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Abstract

We present a low-dimensional truncated model for a viscous fluid
contained in a two-dimensional square box, obtained by truncating
a dynamical system of amplitudes for the velocity field. This low-
dimensional model exhibits a route to chaos via a period doubling
cascade (Feigenbaum’s Scenario). In order to compute with high ac-
curacy the period doubling, a numerical method based on the first
order variational equations and a Poincar map, has been developed.
This methodology can also be applied to the analysis of bifurcations
of periodic orbits in low dimensional ordinary differential equations.
This method allows to detect not only the presence of bifurcations but
also the computation of stable and unstable periodic orbits. On the
other hand, the chaotic dynamics of the system is analyzed in detail
by the computation of the Liapunov exponents for long-time integra-
tions. For this purpose, a numerical scheme based on renormalization
techniques has been constructed.
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1 Introduction.

Low-dimensional analysis of fluid systems are of interest in order to capture
the essential features of their behaviour. Many fluid dynamics problems have
been analyzed from this point of view [Lorenz (1963)], [Boldrighini (1979)].
Of course, the results obtained from these models may not be directly related
to experiment. However, they capture the basic qualitative features of the
physical system. On the other hand, this kind of models usually provide
relevant information about the core dynamics which governs the fluid motion.

In this paper we introduce a low-dimensional analysis for the flow of
a viscous fluid contained in a square box whose boundary conditions have
been previously regularized. This regularization is needed for the analiticity
of the solutions near the boundaries. We use a spectral Legendre-tau scheme
in primitive variables in order to obtain a dynamical system of amplitudes
for the velocity field. By truncating the system up to order four, a relatively
simple system of ordinary differential equations is obtained. Its analysis is
the main subject of this paper. We have found the stationary solution at low
Reynolds number using a continuation method. This solution loses stability
at a Hopf bifurcation, and suffers a cascade of period doubling bifurcations.
We have computed these period doubling with suitable accuracy using a
method based on the first variational equations for the Poincar map. The
methodology we have introduced has a wide range of applicability in low
dimensional ordinary differential equations. This method allows to detect
the successive period doublings and to compute not only the stable periodic
orbits but also the unstable ones.

For the truncated system we obtain a period doubling scenario in the
Reynolds interval [503.26, 512.468]. This period doubling cascade verifies
Feigenbaum’s universality. Beyond Re = 512.468 the system presents chaotic
behaviour. This is reflected in the Liapunov exponents analysis and in the
Fourier spectra of the time evolution. Also, the structure of the Poincar
section of the attractor presents fractal features.

The paper is organized as follows. In Sec.2 we present a physical de-
scription of the problem and the truncated four dimensional model, and
we compute the steady solution an its stability. In Sec.3 we introduce the
Newton-variational method to detect the period-doubling scenario and we
apply it to our model. The bifurcations are computed with great accuracy;
the resulting cascade is presented in detail. Sec.4 is devoted to the study of
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the chaotic zone. The Liapunov exponents are computed as a function of the
Reynolds number, showing the chaotic behaviour of the orbits. Moreover,
periodic windows are obtained inside the chaotic region. We also present the
results of the Fourier spectra from time integrations of the dynamical system
for different regions. Finally, a Poincar section of the strange attractor is
visualized in order to analyze its self-similar structure.

2 Physical Description. The Model.

Our problem consists of a two-dimensional square box of length L0 filled
with an incompressible fluid, whose velocity is given on one box side, and
zero on the remaining ones, the so called cavity flow. We adimensionalize
the variables using L0/2, L0/2ν as the unit length and velocity, being ν the
kinematic viscosity. The fluid domain is Ω = [−1, 1] × [−1, 1], in Cartesian
coordinates (x, y). The boundary conditions are:

~v(±1, y) = (0, 0), ~v(x,−1) = (0, 0), ~v(x, 1) = ~vΓ = (R(x2 − 1)2, 0) (1)

where R is the Reynolds number R = L0v0/2ν and v0 is the maximum of
the imposed velocity on the side y = 1. We have taken a regularized velocity
profile giving a continuous boundary condition on ∂Ω [Peyret (1983)].

The problem will be approximated in a weak spectral-scheme. The ve-
locity field belongs to a free-divergence function space. Therefore, the in-
compressibility condition is automatically satisfied. On the other hand, the
Navier-Stokes equation is projected over a space of solenoidal functions which
verify suitable boundary conditions in order to annihilate the pressure term.
The technical details of the method are explained in the Appendix.

The low-dimensional truncation of Navier-Stokes equations with the bound-
ary conditions described in the previous section yields a four-dimensional
dynamical system for the amplitudes.
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The coefficients are numerical constants which can be found in the Appendix.
The previous equations are too complicated to find analytical expres-

sions for the stationary points and their dependence on the Reynolds number
R. Nevertheless, we find the steady solution numerically by a continuation
method; see [Keller 1977]. The solution branch is sketched in Fig. 1. We have
computed the eigenvalues of the Jacobian matrix over the solution branch as
a function of the parameter R. For values of R less than 321.5 the eigenval-
ues have negative real part. For R = 321.5 one pair of eigenvalues crosses
the imaginary axis with non-zero imaginary part. Thus, a Hopf bifurcation
appears. The orbit generated by this bifurcation is stable over the interval
[321.5, 503.26].

3 Period Doubling Scenario. The Newton–

Variational Method.

We will write the system (2) as ẋ = f(x,R) for the sake of simplicity, and let
φ(t, x) be the solution of this system with x as initial condition (φ(0, x) = x).
In order to fix the stability and secondary bifurcations of the periodic orbit
γ that appears in the Hopf bifurcation, we have used a Poincar map. Let Π0

be a hyperplane transversal to γ in a point x0 ∈ γ. The equation of Π0 is
(x−x0) · ξ = 0, where ξ satisfies the transversality condition ξ · f(x0, R) 6= 0.
The Poincar map is given by

P : Π0 −→ Π0

x −→ P (x) = φ(τ(x), x)
(3)

where the function τ(x), the time of fly needed to return to Π0, is obtained
from the equation (φ(τ(x), x) − x0) · ξ = 0. The eigenvalues of DP give the
stability of the periodic orbit γ. DP is the restriction to Π0 of the solution
of the first variational equation

J̇ = Dxf(φ(t, x0), R)J , J(0) = 14 (4)
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Figure 1: The fixed point as a function of the Reynolds number R. Solid line
means stable, and dashed line, unstable. The parabolic shape that emerges
from the continuous line represents the periodic orbit generated by the Hopf
bifurcation.
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where 14 is the identity matrix in IR4. The projection on Π0 is given by

DP = (14 −
f(x0, R) ⊗ ξ

f(x0, R) · ξ
)J |Π0

(5)

DP is a 3 × 3 matrix.
The method we have termed Newton–variational is an iterative method

that gives us simultaneously the periodic orbit, its period and the differential
of the corresponding Poincar map. From an initial point xk near to γ and
an estimate T k of the period, we integrate the system

ẋ = f(x,R) , x(0) = xk

J̇ = [Dxf(x,R)]J , J(0) = 14
(6)

Next we refine the period by integrating the dynamical system (6) up to a
final time t = T k+1 that verifies the cut with the Poincar section:

(φ(T k+1, xk) − xk) · ξ = 0 (7)

This time can be obtained iteratively by linear interpolation or the bisection
method. After that, we have a final point xk+1/2, the Jacobian matrix and
DP at this time T k+1:

xk+1/2 = φ(T k+1, xk), Jk+1 = J(T k+1)

DP k+1 = (14 −
f(xk;R)⊗ξ

f(xk;R)
· ξ)Jk+1 |Πk

(8)

The last step of the iteration is the corrector Newton process in Πk:

xk+1 = xk + (13 − DP k+1)−1(xk+1/2 − xk) (9)

The matrix 13 − DP k+1 must be invertible, i.e., its eigenvalues must be
different from 1. But when γ is stable, the eigenvalues have moduli less than
1, and the bifurcations we have found are period doubling ones. The critical
eigenvalue crosses the unit circle by −1 and the matrix of the Newton method
is invertible. For k → ∞, xk gives a point of the orbit, regardless of whether
it is stable or not. T k and DP gives its period and eigenvalues.

This iterative method is the core of a continuation method in the Reynolds
number R. We start with a R value at which γ is stable and obtain the first
orbit by time evolution of (2). For a new value of R the iteration begins
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with a point and the period of the previous orbit; if the orbit suffers a period
doubling bifurcation, the new orientative period will be twice the former
period.

The vector ξ is constant throughout the process, in order to simplify the
calculations and always use the same coordinates for Π0. The transversality
to γ is ensured by moving x0 along the orbit to a point pγ where the angle
between the orbit and the Poincar Map is maximum:

f(x,R) · ξ

‖f(x,R)‖‖ξ‖
≤

f(pγ, R) · ξ

‖f(pγ; R)‖‖ξ‖
∀x ∈ γ (10)

By gradually varying the Reynolds number R we can determine with a
high degree of accuracy (by successive linear interpolation, for example) the
bifurcating values of R. We have found a period doubling cascade, whose
first nine period doubling bifurcation values can be seen in Table 1. The table
also shows the ratios between the successive bifurcation intervals, defined by:

δn =
Rn+1 − Rn

Rn+2 − Rn+1
(11)

We can observe that these ratios approach Feigenbaum’s universal con-
stant δF = 4.66920160 . . .. The Rn sequence has an accumulation point at
R∞ = 512.468014489.

The first one, two, four and eight periodic states are sketched in Fig. 2,
where we have represented the amplitude z versus the amplitude v.

4 Properties of the Strange Attractor.

Liapunov exponents give us information about the stability of the orbits
and the long-term behaviour of the volume elements in phase space (i.e.,
contraction and expansion). For our problem we consider again the first
order variational dynamical system

ẋ = f(x,R) , x(0) = x0

J̇ = [Dxf(x,R)]J , J(0) = 14
(12)

where now x0 is a point of the orbit or the attractor to be considered, obtained
after a suitable transient time integration. At every time we can compute
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Figure 2: Orbits of the one, two, four and eight periodic states. In the figures
the x axis corresponds to the v amplitude and the y axis to the z amplitude.
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the eigenvalues µj of the matrix J. Then, the Liapunov exponents of our
dynamical system will be:

λj = lim
T→∞

log | µj |

T
(j = 1, 2, 3, 4) (13)

When the Liapunov exponents are evaluated directly by integrating the
first variational equations (12), numerical problems arise. The columns of
J(t) become almost parallel to the direction of the biggest Liapunov expo-
nent, J becomes ill conditioned, and tends to be singular. Furthermore, if
some of the Liapunov exponents are greater than zero, overflow problems
can occur. Therefore, the previous limit cannot be computed directly. In
order to handle this problem, we have used the renormalization method of
Shimada and Nagashima [Shimada (1979)], described in [Kubicek (1983)].
We have computed the Liapunov exponents as a function of the Reynolds
number. For the periodic solutions (R ≤ R∞) we have a zero exponent and
the remaining ones are less than zero, as it is well known. The behaviour of
the greatest Liapunov exponent for R > R∞ is displayed in Fig. 3. Posi-
tive values of the exponent correspond to chaotic solutions, and we see that
the system is chaotic but presents a window with a periodic stable solution.
This behaviour is typical of many dynamical systems that suffer a period
doubling cascade. Also, the system exhibits strong hysteresis. Different ini-
tial conditions can lead to different solutions, periodic solutions or chaotic
solutions.

The strange attractor corresponding to the chaotic zone (R = 512.5) is
sketched in Fig. 4. We have computed a Poincar section in order to analyze
its geometric structure. This section is depicted in Fig. 5 for R = 512.5. Its
self-similarity structure, typical of strange attractors is apparent. The fractal
dimension of the attractor has been computed using the numerical method
of Grassberger and Procaccia [Grassberger 1983]. The computed dimension
for R = 512.5 is d = 1.5854.

The Fourier spectra for two different Reynolds numbers are shown in Fig.
6. The first spectrum corresponds to a periodic orbit, and the second one is
in the chaotic region. We notice that the former exhibits a broad-band noise,
whose level is two or more orders of magnitude higher than in the periodic
case. This is a typical signature of chaos. In the chaotic spectrum sharp
peaks appear above the level of the noise. Similar types of spectrum have
been observed by other authors [Kubicek 1983]. This type of spectrum is
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Rcrit δ
R1=503.26263580
R2=507.98889404 δ1=1.113
R3=512.23403718 δ2=23.361
R4=512.41575610 δ3=4.3590
R5=512.45743770 δ4=5.0208
R6=512.4657403824 δ5=4.6436
R7=512.4675281125 δ6=4.6773
R8=512.4679103180 δ7=4.6689
R9=512.4679921795

Table 1: Critical Reynolds numbers Rn and ratios δn for the period doubling
cascade.
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Figure 3: Maximum Liapunov exponent as a function of the Reynolds number
R. Note the periodic solution at R = 512.468025
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Figure 4: Plot of the strange attractor for R = 512.5. Projection into the
plane (v,z).
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Figure 5: Poincar section of the strange attractor for R = 512.5. The en-
hanced areas show a self-similar structure. The variables displayed are (v, w)
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called “phase coherent”, and occurs close to unstable limit cycles generated
by the sequence of period doubling bifurcations.

If we further increase the Reynolds number the chaotic attractor seems
to collapse with the unstable manifold of another branch of steady solutions.
This collision produces a destabilization of the attractor. This phenomenon
is probably due to the excessive truncation of the model.

In order to check the behaviour of this low-dimensional model, we have
obtained a six-dimensional system for the same problem, taking M = 2,
N = 3 (see Appendix). The results obtained are very similar. The six-
dimensional model also exhibits a period doubling scenario, although the
bifurcations take place at different Reynolds numbers.

5 Conclusions.

By analyzing a truncated model for a two dimensional Navier-Stokes prob-
lem we find a transition to chaos by means of a period doubling cascade.
The period doubling verifies Feigenbaum’s universality. After the successive
period doubling bifurcations, the system presents a chaotic behaviour. This
is reflected in the Liapunov exponents and in the Fourier spectra of the time
integrations of the dynamical system. A six-dimensional model has also been
studied in order to check the results obtained with the four-dimensional one.
In both cases, the qualitative phenomena are essentially the same. We have
also introduced a useful methodology for the analysis of the bifurcations of
periodic orbits in low dimensional ordinary differential equations, that we
have termed the Newton-variational method.
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Figure 6: Fourier spectra for a periodic solution (R = 512.46) and a chaotic
solution (R = 512.50).
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Appendix.

We consider the adimensionalized Navier-Stokes equations for incompressible
fluids:

∂tv + (v · ∇)v = −∇p + ∆v , ∇ · v = 0 (14)

In order to build a weighted residual scheme we will work with two different
function spaces. Let Hd be the projection space of test functions:

Hd = {φ̃ ∈ L2(Ω), ∇ · φ̃ = 0, φ̃ · n̂ |∂Ω= 0} (15)

where n̂ is the unit normal to ∂Ω, and let Hs be the space of divergence-free
functions:

Hs = {φ̂ ∈ L2(Ω), ~∇ · φ̂ = 0} (16)

Both spaces will be spanned by solenoidal functions Hd = Span < φ̃pq >,
Hs = Span < φmn > of the form

φ̃pq(x, y) =

(

−f̃p(x)g̃′

q(y)

f̃ ′

p(x)g̃q(y)

)

, φmn(x, y) =

(

−fm(x)g′

n(y)
f ′

m(x)gn(y)

)

(17)

where ′ means derivative, and the normal component of φ̃pq vanishes on the
boundary ∂Ω of the domain: φ̃ · n̂ = 0. These vectorial functions satisfy the
divergence–free condition and are a base of the Hilbert spaces Hd and Hs

respectively. Now the velocity field is of the form:

v(x, y, t) =
M
∑

m=0

N
∑

n=0

amn(t)φmn(x, y) (18)

The selection criteria of the set of functions φ̃pq and φmn depend on the
geometry of the problem and the boundary conditions. In fact, these func-
tions will be built up using suitable orthogonal polynomials (see [Canuto
(1988)] or [Moser (1983)] for a detailed discussion). We take the f and g
functions as

f̃p(x) = fp(x) = (x2 − 1)2Pp(x) (19)

g̃q(y) = gq(y) = (y2 − 1)Pq(y) (20)

where Pp is the pth-order Legendre polynomial. Thanks to the factors (x2−1)2

and y2−1 the boundary conditions (1) are satisfied, except for the tangential
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component on y = ±1. This remaining boundary condition will be set by
the tau method.

The weak form of problem (14) will be

< φ̃ | ∂tv + (v · ∇)v − ∆v >= 0 , ∀φ̃ ∈ Hd, v ∈ Hs (21)

where < · | · > is the standard Hermitian product. The pressure term
< φ̃ | ∇p > vanishes for all φ̃ ∈ Hd [Temam (1988)]. When the remaining
boundary conditions are set, the coefficients amn are no longer independent.
In fact we can find am,N , am,N−1 in terms of the remaining am,n, for all m.
From Eq. (1),

am,n = −
R

4
δm,0 −

[n/2]
∑

k=1

am,n−2k ; n = N, N − 1 ; m = 0 ÷ M (22)

corresponding to the imposed velocity profile v(x) = R(x2 − 1)2 on y = 1.
The Eqs. (21) for the independent amplitudes in the case N = 3, M = 1 are
Eqs. (2), where u = a00, v = a01, w = a10 and z = a11. The values of the
numerical constants that appear in the Eqs. (2) are:

λ1 = 133/64 λ2 = 573/80 λ3 = 991/20592 λ4 = 73/5720
ν1 = 23/2904 ν2 = 1615/113256 ν3 = 703/15730 ν4 = 685/9438
d1 = 483/32 d2 = 267/8 d3 = 2003/80 d4 = 1521/40
δ1 = 499/1716 δ2 = 5/396 δ3 = 801/1430 δ4 = 17/26
ρ1 = 380/1573 ρ2 = 760/4719 ρ3 = 4776/7865 ρ4 = 280/1573
ρ5 = 12/143 ρ6 = 620/429 ρ7 = 504/715 ρ8 = 240/143
ρ9 = 1296/3575 ρ10 = 72/1859

(23)
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