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Abstract

An anisotropic heat diffusion coefficient is introduced in order to study some interfacial growth phenomena. This
anisotropy has been incorporated in a phase field model which has been studied numerically to reproduce some
fundamental solidification situations (needle crystal growth) as well as the dynamics of a nematic—smectic-B interface. As
a general result, we find that dendrites grow faster in the lower heat diffusion direction. Simulation results are compared
with experiments with remarkable qualitative agreement. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dendritic growth has been one of the most
studied pattern-forming processes in the last years
[1-8]. It takes place in very different contexts such
as solidification, electrochemical deposition, phase
transitions and viscous fingering in liquid crystals,
bacterial growth, etc., and exhibits a very rich be-
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havior. The emergence of the patterns results from
the interplay of the stabilizing effect of surface
tension and that of interfacial kinetics and the
destabilizing effect of a diffusive field (usually
temperature or concentration) which controls the
motion of the interface. Inherent anisotropies such
as that of the surface tension play a fundamental
role in the selection of the steady-state shape and its
velocity.

The consideration of any kind of anisotropy in
the diffusion coefficients, however, has not been
taken into account so far, largely because most of
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the effort has focussed on the prototypical case of
a solid growing from its melt, where the diffusion
properties are isotropic. However, systems such as
liquid crystals do present considerable anisotropies
in their transport coefficients [9—12], and their ef-
fects are potentially significant in interfacial growth
phenomena.

In this paper we address the growth of dendrites
subject to anisotropy in the heat diffusion coeffic-
ient, and its consequences on the growth mor-
phologies. In particular, we obtain that the
direction of lowest thermal diffusion is preferred, in
the sense that the dendrite grows faster in that
direction than in the higher-diffusion ones, and that
it bends towards the lowest-diffusion direction
when set up to grow in any other direction. We
present conclusive evidence of these results from
both simulation and experiments on liquid-crystal
interfacial growth, and provide intuitive arguments
to explain this behavior.

2. The model

According to the classical sharp interface model
for free solidification, the growth of a pure sub-
stance from its melt is controlled by the diffusion of
latent heat away from the interface between the
phases [7]. This model is completed by the inclu-
sion of two boundary conditions, namely the heat
conservation at the interface and the local thermo-
dynamic equilibrium (Gibbs—Thomson relation),
corrected by a kinetic term. Usually, anisotropy is
included through angular dependences of the sur-
face tension and of the kinetic coefficient, reflecting
the dependence of both the average bonding energy
between atoms or molecules and the attaching ki-
netics on the local interface orientation. This an-
isotropy controls the direction in which dendrites
appear. In addition, here we have included an-
isotropy in the transport properties by means of
a heat diffusion tensor. With these elements, the
symmetrical (same diffusion coefficient in the two
phases) model of solidification is then described by
the equations:

oT
o ViD;; VT,

Lv, = niDiij[( VjT)solid - (VjT)liquid]:

Ty~ 20(0) + o' OV ~ O}y
2.1)

where primes denote derivatives with respect to 0,
the angle determined by the orientation of the in-
terface with respect to a crystallographic axis. In
these equations D;; are the components of the ther-
mal diffusion tensor, () is the anisotropic surface
free energy, L is the latent heat per unit volume,
v, 1s the normal growth velocity of the interface,
¢, is the heat capacity per unit volume, T, is the
melting temperature, « is the local curvature of the
interface and n; are the components of the unit
vector normal to the interface. The kinetic coefficient
p(0) describes a departure from local equilibrium
associated with dissipation at the moving interface.

In order to perform simulations we employ a
phase field model [ 13-207], which is a usual alterna-
tive approach to solve the full time-dependent mov-
ing-boundary problem. The phase field model is
proven to be a powerful tool to simulate many
different physical processes that can be described
by the classical sharp interface model. In the phase
field approach, both phases and their interface are
treated indistinctly, and discriminated by an effec-
tive nonconserved order parameter or phase field
¢, which takes different values in each phase (0 and
1 in our simulations). This field changes smoothly
across an interface region of finite thickness, and its
dynamics is coupled to that of the temperature field
in such a way that the sharp interface model is
recovered in the limit of vanishing interface thick-
ness, controlled by a new small parameter e.

The corresponding dimensionless equations with
the three anisotropies included are

0
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Here temperature is scaled by T = T,, + AT - u,
where AT = T, — T, is the undercooling, that is,
the difference between T, and the temperature very
far from the moving interface. Lengths are scaled in
some arbitrary reference length w, while times are
scaled by w?/D,, where D, is the scale of the diffu-
sion coefficient, which is assumed to be the same in
both phases. The value of w is irrelevant for the
numerical results. In our simulations we have
chosen values of order of the system size. In these
equations 0 is the angle between the x-axis and the
gradient of the phase field.

The dimensionless parameters of the model are

AT
=

V2oL 20 2.5)

T 120,000, 12dy°

4 (2.4)

LD,
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where 7(0) = a(0)/a(0), dy is the capillary length
defined by do = ¢,To(0)/L* (proportional to the
surface tension).

We have solved the phase field equations in
square lattices using first-order finite differences on
a uniform grid with mesh spacing Ax. We have
oriented the lattice along the principal directions of
the diffusion tensor, so only diagonal terms appear
in the simulation associating the principal values of
the tensor to the vertical and horizontal directions
of the system. On the other hand, in order to clearly
distinguish the effects of an anisotropy in the heat
diffusion coeflicient, we have taken the kinetic term
as isotropic (f constant). This means that m is
constant in the relation t(0) = m#n(0).

The equation for the phase field ¢ has been
solved by using explicit time-differencing, whereas
for the heat equation it has been chosen the alter-
nating-direction implicit (ADI) method, which is
unconditionally stable [14]. Both reflecting and
constant-temperature boundary conditions have
been employed for ¢ and u at the walls of the
system. In all cases we have checked the indepen-

dence of the results on the boundary conditions
actually employed provided they are placed far
away from the initial nucleus. The growth mor-
phologies are then obtained by setting a seed
(¢ =0, u = 0) in the lower left corner of the under-
cooled bath (¢ =1, u = —1).

3. Needle crystal growth: simulations and discussion

With the aim of studying the effects of an anisot-
ropic diffusion coefficient on the interfacial growth
processes, we have first taken into consideration
the evolution of a needle crystal in a solidification
process. The surface free energy anisotropy
g =1+ A cos(40) gives rise to a morphology with
four-fold symmetry. When ¢ + ¢” is positive the
equilibrium shape is rounded, and when it is nega-
tive, one gets forbidden directions and hence cusps
[2]. A value of 1< 0.0625 assures us to obtain
a rounded shape.

We have started by checking the known results
for the selected velocity of the dendrite as a function
of the diffusion coefficient in the usual isotropic
diffusion case. In Fig. 1a an example of the evolu-
tion of two interfaces after the same elapsed time is
shown. They are growing from an initial point-like
solid seed in a square lattice with 600 x 600 grid
points. The parameters employed in both cases
were: ¢ =0.002, Ax =0.005, « =400, 4=0.2,
m = 20, A = 0.06, At = 8 x 10~ °. In the faster grow-
ing morphology (al) the diffusion coefficients are
K.. = K,, = 1.2, while in the slower one (a2) we
used K,, = K,, = 0.8. Hence in these simulations
a larger isotropic heat diffusion gives rise to an
increase of the interface velocity. This observation
is in accordance with analytical results. They pre-
dict an increase of the interface velocity with in-
creasing diffusion coefficient in the limit u =
p(A)(152)"*2DBy/dy < 1, where p(4) is the Péclet
number (see [8]). And simulations performed with
different sets of parameters (even corresponding to
the opposite limit x> 1, where the choice of para-
meters leads to decreasing velocity with increasing
diffusion coefficient) gave results according to the
analytical calculations [8] too.

In Fig. 1b we made a solid seed grow with the
same parameters of Fig. la but with anisotropic
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Fig. 1. (a) Growth of two morphologies with isotropic heat
diffusion coefficient: 600 x 600 grid points, ¢ = 0.002, Ax = 0.005,
o =400, 4 =0.2, m =20, A = 0.06, At = 8 x 10~ >, time = 1.52.
(al) Ky = K,y = 1.2; (a2) K = K, = 0.8. (b) Growth of two
morphologies with anisotropic heat diffusion coefficient:
600 x 600 grid points, ¢ = 0.002, Ax = 0.005, o = 400, 4 = 0.2,
m =20, A = 0.06, At = 8 x 10>, time = 1.52. (b1) K, = 1.2 and
K,, =038; (b2) K, = 0.8 and K,, = 1.2. The computational do-
main was reflected around the horizontal and vertical centerlines.

heat diffusion coefficients. The dendrite moving
faster in the vertical direction (b1) corresponds to
values of the diffusion coefficients K., = 1.2 and
K,, = 0.8. The other dendrite was obtained by ex-

changing the values of K,, and K ,. It can be seen
from the figure that a larger heat diffusion coeffi-
cient in one direction gives rise to a lower growth
velocity and vice versa. We have obtained the same
behavior in all simulations performed for several
parameter sets, regardless of what the analytical
calculations (see [8]) predict about the velocity
dependence on an isotropic diffusion coefficient.
Therefore, we conclude that this feature is specific
to the anisotropy of the diffusion tensor and that
has nothing to do with the kind of dependence of
the velocity (increasing or decreasing) on the diffu-
sion coefficient in the isotropic case. Furthermore,
faster growth in the low-diffusion direction was
also observed in preliminary simulation tests with
only anisotropy in the thermal diffusion (neglecting
the anisotropy of the surface tension).

In Fig. 2 both dendrites were grown by setting
the solid seed in the lower left corner of a square
lattice with 400 x 400 grid points and by rotating
the angular dependence of the surface free energy
function by n/4 in the (x, y)-plane. The phase field
model parameters used here were: &= 0.002,
Ax = 0.005, o = 400, 4 = 0.6, m = 20, 4 = 0.0625,

0 2

Fig. 2. Tilted parabolas with anisotropic heat diffusion coeffic-
ient: 400 x400 grid points, ¢ =0.002, Ax = 0.005, o = 400,
A4=06, m=20, 2=00625 At=5x10"° time=0.18.
(a) Kyx =08 and K,, =12; (b) K\, =12 and K,, =0.8.
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At = 5x 107>, In the dendrite (a) the heat diffusion
coeflicients are K., = 0.8 and K,, = 1.2, whereas
the exchanged values were used to obtain the other
dendrite (b). The dendrite with a larger heat diffu-
sion coefficient in the x direction took a larger
angle with this direction and this angle remained
constant during the time observed. This angle was
exactly m/4 (i.e. the angle given by the surface ten-
sion) in previous simulations with isotropic heat
diffusion. Hence, anisotropy in the diffusion tensor
is able to change by a certain amount the growing
direction of the dendrite, and this change is towards
the lower diffusion direction.

In view of these observations one is forced to
conclude that for the growth of a dendrite the
relevant diffusion process is precisely the one that
occurs in the direction transversal to the dendrite
propagation. To have a more intuitive picture of
that, it may be useful to consider the limiting case in
which the diffusion coefficient vanishes in some
arbitrary direction. We may ask the question of
whether heat can be evacuated at such a growing
dendrite at a rate that would permit a constant
growth velocity. When the nonzero diffusion direc-
tion is that of the dendrite axis, y, the dendrite has
to expel heat in the vertical direction. The diffusion
in this direction is then one-dimensional, identical
to the case of a planar interface, which is known to
lack any steady solution for 4 # 1. For the interest-
ing case 4 < 1, which is the condition for the exist-
ence of the parabolic Ivantsov solution (for most
materials accesible undercoolings do verify this
condition [2]), the velocity of the planar front goes
to zero as t~ */? and therefore the dendrite cannot
sustain constant growth. However, in the opposite
case with vertical diffusion coefficient equal to zero
the dendrite could move expelling heat in the hori-
zontal direction, because all the time the dendrite
reaches new cold regions where the released heat
has not been able to arrive yet. Moreover, in this
case and for a parabolic dendrite growing at con-
stant velocity, any y-fixed point moves horizontally
with a velocity that decreases as ¢~ */2, thus compat-
ible with the diffusive behavior of the planar front.
In any case it would be interesting to solve the
complete selection problem in the general case of
nonzero anisotropic diffusion in order to have
a more rigorous handling of this behavior.

4. Experiments and simulations of interfacial
growth in liquid crystals

An experimental system used to study the ther-
mal diffusion anisotropy is the liquid crystalline
substance CCH, (4-n-butyl-4’-cyano-trans-1,1-bi-
cylohexane). We have focused on the first order
nematic-smectic-B phase transition for large
undercoolings (see a more detailed study of this
substance in [ 19]). The experimental system consis-
ted of a thin sample (d = 10 pm) with the nematic
director oriented parallel to the bounding glass
plates ((x, y)-plane of the observation) along the
y-direction. The quasi two-dimensional geometry
of the samples has been achieved by adequate
choice of their linear dimensions (1.5 cm x 1.5 cm in
the (x, y)-plane).

When the sample is undercooled below the
transition temperature T, some smectic-B nuclei
appear and grow, giving rise to different growing
shapes of the interface depending on the value of
the undercooling AT.

Although the average thermal diffusion coeffi-
cient D and its anisotropy D, = (D, — Dy,)/Dxx
(where Dy, and D, are the coefficients parallel and
perpendicular to the director, respectively) have not
been measured, some estimation can be obtained
by comparison with other liquid crystals. The
values of D and D, do not differ significantly in the
two phases considered [9,10] and D, is positive
[11]. Moreover, we can assume that D, is approx-
imately 0.5 (for a more detailed discussion see [19]).

The angular dependence of the surface free en-
ergy has been obtained by measuring the equilib-
rium shape of the nematic-smectic-B interface, and
by using the Wulff construction. This is a geometri-
cal method based on the idea that in thermal equi-
librium the surface free energy is minimized. The
expression for the angle dependence of the surface
free energy is then #(0) = 1.000 — 0.4450* +
0.0260* (0 < 0 < m/2), where 0 = 0 corresponds to
the direction perpendicular to the smectic director.

In the large undercooling regime (AT > 0.3°C)
a shape of the growing smectic-B phase with four
main dendrites has been observed (see Fig. 3). The
(smaller) angle o between main branches varies
from 0° to 60° depending on the nucleation point.
The director of the smectic-B phase was found to lie
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Fig. 3. Snapshot of the growing smectic-B phase of CCH,
showing the nonreflection symmetry of the dendrites. n(N) and
n(S) — director of the nematic and smectic-B phases, respectively;
o — the (smaller) angle between the main branches; y — angle
between n(N) and n(S); 1 and 2 denote main branches with
growth velocities v; and v,, respectively.

in the (x, y)-plane. It has been also observed that
the angle y between the orientation of the smectic-B
object, fixed by the smectic director n(S), and the
director of the surrounding nematic n(N) varies
from 0° to 80°. In all experiments, the smectic
director has been found perpendicular to the bisec-
trix of the angle o. When y # 0 and y # 90°, a non-
reflection symmetry appeared in the growth shape
(except the case of o = 0). This means that the pair
of main branches with opposite growth direction,
which have a larger angle with the nematic director,
have larger growth velocity (with an absolute value
of v;) than the other pair (v,) (see Fig. 3). The
observed relative difference in the growth velocities
dv = (v; — v,)/v; in some cases reached the value of
0.2. An asymmetry has also been observed in the
side-branching activity with respect to the growth
direction of the main dendritic tip, which was
studied in [19].

Taking into consideration the uniaxial nature of
the nematic phase, a nonmonotonous angular de-

pendence 6v(y) with a maximum in the middle of
the range 0° <y < 90° can be expected. Experi-
mental results confirmed such a relation (see
Fig. 4). In Fig. 4, for quantitative comparison only
the smectic objects with o« in a narrow range
(27° < o < 34°) are considered in order to have at
least approximately similar interplay between the
main branches. Unfortunately, direct analysis of
the tip growth velocity (v) dependence on the
growth direction was not possible, since a strong
dependence of v on the type of the nucleation point
(impurities, orientational defects of the director or
defects on the bounding glass plates) has been ob-
served and reported in [19].

Note that 5(0) will also be modified by an-
isotropic elastic contribution in the case of y # 0
which should decrease the anisotropy of the surface
tension (see more detailed discussion in [21]), but
this contribution could not be detected.

The growth of interfaces in liquid crystals is
mainly controlled by the diffusion of latent heat
away from the interface as in solidification pro-
cesses. Interfacial growth in liquid crystals can then
be also described by a symmetrical sharp interface
model, differing from solidification in the magni-
tude of some parameters. Thus, we are allowed to
simulate the growth of the nematic—smectic-B in-
terface in CCH, by means of the phase field model
(Egs. (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7), where
now the smectic-B and the nematic play the role of
the solid and liquid, respectively). Some of the re-
sults obtained from these simulations have already
been presented in [18,197], where with the sole in-
troduction of anisotropy in the surface free energy,
the quasi-equilibrium and spontaneous nucleation
morphologies for the case of y = 0 were qualitat-
ively reproduced. Here, we show that by rotating
the surface free energy function in the (x, y)-plane,
and by adding an anisotropic heat diffusion coeffi-
cient we can also reproduce the experimentally
observed morphologies of the interface with y # 0
which show the nonreflection symmetry.

In the numerical simulation of this case, we have
used a lattice of 600 x 600 grid points, setting the
initial smectic-B seed in the center of the square.
The parameters employed are: ¢ = 0.005, Ax =
0.005, o =850, 4 =05 m=20, At =2x10"°
Although this set of parameters could differ from
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Fig. 4. Experimental results showing the relative difference in the growth velocities dv = (v; — v,)/v; of the main branches versus the
angle y (AT = 1.00°C). In the upper part of the figure smectic objects with different y are shown (the nematic director is parallel with y in

each case).

Fig. 5. Simulation for the nonreflection symmetry: 600 x 600
grid points, ¢ = 0.005, Ax = 0.005, o« = 850, 4 =0.5, m = 20,
At =2x107¢, time = 0.06. K, = 0.4, K, = 0.6, D, = 0.5.

those real material ones, the qualitative resem-
blance is remarkably good. The heat diffusion coef-
ficients used were K, = 0.4 and K,, = 0.6 and its
anisotropy was D, = 0.5, being very similar to what
was expected experimentally, as it has been stated

before. In Fig. 5 the morphology obtained in the
described simulation is shown. As can be seen, the
reflection symmetry has been broken by including
the anisotropic heat diffusion only (previous simu-
lations with rotated surface tension function and
isotropic heat diffusion did not show the asym-
metry in the growth velocities). In both experiments
and simulations the most developed branches are
systematically those growing in the direction of
lowest heat diffusion, consistent with the general
results of the previous section.

5. Conclusions

In summary, we have presented some numerical
results of the role that an anisotropic heat diffusion
coefficient plays in dendritic growth. We have
concluded that heat diffusion anisotropy favors de-
ndritic growth in the lowest diffusion directions.
This means that the relevant heat diffusion process
is the one that occurs in the direction perpendicular
to the axis of the dendrite. Although this result may
seem counterintuitive, we have provided simple
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arguments based on extreme situations which sup-
port this scenario. Finally, we have shown that
these results can explain some experimental obser-
vations made for lower symmetry phases growing
with different orientation into a higher-symmetry
nematic with strong anisotropies in its transport
coefficients.
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