system at finite times are

1.<a<2' In our d|'str.|but|on the intermediate power-layv re- compared to a Maxwell distribution. When we implement
gime reflects ballistic transport, and yet the slope in our,

power-law regime is smaller than uniggpproximately 0.Y. l\/_laxyvell_-BoItzmgnn i_nitial co_nditions, the qverall veI(_)city_
Nevertheless, the qualitative features of our distribution tracidistribution obtgmed In our simulations by time S?mp.'"?g IS
those of the Lévy walk. Our side hump is strongly broadenecPurel_V_Maxwe”'a” at all times. For the nonequnlbrlum initial
whereas the side hump in the Lévy-walk model is associate@onditions where we start with zero velocity at the saddle
with motion at a single constant velocity. In our case theP0int of the potential, some nonequilibrium transient phe-
Velocity Varies according to the equi"brium Maxwe”_ nomena are Observed N the Sma” deV|at|OnS from the Max-
Boltzmann distribution. Note that the existence of the pro-well form. We also note that the velocity distribution ther-
nounced side hump moving with the velocity of the order ofmalizes at times of the order of 40" The times in Fig. 7
unity reflects the fact that the particles performing long stepsorrespond td=2y* and 4y,

(“flights”) are those in the tail of the Maxwellian velocity ~ The long, ballistic excursions that lead to the power-law
distribution. This contribution to the PDF in a potential sys-and side hump contributions to the particle displacement dis-
tem arises from a small subset of particles and is thus to beibution function imply that the velocities of these particles
distinguished from that of a typical underdamped freeremain correlated over considerable time intervals. This as-
Brownian particle[21]. In summary, in our underdamped pect is most directly characterized by a study of the velocity
system the slower particles are trapped and localized arourbwer spectrun8(w)=(v(w)v(-w)). In the case of diffusive

a potential minimum. They do not contribute to transport andmotion one can extract the diffusion coefficients as

lead to the first peak in the PO, 7). Particles with higher
energies begin moving essentially ballistically, thus contrib-
uting to the side hump of the PDF that moves toward the
right with increasing times in the first panel in Fig. 6. These
particles eventually become trapped due to friction, and thes@hereS;(w) is the power spectrum of the Cartesian compo-
trapping events lead to the power-law portion of the PDFnenti of the velocity vector. The behavior &w) for differ-
Fewer and fewer particle@nly those in the ever smaller entvalues of the friction coefficientis shown in Fig. 8. The
highest-velocity tails of the distributioncontinue moving ~ structure of the power spectrum mirrors the underlying dy-
ballistically. The side hump thus becomes narrower andamics. Thus, an evident feature $ilw) is the existence of
lower with time. At long times,r>1/v, both the long- pronounced peaks at the frequenay=mv2 of small oscil-
trapping and ballistic features are of course no longer presefations in one well performed by particles trapped in a well.
as diffusive motion dominates the behavior. At low frequencieswy<1, a power-law growth o) is

[\M]
L
o
-
N

We emphasize that the behavior described above is uni-
versal and is not strongly dependent on whether the initial
conditions are equilibrium or zero-velocity onéaslthough
the exact heights of the peaks)ddn Fig. 7 the velocity

D=31[Su(0=0)+5,(0=0)] (12)
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is a necessary step in the dynamical simulation. We have

FIG. 8. S(w) for y=0.004, 0.04, 0.4, and 4 in decreasing used the parameter=100. In this case we must generate
order. finite systems. Rather than impose boundary conditions, we
stop each simulation sequence whenever the first particle

observed. This is reflective of the persistent time correlation§&aches a boundary. _ o , _
associated with ballistic excursions. The slopd of this Typical trajectories associated with this potential at high
growth corresponds taC(7)=~const and to the ballistic and low friction are shown in Fig. 10. Again, the trajectories
growth of the mean square displacement. At even Sma"eqa_re_entlrely different, that associated with high friction con-
frequencies the power spectrum crosses overSte) sisting of extremely short steps followed by random changes

=const=, indicating full decorrelation and emergence of in direction while that associated with low friction again
pure diffusi,on shows a pronounced directional persistence.

An analysis of the exponents in the mean square displace-
ment formula shows the entire range of behaviors from sub-
IV. RANDOM POTENTIAL diffusive to superdiffusive with changing friction. In Fig. 11
) we show({r?(7)), averaged over 5000 particles, as a function
Surfaces are usually not completely crystalline or regulaly ime for several values of. A detailed analysis of these
because of the presence of vacancies, defects, and othgis tories presents a rich phenomenology of possible differ-

types of disorder. Ong type of surfa}ce disorde_r is represent t regimes. In the overdamped regime we observe clearly
by a random potential with spatial correlations that can,

o subdiffusive behaviofa<1), already known from over-
model the presence of some spatial finite-ranged order. Aaamped simulations presented earljéd]. An interesting

algorithm that can be used to generate surfaces with any ;.ome is the superdiffusie.> 1) behavior seen for small
given spatial correlation has been presented in R28s-24. alues ofy. This again is a signature of the Lévy-walk-type

. R . .V
We have implemented this algorithm for a random pOtent'abehavior. The exponent as a function ofy is plotted in Fig.

surface with a Gaussian distribution and exponential correlaj, " exponent is obtained as an average over 500 par-

t_lon, fu/nctlon. "t] t?rrlns (f)f thﬁ vetﬁtorx:(ﬁ,)? and x ; ticles in each of 20 different realizations of the random po-
=(x",y"), our potential surface has the correlation property tential, the error bars indicating the standard deviations over

(V)OV(X")) = g(x = x'), (13)  these statistics. For large our simulations run for a long
with 50 T T T 400 T T T T
€ iy 22 L {300 1
gix—x') = 5z XA (14 o
™ 200 - .

which is parametrized by the intensityand the characteris- =0 |
tic length\’ that we take to be the same as the length scale
in the periodic potentia(\’=4). Note that the average po- -100 1
tential height is a combination of the parameters. A typical
surface generated with this algorithm and of average poten-iso ' ' L 100 L ' L '
tial heightV, equal to that of the periodic potential is shown 00 %0 100 1507200 S100 0 100 200300
in Fig. 9. In our particular case, we have done our simula- F|G. 10. Left: A trajectory fory=0.1 overt=250 000 time units.
tions on a square grid of siZze=4096 with 5x=1.0. Even  Right: A trajectory fory=0.0001 ovet=2000 time units. The char-
though our potential is generated on a grid, extrapolation O#cteristic length scale of the potentialN$=4. Note the different
forces can be used to calculate the force at any point, whichcales in the two panels.

100 - b

0F 4
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FIG. 11. Mean square displacement for a particle in the random FIG. 13. S(w) for y=0.0001, 0.003, and 0.Q8ecreasing ordgr

potential with Maxwellian initial velocity distribution, fory
=0.0001(solid line), 0.001 (dotted ling, 0.003(dashed ling and
0.008(dot-dashed ling

in the
distribution.

random potential with Maxwellian initial velocity

The behavior ofS(w) for the random potential is seen in

time and the value ofr has been calculated on the basis of Fig. 13 for several values of. For small y the spectral
the behavior ofr?) over the last time decade of the simula- density grows with decreasing frequency, indicating super-
tion for each run. In the medium- and low-damping cases théliffusion, while at largey it decays with decreasing, which

simulations do not extend over such long tingegice each

is a signature of subdiffusion. For the intermediate vajue

simulation ends when a particle reaches the system boung-0.003(close to the value at which~1 is observed in Fig.

ary). The standard deviations are larger for smalln part
this is due to the fact that for smajlit is more likely for a

12) it flattens, as appropriate for diffusive behavior at long
times.

particle to reach the boundary of the system during the time In Fig. 14 the PDFP(r,7) for the random potential is

of a run. Not only are the run times shorter for smafjebut

plotted. This PDF looks very different from the one for a

they are also more broadly distributed pdecreases. In any periodic potential. Nevertheless, for the case of small friction

case, the trend in the behavior af as a function of the

it still exhibits some features of Lévi-walk-like dynamics.

friction is clear. An unexpected result is the absence of a

diffusive regime(a=~ 1) except in a small range of values.

20 | 1

15 1

10

05

0.0 ' -
10°

FIG. 12. Exponents versus friction coefficieny. Each point is

10° -

10°

FIG. 14. Log-log plot ofP(r,7) for y=0.0001(top) and for y

obtained from an average over 20 realizations of the random poter=0.08 (bottom) and various different values of time intervals:
tial and 500 particles per realization. The error bars indicate thee10 (squarey 20 (open circley 100 (triangley, and 1000

standard deviation over these statistics.
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The main difference here is the absence of the pronouncedodel these features arise not because the average particle is
central peak due to trapping in the nearest potential wellsubjected to any esoteric fluctuations, but rather from the fact
This trapping is still evident in the high friction trajectory in that the energetic particles in an ordinary Maxwell distribu-
Fig. 10. However, for small friction the corresponding peaktion can move over long distances when the system is under-
in the PDF is smoothed out by the broad distribution ofdamped. At long timeglow frequencieys the motion of the
depths of the sampled minima. Instead, the distribution reparticles eventually becomes diffusive. This is most clearly
sembling a smoothed form of the genuine ballistic Lévy-seen in the behavior of the mean square displacetménch
walk PDF appears, characterized by the central power-laventually grows linearly with time and in the plateau of
dip and side peak. The side peak moves outward with #he velocity power spectrum at low frequencies.

constant velocity and becomes broadened by scattering and While most of the results reported above are obtained
trapping. At long times the PDF develops the tentlike centrahumerically, we are able to calculate the diffusion coefficient
peak typical of trapping. D that describes the long-time behavior of the system ana-
lytically for high damping(a well-known resujtand also for

low damping. The agreement of our analytic results Bor
with numerical ones is good over the entire range of damp-

We have investigated the behavior of an ensemble of pafnd coefficients. o _ _
ticles in a two-dimensional potential subject to thermal fluc-  The case of random potential gives rise to a large variety
tuations described by ordinary Langevin dynamics. Our pur®f regimes ranging from superdiffusion to subdiffusion.
pose has been to determine whether such an ordinaty/hile the superdiffusive behavior is probably a transient,
description is sufficient to produce the entire range of behavUst as in the periodic potential, subdiffusion due to multiple
iors, from subdiffusive to superdiffusive, that has been obirapping is known to be a true asymptotic behavior when the
served in the motion of molecules on surfagés12. In-  témperature is Iow._However, in the case o_f a random poten-
deed, we found that it is not necessary to add any furtheyal the restrictions imposed by our numerlqal procgc_iure are
assumptions to the model to observe the full range of behaJighter, so that the true asymptotic behavior is difficult to
iors, at least on intermediate time scales. For a given surfad&ach. At short times and for weak damping the Lévy-walk-
potential one can introduce scaled parameters such that thke features arising from long stretches of motion of ener-
only control parameters in a periodic potential are the temdetic |_oart|cl_es are stlll_ ewde_nt in our simulations. For strong
perature(which we have held fixed in this analysiand the damping this regime is pertinent pnly for the_sho.rtest times
dissipation parametey. In the case of a random potential we apd then crosses over to that typical of subdiffusive, disper-
introduced an additional parameterhich we also hold fixed ~SIV€ transport.
in this analysi¥ to characterize the intensity of the spatial
correlation function of the potential variations.

For the periodic surface potential we found that in the This work was supported by the MCy{Spair) under
underdamped regime the motion of the particles includes &roject No. BFM2003-07850, by the Engineering Research
ballistic range that can extend over many decades of timé?rogram of the Office of Basic Energy Sciences at the U.S.
The probability distribution function of the displacement of Department of Energy under Grant No. DE-FGO3-
the particles exhibits a structure reminiscent of that assoc86ER13606, and by a grant from the University of California
ated with Lévy walks. The PDF has a peak at short distancelistitute for México and the United StatdsC MEXUS) and
that arises from those particles that are trapped in their origithe Consejo Nacional de Ciencia y Tecnologia de México
nal well. The PDF also exhibits a hump that moves outward CONaCyT). A.H.R. acknowledges support from Millennium
linearly with increasing time, and that is due to those parJnitiatiVG, Conacyt-Mexico, under Grant No. W-8001. |.M.S.
ticles whose energy is sufficiently high for ballistic motion acknowledges the hospitality of the University of Barcelona
over the time of observation. As these particles in turn getinder a CEPBA grant, as well as partial financial support by
trapped, the amplitude and width of this hump decrease. Pathe Fonds der Chemischen Industrie.

gﬁlgj rt]hztnesrtarttﬁgtu mhot\j/rn% ibnallltsotlcaelltytrzvegzjagyr/] dk;ﬁgséPPENDIX: DIFFUSION COEFFICIENT FOR HIGH AND
9 gy 9 ping to get trapped, LOW FRICTION IN A PERIODIC POTENTIAL

progressive trapping events give rise to a power-law interme-

diate regime connecting the trapped particle peak and the We start with the assumption that a particle that has suf-
ballistic particle hump. These behaviors are not observed ificient energy to move awayescape) from a potential well
the case of high dissipation. The long stretches of essentialiyill in general preferentially move along directions of lowest
ballistic motion of the more energetic particles also makepotential barriers, that is, along thedirection atr,=1/2 (or
themselves apparent in the velocity power spectrum. Wé@n odd multiple theregfor along ther, direction withr,
have ascertained that the Lévy-like features in the low=1/2 (or an odd multiple theregf Choosing the former, we
damping case arise from a subset of energetic particles bijpen have the particle moving along a line in the periodic
confirming that throughout the evolution the velocity distri- potential

bution of particles remains Maxwellian if the initial distribu- - - — i

tion is Mag(wellian. If initially the particles have zero veloc- W(r) = W(rgry =112 = = sirfty. (AD)

ity, the distribution rather quickly settles into an essentiallyOnly those particles with energig>0 can move. As they
Maxwellian distribution. Thus, we stress again that in ourmove they lose energy through dissipation, until they be-

V. CONCLUSIONS
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come trapped. We calculate the diffusion coefficient for the r,={2[E - V(r) J}*2, (A8)
ensemble of particles according to the formula
D ={I%)/(27). (A2) E=- 2AE - V(r) ]+ {2[E-V(r)}2c(t).  (A9)

Here (%) is the mean square displacement from the initialTwo quantities needed for our estimate of the diffusion co-
well to the well associated with the next trapping everis  efficient can be calculated from these dynamical equations.
the mean time for such a journey, and the numerical factor irDne is the timer(E) that it takes a particle of enerdy to

the denominator is 2 instead of [4f. Eq. (9)] because the traverse a unit distanqghe scaled spatial peripdThe other
motion along each stretch is one dimensional. The average is the energyAE lost by the particle when it traverses this
over all the particles in the ensemble, which includes thosglistance26]. To calculater(E) we assume that the enerfy
that initially have sufficient energy to move away from aremains fixed during the traversal, so that we can simply

potential well and also those that do not, as dictated by théntegrate Eq.(A8) for constantE. With the potential(Al)
Maxwell-Boltzmann distribution. For low-energy particles to one obtains a standard integral:
be able to jump out they must acquire enough energy from

the thermal fluctuations. AE) = ! dry _ 2N IC( [ 1 )

The mean timerin general includes the time for a particle o V2[E-W(ry] m/1+E 1+E/)’
to acquire enough enerdf{ > 0) to move out of a well, and
the time to become trapped again in a new well once it has (A10)
escaped. We can calculateusing arguments for the calcu- where K is the complete elliptic integral of the first kind
lation of transition rates of the Kramers problei@5] by  [27]. ForE<1 the elliptic integral can be approximated by a
associating it with the inverse of a transition rate that conjogarithmic leading term, which leads to
sists of two contributions

1 16
1 1 7(E) =~ —=In—. (A11)
r=2-= : (A3) m2 E
2k 2kS% _ _ _
o N Next, we estimate the energy loss that occurs during this
One contribution is the transition state theory rate, traversal. This has been calculated in many ways, but a par-
o ticularly transparent argumefi26] is to neglect the fluctua-
K'st= 2—e‘1’7, (A4)  tions in Eq.(A9) (since particles above the barrier primarily
a

lose energy and integrate over a time intervalE). Ther,

wherewy is the angular frequency at the well bottom, which dependence in EqA9) even after this approximation still

in our dimensionless variables and for our potential is giverposes a problem because it leads to incomplete elliptic inte-

by wo=[V"(1/2)]1%?= 2. The other is the transmission fac- grals amenable only to numerical integration. Singe

tor , which depends in a nontrivial way on the damping. changes rapidly compared it is reasonable to perform an
Consider first the case of high friction. In the overdampecdgverage of the,-dependent term over a traversal from 0 to 1.

regime(large y) we assume that? =1, and the transmission This leads to the approximate equation,

factor k has the well-known fornf25]

E=-2yF(E) (A12)
1 ’}’2 ) 1/2 y
k=—||—"+awp] -2, (A5) where
Wp 4 2 1
where w§:V”(rb):2n2 andry is the position of the maxi- F(E) Ef dr,Pe(r[E=V(ry)] (A13)
mum of the potential. Thus the diffusion coefficient in this 0
regime is with
1 1/2
D= —[ (lz + 2772> — Z:| e_llTN 7_Te—1/T_ (AG) p (r ) _ 1 (A14)
2 4 2 Y EVlx T(E)[E _ V(rx)]l/2'

Now consider the diffusion coefficient in the smadlimit .
. : ) ; The result is
or infradamped regime. In this regime a more elaborate
analysis is required to calculati). The equations of motion V2(1 +E) 1
. . . . F(E) = ,
of a particle in the potential E§A1) can be expressed in the w(E) 1+E
standard momentum-position form as the pair,

(A15)

where& is the complete elliptic integral of the second kind

=P, [27]. Retention of terms to leading order B and AE/E
] leads to
pP==yp=V'(ry) + (7). (AT) -
- . L vV8
In the smally limit the energy variation of a particle is slow, AE=~ - ! (A16)

and it is more convenient to rewrite the dynamical equations
in terms of the displacement and the enekgyp?/2+)(r,):  which is independent k.
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From the result forAE we can now calculate the mean will take a time {(E—AE) to get to the next potential well.
square distancé?) traveled by a particle that starts with an The particle moves on until its energy is too low to continue
energy above the barrier. Since the particle loses entE)y moving. The energies have a Boltzmann distribution, so dif-
in each traversal of a unit distance, the distance traveled bferent particles will take different times to be trapped both

such a particle of initial energlg before being trapped is because they are moving progressively more slowly and be-
cause they get trapped at different times in their journey.

I(E) ~ - E ~ W_E (A17) Taking these effects into account, one finally arrives at the
AE 8 following expression for the transmission factef26]:
Averaging over a Boltzmann distribution of energies, we ob- |AE] —AE
tain, =t —_—|= —, Al9
ain r=tant = T) o7 (A19)
2 A7 e oy e (7D
(19 = (kgT) . dE H(E)e™" = Y (A18)  where the last expression holds for very low damping. We

thus finally obtain the following result for the diffusion co-

When a particle of positive energg moves from one
potential well to the next, it does so in a timéE) and it
loses energ\AE in the process. If its energy is how below
the barrier, it will be trapped. If not, it will keep moving, and

efficient in this regime:

D~ 7T_Te—1/T_

4y (A20)
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