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Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

bDepartament de F́ısica Aplicada, Universitat Politècnica de Catalunya, Av.Dr.
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Abstract

An inchworm processive mechanism is proposed to explain the motion of dimeric
molecular motors such as kinesin.We present here preliminary results for this mech-
anism focusing on observables like mean velocity, coupling ratio and efficiency versus
ATP concentration and the external load F .
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Molecular motor proteins transform the energy of ATP hydrolysis into me-
chanical work performing discrete steps along a periodic track. The experi-
mental work on protein motors [1–3] has stimulated a wide variety of mod-
elizations, most of them based in ratchet–like potentials. The two main candi-
dates for the walking mechanisms of dimeric motors were inchworm or hand–
over–hand. In the first case it is assumed that the first leading head advances
one step which is followed instantaneously by the trailing head. In the hand–
over–hand mechanism the second head advances two steps overpassing the
first head. In Ref. [2] some experimental evidence was presented which seem
to support the inchworm mechanism. Nevertheless, more precise experiments
show that myosin–V walk in a hand–over–hand way [3]. These two different
mechanisms imply different conformational changes in the protein structure
during ATP hydrolysis. Moreover they imply a different response with respect
the experimental control parameters [ATP] and F .

Although it is commonly accepted now that some processive members of ki-
nesin, myosin and dynein families seem to walk in a hand-over-hand fashion,
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it is still worth analyzing the inchworm mechanism, which could hold for other
type of motors. For these reasons, we will present here a very simple model
walking in a inchworm fashion with parameter values in the biological scale.
We will also focus on some implications with experimental relevance.
It was showed in Ref.[1] that kinesin uses a single ATP molecule to perform
each step. Such relation is called the coupling ratio, which for low external
loads is about 1. The temporal distribution of these steps is random due to
the ATP diffusion until it reaches the motor. After binding the nucleotide, hy-
drolysis and the consequent conformational change take place displacing the
whole motor a certain distance which is usually equal to the periodicity of the
track. All this process can occur even in the presence of an opposing external
force F and at low ATP concentration, although both regimes decrease the
mean velocity.
The inchworm walking mechanism can be modeled as two linearly-coupled
particles interacting with a ratchet potential. The conformational cycle is in-
troduced as a stretching and posterior relaxing of the coupling spring. This
way of modeling was introduced in Ref.[4] showing that thermal fluctuations
are not strictly necessary in order to achieve the motion. Other works [5–8] are
also based on this approach. The main difference between them is the way they
model the mechanical changes under the input of chemical energy. While [4]
considers the conformational change as an increase of the equilibrium length
of the spring, other literature introduce asymmetric frictions or switches on
the ratchet potential. Here we will explore a different and simple way which
allows to control with precision the amount of the input energy. Furthermore,
we apply a kinetic methodology[9] based on enzymatic inhibition to get an an-
alytical expression for the velocity as a function of the ATP concentration and
the external force F . Finally we analyze the coupling ratio and the efficiency
at different values of F .

We will consider the motor as two particles coupled by a spring. The set of
equations in the overdamped limit are,

λẋ1 = −V ′(x1) − k(x1 − x2 − L) − fs(t) −
F

2
+ ξ1(t)

λẋ2 = −V ′(x2) + k(x1 − x2 − L) + fs(t) −
F

2
+ ξ2(t), (1)

where x1,x2 are the position of the trailing and the leading head, respectively. k
is the stiffness of the harmonic spring with equilibrium length L, which is also
the periodicity of the ratchet potential V (x). Such potential has an asymmetric
factor α and a barrier height V0 (See Fig.1). fs(t) is the random chemical force
and F is the external load. The thermal force is emulated through a zero mean
Gaussian-white noise with a correlation, 〈ξi(t)ξi(t

′)〉 = 2λkBTδ(t− t′). λ is the
friction and kBT is the thermal energy. Then, at thermal equilibrium the two
particles will lay, most of the time, on two consecutive potential minima. We
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Fig. 1. a) Scheme of the ratchet potential the positions of the leading head (black
particle) and the trailing head (gray particle) at the three stages of the motor. i)
Rest configuration. ii) The motor at the end of the stretching. iii) Final stage. b)
Simulated mean velocities 〈v〉 of the center of mass versus p for F = 0, 1, 3 pN drawn
with circles, squares and triangles, respectively. Dashed lines are Michaelis-Menten
fits. The resulting kinetic parameters are shown in the table.

assume that at random intervals of time, an energetic nucleotide like ATP will
bind the motor and a stretching force fs will act on the system until the total
length of the motor will be doubled, i.e. x2 − x1 = 2L. If E is the hydrolysis
energy of the molecule and L is the displacement that it is performed, then
we take the chemical force fs = E/L.
The values of the parameters have been chosen in a nano scale to mimic some
molecular motors such the kinesin. The periodicity of the potential L is taken
to be the periodicity of microtubules, 8nm. The asymmetric factor α = 0.8
and V0 = 50pNnm optimizes the efficiency of our model. E = 100pNnm
corresponds to an accepted value for the energy of hydrolysis of an ATP and
thermal energy is kBT = 4.1pNnm. The stiffness of the motor is chosen k =
1pN/nm and the drag force λ = 2 ·10−4pNs/nm. When the motor is free from
ATP, p ∈ (0, 1) is the uniform probability per time step ∆t of binding one
molecule. When it occurs, more ATP binding is forbidden and stretching takes
place until the elongation is 2L. Then, the stretching force disappears and
the spring relaxes. When x2 − x1 is again L, one cycle is completed and ATP
binding is allowed. In the absence of external load, this mechano-chemical cycle
induces a L displacement of the motor towards one end of the potential. Fig.
1a shows the scheme of the process. On the other hand, our approach controls
how much energy ET is applied to the system by simply multiplying E by the
number n of ATP consumed: ET = nE. The mean velocity of the motor, when
the ATP concentration is saturant and F = 0, is maximum and dependent
only on the intrinsic properties of the motor and by E. Let ton be the time
spent to perform a single step, i.e. the stretching plus the relaxing time. Thus,
Vmax = L/ton. Using the given values of the parameters, simulations show
that ton ∼ 0.012s, which gives Vmax ∼ 667nm/s. However, the global speed
〈v〉 will be slowed down when the ATP concentration decreases. Typically, the
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Fig. 2. a) Simulated mean velocities versus F for p = 1 (circles) and p = 10−5

(triangles). The insets show Vmax(F ) and KM (F ) versus F . Triangles are the values
from the table in 1b). Solid lines are the fits of (3) in order to get Kiu and Kic.
With the two inhibition constants, (2) can be plotted obtaining the solid lines of
the main figure. b) Coupling ratio r and efficiency η. Circles are simulated data and
solid lines are predictions of (5).

[ATP ]-dependence on 〈v〉 is given by the Michaelis-Menten relation [9]. In our
model, we have previously defined p as the uniform probability to get an ATP
per time step ∆t and with p = 0 while the motor stretches and relaxes. It
can be accepted that, as the reaction frequency is proportional to [ATP ], and
then [ATP ] is proportional to p. Then, we have

〈v〉 = Vmax
p

KM + p
, (2)

where KM is the Michaelis constant for the probability. From now on, we will
deal with p and not with [ATP ]. Fig.1b shows how the michaelian behavior
fits well the simulated values of the mean velocity. However, for finite values
of F , both kinetic parameters Vmax and KM change. In Ref.[9] it is shown that
the effect of the external load in kinesin can be interpreted as an inhibition
process. This introduces a F -dependence on the two kinetic parameters

Vmax(F ) =
Vmax(F = 0)

1 + 1
Kiu(FS/F−1)

KM(F ) = KM(F = 0)
1 + 1

Kic(FS/F−1)

1 + 1
Kiu(FS/F−1)

.(3)

and allows to express the velocity of the motor as a function of the two control
variables p and F .
FS is the stall force, i.e. the maximum load that the motor is able to carry.

In our simulations, FS ∼ 5.25pN. Kiu and Kic are the uncompetitive and
competitive inhibition constants, respectively, and are a quantitative measure
of how F affects the motor when it is free from nucleotide (Kic) or when
it has an ATP (Kiu). From table values of Fig.1b we fit the values of the
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inhibition constants obtaining Kiu ∼ 0.338 · 10−6 and Kic ∼ 2.131 · 10−6. As
they are dissociation constants, the effect of the load on the ATP-bound state
is greater than in the ATP-free configuration. This means that the force acts
as an uncompetitive mixed inhibitor, while in Ref.[9] it is shown that kinesin
is also mixed but competitive. This difference is responsible of the curvature
on 〈v〉 − F curves at high ATP concentration. Figure 2a shows these curves
with the simulation data and the predictions of the analytical expression with
an excellent agreement.
Finally, it is interesting to define the coupling ratio and the efficiency and to
see how are they modified by F . The coupling ratio r can be expressed as the
quotient between the total number of performed steps and the total number
of consumed ATP’s. On the other hand, the efficiency η can be defined as
the ratio between the work performed against F , W , and the total input of
energy, nE. Thus,

r ≡
xCM

nL
η ≡

W

nE
, (4)

where xCM = 1
2
(x1 + x2) and supposing that xCM(t = 0) = 0. W = FxCM , so

we can write η = rFL/E. This means that the global efficiency is simply the
efficiency in a single step multiplied by the coupling ratio. We can go further
if we consider (3) and the fact that Vmax is proportional to r, and then,

r =
1

1 + 1
Kiu(FS/F−1)

η =
L

E

F

(1 + F
Kiu(Fs−F )

)
. (5)

Fig.2b shows the simulated data for r(F ) and η(F ) as well as the theoretical
predictions. It is interesting to remark that the maximum efficiency is slightly
below 0.15.

We have presented an inchworm mechanism which is able to perform directed
transport and analyzed how it behaves under two variables, the ATP concen-
tration through the probability p and the external load F . The motor can
be described as a uncompetitive mixed inhibitor obtaining analytical expres-
sions for the mean velocity as a function of the two control variables that fits
accurately the simulated data. Finally, we have discussed the coupling ratio,
showing that the motor loses the tight coupling as F increases. The efficiency
is related with the coupling ratio and an analytical expression is given with a
good agreement with the simulations.
This work was supported by the Ministerio de Educación y Ciencia (Spain)
under the project No. BFM2003 − 07850 and the grant No. BES − 2004 −
3208(A.C.).
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