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Abstract. Results of a numerical study on the finite amplitude global perturbations inducing
transition to turbulence in pipe flow are reported. The aim of this analysis is to characterise the
basin of attraction of the basic Hagen-Poiseuille flow (which is believed to be lineary stable for
all Reynolds numbers Re) by means of the minimal amplitude of an initial global perturbation
triggering transition. Subcritical transition in pipe flow is extremely sensitive to the shape of
the initial perturbation. The analysis is focused on the streak breakdown transition scenario, by
which the basic flow, perturbed with streamwise-independent disturbances of azimuthal wave
number n = 1, develops transient streaks that are susceptible of being destabilised by much
smaller streamwise-dependent perturbations. The numerical simulations cover a wide range of
Reynolds numbers Re ∈ [2500, 104] and the transition dynamics are spectrally resolved by the
numerical method. The threshold amplitude of perturbations seems to decrease with Re−3/2

within the studied range.

.

1. Introduction
It has long been known that pressure-driven flow along a pipe can undergo transition to
turbulence despite the linear stability of its laminar basic state (Hagen-Poiseuille flow) for all
Reynolds numbers. However, the underlying mechanisms that govern this subcritical transition
are far from being completely understood.

Since the late eighties, the stability analysis of pipe flow has been focused on the linear
transient growth of small perturbations combined with nonlinear interaction as a plausible
explanation for transition [1]. Non-normality of the linearised Navier-Stokes operator is
responsible for substantial transient energy growth of certain perturbations. This growth has
been shown to be optimal for streamwise-independent, non-axisymmetric (n = 1) perturbations
[2]. Non-normal linear growth, combined with nonlinear saturation, leads to transient streamwise
structures called streaks, i.e. regions where the axial flow profile exhibits strong variations and
saddle points, potentially unstable with respect to three-dimensional waves of selected axial
periodicity [3]. The streak breakdown transition scenario suggests that these 3D modes grow
and trigger transition to turbulence, which is then sustained through nonlinear interaction. The
transition mechanism is extremely sensitive to the shape and energy of the initial perturbation.
In addition, the basin of attraction of the basic flow shrinks as Re is increased. Some unstable
coherent states (travelling waves) have been identified recently, which play a key role in the
sustained process of turbulence [4, 5].
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The minimal amplitude of the perturbation that triggers transition as a function of Re is a way
of characterising the basin of attraction of the Hagen-Poiseuille (HP) basic flow. No perturbation
is capable of triggering transition below a certain value of the Reynolds number, where the
basic flow is said to be unconditionally stable. Above this critical value, minimal destabilising
amplitudes decrease very sharply when slightly increasing Re. For moderate and relatively high
values of the Reynolds number, it is believed that the threshold amplitude, Acr, decays as a
power law of Re (Acr ∼ Reγ), whose critical exponent γ has been object of controversy. The
critical Re together with the minimal amplitude curve are known as the double threshold [6].
Recent experimental and numerical studies[7, 5, 4] reveal a value of γ ≈ −1, whereas former
experimental analyses [8] and low dimensional numerical simulations [9] predicted a slightly
lower exponent of γ ≈ −3/2.

A spectral solenoidal Petrov-Galerkin code has been developed and validated in order to
simulate the evolution of perturbations in HP flow. It is not the aim of this code to resolve
fully developed turbulent motion. The intention here is to give an accurate picture of the initial
stages of transition. The time integrations are carried out with medium-high spatial resolutions
(equivalent to a collocation mesh of 33 nodes in the axial, azimuthal and radial coordinates) on
a pipe up to 20 diameters long. The perturbations to the basic flow chosen as initial condition
consist of finite amplitude streamwise vortices of selected azimuthal symmetry, on top of which
3D modulation of selected axial periodicity and much smaller size are added. The study covers
a range of Re from 2500 to 10000. These simulations seem to confirm the −3/2 value for the
exponent γ.

The paper is structured as follows. In section §2 we formulate the problem mathematically
and give an outline of the numerical method used to solve it. Section §3 introduces the streak
breakdown transition mechanism and illustrates it with an example. The global perturbations
used throughout the study are characterised in section §4. At this point, the stage is set for
a vast exploration, the results of which are detailed in section §5. We discuss these results in
section §6, to finally extract some conclusions in section §7.

2. Mathematical formulation and numerical approach
In the present study, the fluid is assumed to be incompressible (density ρ) and viscous (kinematic
viscosity ν). The fluid is driven through a cylinder of radius a by a pressure gradient Π0 pointing
in the direction of the cylinder axis. The fluid motion is governed by the incompressible Navier-
Stokes equations

∂tv + (v · ∇)v = −Π0

ρ
ẑ −∇p + ν∆v, (1)

∇ · v = 0, (2)

where v is the velocity vector field, which satisfies non-slip boundary condition on the wall

vwall = 0, (3)

and p is the reduced pressure.
The problem is most easily formulated in cylindrical coordinates, due to the geometry of the

domain. Therefore, the velocity field is given in terms of its radial (r̂), azimuthal (θ̂) and axial
(ẑ) components

v = u r̂ + v θ̂ + w ẑ = (u, v, w), (4)

where u, v and w are functions of the three spatial coordinates (r, θ, z) and time t. Equations
(1) and (2), subject to the boundary condition (3), admit an analytical steady solution by the
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name of Hagen-Poiseuille flow that reads

vB = (uB, vB, wB) =
(

0 , 0 , −Π0a
2

4ρν

[
1 −

(r

a

)2
])

, pB = C, (5)

where C is an arbitrary constant. This solution corresponds to an axisymmetric streamwise-
independent parabolic purely-axial velocity profile, depending only on the radial coordinate. The
velocity attains its maximum UCL = −Π0a

2/4ρν at the pipe axis. All variables of the problem
can be rendered non-dimensional using a and UCL as the length and velocity scales, respectively.
The advective time, defined as τ = a/UCL, is used as the time scale to non-dimensionalise the
equations. After non-dimensionalisation, the basic flow takes the form

vB = (uB, vB, wB) = (0 , 0 , 1 − r2), (6)

and the dynamics are governed by the Reynolds number (Re):

Re =
a UCL

ν
. (7)

The velocity and pressure fields can be decomposed in the basic solution plus an additive
perturbation:

v(r, θ, z, t) = vB(r) + u(r, θ, z, t), (8)
p(r, θ, z, t) = pB + q(r, θ, z, t). (9)

Substitution of (8) and (9) in the non-dimensional version of (1) and (2) yields the governing
equations for the perturbation:

∂tu = −∇q +
1

Re
− (vB · ∇)u − (u · ∇)vB − (u · ∇)u, (10)

∇ · u = 0. (11)

We will assume periodic boundary condition in the axial coordinate. The problem is then
solved in the spatial domain

Ω = {(r, θ, z) | 0 ≤ r ≤ 1, 0 ≤ θ < 2π, 0 ≤ z < Q}, (12)

Q being the dimensionless length of the pipe in radius units.
The velocity field must satisfy the non-slip boundary condition at the wall and periodicity in

the axial and azimuthal directions:

u(1, θ, z, t) = 0, (13)
u(r, θ + 2πn, z, t) = u(r, θ, z, t), (14)

u(r, θ, z + Ql, t) = u(r, θ, z, t), (15)

for (n, l) ∈ Z
2, (r, θ, z) ∈ [0, 1] × [0, 2π) × [0, Q), and t > 0. To fully determine the solution, an

initial condition must be prescribed:

u(r, θ, z, 0) = u0, (16)

where u0 is a divergence-free vector field satisfying the boundary conditions.
The spatial discretisation of equation (10) is implemented with a solenoidal Petrov-

Galerkin spectral method. Velocity u is replaced by its expansion in a basis of solenoidal
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analytical functions satisfying the periodicity and boundary conditions. Analyticity of the
approximation to overcome the singularity of polar coordinates at the origin is accomplished
by the regularisation rules proposed in former works [10]. Fourier expansions are naturally used
in the azimuthal and axial directions, while Chebyshev-based functions are more suitable for the
radial coordinate. The expansion is truncated at order L in z, order N in θ and order M in r:

u(r, θ, z, t) =
L∑

l=−L

N∑
n=−N

M∑
m=0

alnm(t)Φlnm(r, θ, z), (17)

Φlnm(r, θ, z) = ei(2πlz/Q+nθ)vlnm(r). (18)

The velocity field associated with the axial-azimuthal Fourier mode (l, n) is defined as follows:

uln(r, θ, z, t) =
M∑

m=0

alnm(t)Φlnm(r, θ, z). (19)

The spatial discretisation is accomplished by formal substitution of expansion (17) in equation
(10) and projection over another set of solenoidal fields [11, 12]. The projection of the nonlinear
advective term is computed with a pseudospectral method de-alising in θ and z using the 3/2-rule
[13]. The resulting ODE system for the amplitudes is discretised in time by means of an implicit
4th-order BDF method suitably combined with an explicit 4th-order modified Adams-Bashforth
[14]. The iteration process is started with a 4th-order Runge-Kutta method [15].

3. Streak Breakdown
Even though the basic flow is linearly stable (any perturbation must decay exponentially), non-
normality of the linearised Navier-Stokes operator is responsible for the significant transient
growth of some disturbances. The maximum linear amplification has been shown to occur
for streamwise-independent modes of azimuthal wave number n = 1 [2]. Disturbances mainly
exciting these highly amplified modes, develop into streamwise-independent (two-dimensional,
2D) structures called streaks. These 2D structures, happen to exhibit inflectional velocity
profiles, which make them unstable, in a transient sense, to three-dimensional (3D) perturbations
of selected axial periodicity that might be present in the flow. In the presence of the streaks, these
3D perturbations grow exponentially, eventually leading to turbulence provided that they have
reached high enough energy level by the time the streaks start to decay due to viscosity. Zikanov
investigated the stability of the streaks by linearising the 2D-streaks modulated flow as a function
of time [3]. This allowed to single out the 3D perturbations that undergo the largest growth in
the presence of the streaks. The axial wave number (κ) of the most amplified 3D perturbation
was found as a function of Re and of the initial energy (ε02D) of the 2D perturbation. As an
example, a 3D perturbation with κ ∼ 1.5 was found to be the most amplified in the presence of
streaks generated from a 2D perturbation of energy ε02D = 10−2 at Re = 3000.

A natural definition for the energy of an arbitrary vector field u is

E(u) =
1
2

∫ Q

0
dz

∫ 2π

0
dθ

∫ 1

0
rdr u∗ · u. (20)

Using this definition, the energy of the Hagen-Poiseuille flow (EHP ) can be computed
analytically and used to normalise the energy of any perturbation velocity field:

ε(u) =
E(u)
EHP

, EHP =
πQ

6
. (21)
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Due to the orthogonality of the Fourier system, the energy of the velocity field can be written
as:

ε(u) =
L∑

l=−L

N∑
n=−N

εln, (22)

where εln = ε(uln) is the normalised energy of the velocity field associated to the pair (l, n)
defined in (19). Therefore, the energy of the streaks can be interpreted as the total energy of
all the streamwise-independent modes, since they are an invariant solution of the Navier-Stokes
equation, due to the axial nature (symmetry properties) of the basic flow. As a result, the energy
associated with the 2D perturbation is

ε2D =
N∑

n=−N

ε0n. (23)

To illustrate the formation of the streaks, a purely 2D run (with resolution N = 15, M = 25,
equivalent to a collocation mesh of Mr × Nθ × Lz = 26 × 31 × 1 points, and ∆t = 0.01) at
Re = 3000, gives a clear example. The initial perturbation excites an n = 1 azimuthal mode:

u0 = u0
2D = A2D eiθ (−if1(r), f2(r), 0) + c.c., (24)

where f1(r) = 1− 2r2 + r4, f2(r) = 1− 6r2 + 5r4, c.c. stands for complex conjugate and A2D is
determined so that ε(u0

2D) = ε02D = 10−2.
Figure 1 shows the time evolution of the energy associated with the 2D perturbation, in very

good agreement with Zikanov’s results and with previous computations at much lower spatial
resolution with the same method provided by Meseguer [3, 9]. The axial velocity distribution
on a cross-section of the pipe, shown in figure 2, is also coincident with that obtained in these
previous studies. The cross-sectional axial velocity distribution has been represented at several
times to sketch the development of the streaks in the absence of 3D perturbations.
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Figure 1. Time evolu-
tion of the energy of the
streaks developing from
the 2D perturbation pre-
scribed in equation (24),
for Re = 3000.

In order to obtain a streak breakdown, 3D perturbations of a suitable axial periodicity must
be added to the 2D perturbation. The new initial condition is:

u0 = u0
2D + u0

3D, (25)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Axial velocity contours on a cross-section corresponding to the time integration
plotted in figure 1, ε02D = 10−2. Snapshots are taken at times a) t = 10, b) t = 20, c) t = 30, d)
t = 35, e) t = 40, f) t = 50, g) t = 70 and h) t = 150.

where u0
2D is the same 2D perturbation described in (24), and u0

3D is a 3D perturbation of the
form

u0
3D =

4∑
n=−4

An
3Dvn + c.c., (26)

with

vn =
{

eiκz (0, f3(r), 0) n = 0
ei(κz+nθ) (−inf1(r), f2(r), 0) n �= 0,

(27)

where f3(r) = r(1 − r2).
As a result, nine azimuthal modes, with |n| ≤ 4, and the same axial wave number κ = 1.67

(close to the optimal of 1.5, according to Zikanov’s results at Re = 3000 for a 2D perturbation
of initial energy ε02D = 10−2), constitute the initial 3D perturbation (u0

3D), which is added to
the same 2D perturbation (u0

2D) as before. The amplitudes An
3D are chosen so that the initial

3D energy ε03D = 9 · 10−9 is uniformly distributed among the 3D modes.
The resolution for the 3D run has been set to L = 15, N = 15, M = 25 (Mr × Nθ × Lz =

26 × 31 × 31) and ∆t = 0.01, with Q � 20, so the maximum axial wave number is κmax = 5.
In order to see the time-signature of the streaks and their breakdown as the 3D perturbations

grow, the quantity ε2D(t) as defined in (23) is not well suited. Interpretation of the energy
of the streamwise-independent axisymmetric Fourier mode (n, l) = (0, 0), included in (23), is
misleading, since it is strongly coupled with axisymmetric modes of any axial periodicity, like
the one with κ = 1.67 excited by the 3D perturbation. Turbulence redistributes energy via non-
linear mixing, transfering energy from all axial and azimuthal modes to the (n, l) = (0, 0)-mode.
Hence, it is better to define the energy of the streaks as

εstreaks(t) =
N∑

|n|=1

ε0n(t), (28)

in order to better capture their energy loss in the presence of the 3D perturbation. To evidence
the streak breakdown process, it seems natural to compute the energy of the 3D perturbation as
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the sum of the energies of all the azimuthal modes with κ = 1.67, not paying much attention to
modes with neighbouring κ’s or its harmonics, excited through non-linear interaction. To this
purpose, we define the energy associated to the optimal destabilised 3D perturbation as

ε3D(t) =
N∑

n=−N

ε5n(t), (29)

where l = 5 corresponds to κ = 1.67.
Results are shown in figure 3. The bold continuous line represents the energy of the streaks

εstreaks, while the thin line corresponds to the energy of the 3D perturbation ε3D. The energy of
the unperturbed streaks resulting from the purely 2D run (ε2D

streaks) has also been plotted (dashed
line) for comparison. The streaks energy loss with respect to the unperturbed streaks as the
3D perturbation grows, confirms the streak breakdown mechanism. Figure 4 features the cross-
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Figure 3. Time evo-
lution of the energy of
the streaks (bold line)
and of the 3D pertur-
bation (thin line) devel-
oping from the initial
disturbance described in
equation (26) for Re =
3000. The energy of
the unperturbed streaks
in figure 1 has also been
represented (dashed line)
to allow comparison.

sectional axial-velocity contours of the 3D run at the same times as in figure 3. The velocity
profile is the same (to plotting accuracy) for both simulations up to t = 35, when the streaks are
already established. From this point on, while the 2D run shows the ensuing evolution of the
streaks, in the 3D runs we attend to their destabilisation (t = 50) and subsequent breakdown
into a completely unstructured flow (t = 150).

4. Characterisation of global perturbations
Even though the HP flow is linearly stable for all values of Re, it is unconditionally stable for
small values only. Beyond this lower critical Reynolds number within the range Re ∈ [1760, 2300],
finite amplitude perturbations capable of inducing permanent turbulence exist. It is a well known
fact that the critical amplitude of the perturbation that makes the flow depart from laminarity
diminishes when increasing Re. The most accurate experiments have been able to maintain
laminarity up to Re = 105 [16].

From the point of view of a dynamical system, this may be suggesting that unstable states
bifurcate from branches not connected with the HP solution, thus bounding its basin of
attraction. Perturbations leaving the flow out of this basin, would be captured by this unstable
states leading to turbulence. Some of such coherent states (travelling waves) have been recently
found [4, 5] though their role in inducing turbulence, albeit suspected crucial, is not clear yet.

The main goal of this work is to study the topological structure of the basin of attraction of
the basic regime. A way of doing so is by finding, as a function of Re, the minimal amplitude of
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(e) (f) (g) (h)

Figure 4. Axial velocity contours on a cross-section corresponding to the points marked in
figure 3. Snapshots are taken at the same times as in figure 2.

a perturbation capable of triggering transition. Any perturbation (u) can be expressed in terms
of its normalised energy, ε(u), and of its modal distribution or perturbation shape û,

u = ε(u) û. (30)

The critical amplitude is then defined as

Acr =
√

εcr, (31)

where εcr is the minimum energy associated with the most efficient shape, among all possible
modal distributions. To properly find Acr(Re), a three-fold parametric study would be required,
exploring all relevant Re and perturbation shapes (axial and azimuthal wave numbers l and
n, and radial profiles), and testing as many perturbation energies (ε0) as necessary to bound
criticality. The limiting factor of such a study is the existence of an infinity of possible
perturbation shapes. Although the number of possible modal energy distributions becomes finite
once the problem has been discretised, searching for the optimal shape is not feasible, even for
coarse grained computations. Instead, reviewing results from previous parametric studies and
making some additional assumptions, it appears reasonable to fix the shape of what seems to
be a nearly optimal perturbation (optimal in the sense of its ability to trigger transition with
minimal initial energy) and proceed to sweep the two remaining parameters.

We will restrict our study to the streak breakdown scenario, presented in section §3, which
has been proved to be utterly effective in triggering transition. According to Zikanov’s work,
the optimal perturbation at Re = 3000, in the presence of streaks originated from an initial 2D
perturbation of energy ε02D = 10−2, must excite modes with κ ∼ 1.5. Since the critical threshold
at this Re happens to be located at about this energy value, the optimal perturbation can be
directly deduced from this result. Nothing can be said, however, about the critical perturbation
at higher Re. Zikanov’s analysis elucidates which value of κ is most amplified at Re = 3000 as
a function of ε02D, and what the effect is of increasing Re at a given ε02D for the optimal κ’s at
Re = 3000. The effect of increasing Re, combined with a reduction of ε02D has not been examined.
This combination is crucial to tracking the critical amplitude threshold. Some prospective runs
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with the fully non-linear code at high Re seem to suggest that the optimal κ is the same or
slightly higher in the proximity of the transition threshold. The aforementioned correlations are
summed up as follows: {

Acr = minκ Âcr(Re, κ) = Âcr(Re, κopt)
κopt = κopt(Re, A)

(32)

where Âcr is the critical amplitude of a perturbation exciting axial wave number κ. Acr can
only be obtained after an iterative process, as it depends on κopt, which in turn depends on A.

Bearing all these results in mind, the initial perturbation for all runs is chosen to be
composed of a two-dimensional streamwise-independent non-axisymmetric (2D) perturbation
with azimuthal wave number n = 1 plus a streamwise-dependent three-dimensional (3D)
perturbation exciting axial wave numbers in the range κ ∈ [1.5, 2.2]. The azimuthal wave
number of this latter component of the perturbation is chosen to be n = 0,±1, since some
energy-field plots from Zikanov’s study reveals a predominance of this kind of symmetry. The
bulk of the initial energy is then assigned to the 2D component of the perturbation (ε02D) while
the 3D component takes only ε03D = 9 ·10−8, evenly distributed among several modes (n = 0,±1,
κ = 1.5625, 1.875, 2.1875). The amplitude of the perturbation is defined as

A =
√

ε2D + ε3D � √
ε2D. (33)

Regarding the radial profile of the perturbation, only the simplest distribution of velocities
compatible with the divergence-free and boundary conditions is used. The resulting perturbation
is analogous to that described in (24), with the only exception that the 3D component excites
modes with n = 0,±1 and κ = 1.5625, 1.875, 2.1875, instead of |n| ≤ 4 and κ = 1.67.

The resolution for the simulations has been set to L = 16, N = 16 and M = 24
(Mr × Nθ × Lz = 25 × 33 × 33) for a vast exploration, then increased to L = 16, N = 16
and M = 32 (Mr × Nθ × Lz = 33 × 33 × 33) for further refinements intended to accurately
capture the critical amplitude threshold. No substantial differences have been observed when
increasing the resolution. The maximum axial wave number has been set to κmax = 5. These
values correspond to a medium pipe length of Q = 2πL/κmax � 20 pipe radii. The choice
of these values for the parameters implies some compromises. First, the radial resolution
M is conditioned by the maximum axial wave number κmax, since an increasing number of
Chebyshev modes is necessary to properly resolve the eigenspectrum of the linearised Navier-
Stokes operator. Second, it is interesting to have κmax much bigger than that of most rapidly
growing three-dimensional perturbations in the presence of streaks in order to capture some of
the harmonics. And third, a big κmax takes many axial modes L to represent a long pipe, which
is crucial to capturing long axial wavelength phenomena.

The perturbation to the basic flow constitutes therefore a global disturbance and is applied
as an initial condition of the form

u0 = u0
2D + u0

3D, (34)

with
u0

2D = A2D eiθ (−if1(r), f2(r), 0) + c.c., (35)

and
u0

3D =
∑

l=5,6,7

∑
n=0,±1

Aln
3Dvln + c.c., (36)

where the fields vln are

vln =

{
ei 2π

Q
lz (0, f3(r), 0) n = 0

ei( 2π
Q

lz+nθ) (−inf1(r), f2(r), 0) n �= 0.
(37)
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For the simulation parameters stated, modes l = 5, 6, 7 in equation (36) correspond to axial
wave numbers κ = 1.5625, 1.875, 2.1875, respectively. A2D is chosen so that ε(u0

2D) = ε02D, and
the coefficients Aln

3D are taken to uniformly distribute an initial energy ε3D among the 3D modes.

5. Basin of attraction of the basic flow: results
A first exploration has been carried out with the lower spatial resolution, exploring the range
Re ∈ [2500, 104] for widely spread initial perturbations amplitudes (10−2 � ε � 10−1), in order
to roughly approximate the critical threshold. A second set of runs with the higher resolution
has then been performed to better describe the critical curve and to extend it up to Re = 12600.

It is necessary at this point, to establish a set of criteria to help decide on whether a point
corresponds to a transitional run or not. It is crucial to run up to a time-horizon at which
the streaks have fully developed and the 3D perturbations have had enough time to grow.
This time has been found to be of at least T = 1000 advective time units for the lowest
ε2D at the highest Re explored. However, for Re < 7500, T = 600 has been proven enough.
Experimentally, considering the perturbation is at worst advected downstream at the basic flow
maximum axial speed, this is equivalent to having the observation point at 300 to 500 diameters
distance downstream from the perturbation point. The longest constant mass flow rig used in
experiments allows to make observations up to 530 diameters downstream from the perturbation
location [7], which our time-horizons represent well enough. Checking for turbulence after this
time is therefore a reasonable approach, and this is done by a bare eye inspection of the modal
energy distribution. A simulation run is considered turbulent if the energy associated to the
excited 3D modes remains three orders of magnitude above its initial level for t ≥ T , evolving
in a chaotic way, and the energy of the 2D mode has fallen to the same order of magnitude
than that of the 3D modes (implying that the streaks have been broken). This is summarised
as follows:

ε3D(T ) ≥ 103 ε3D(0), (38)

and
O(ε2D(T )) ∼ O(ε3D(T )), (39)

for a turbulent run, otherwise laminar.
For low Re, however, transition for a limited time-window with an eventual relaminarisation

has been consistently observed. These runs would have appeared as turbulent depending on the
position of the observation area in an experimental rig. We will label these runs as relaminarised,
separating them from turbulent and laminar runs. The existence of this phenomenon suggests
that some of the runs considered turbulent within a time-horizon of T = 600 may have
relaminarised if longer runs had been envisaged.

Figures 5a, 5b and 5c illustrate a laminar, a turbulent and a relaminarised run, showing
the time evolution of the energy of the modes excited by the initial perturbation. The bold
line starting at a higher energy level corresponds to the energy of the mode excited by the 2D
perturbation (n = 1 and κ = 0), which constitutes a reliable signature of the development of
the streaks. The other 9 thin lines are the energies of the modes directly excited by the 3D
perturbation (n = 0,±1 and κ = 1.5625, 1.875, 2.1875). From figures like 5a, 5b and 5c, it
can be concluded whether the flow is laminar or turbulent by looking at the regular or chaotic
evolution of the energies.

The differences among the three runs are clearly visible in the examples plotted. In the case
of the laminar run (figure 5a), the 3D perturbation is only temporarily excited once the streaks
have developed. Nonetheless, this tendency is soon reverted and their energy rapidly decays
before having been able to perturb the streamwise streaks. The initial response of the energies
in the case of the turbulent run (figure 5b) is completely analogous. It differs from the laminar
run only in that the 3D perturbation manages to grow fast enough in the presence of the streaks
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Figure 5. Time evo-
lution of the energies of
the 2D mode (bold line)
and of the 3D modes
(thin lines) correspond-
ing to a) laminar, b)
turbulent and c) relam-
inarised simulations. In
all three cases, the spec-
tral resolution has been
fixed to Mr × Nθ × Lz =
25 × 33 × 33.

to actually break them and set off the peculiar chaotic dynamics of turbulent motion. This streak
breakdown can be spotted on the 2D mode energy, which parts from the evolution it would have
had in a purely two-dimensional run. The only difference with the relaminarised run (figure
5c), is that the new dynamics are sustained for the whole run, while for the latter, the turbulent
motion is abruptly interrupted and the energy of the 3D modes start decaying rapidly whilst
the streaks recover temporarily to slowly vanish afterwards.

The results of the coarse exploration, classified according to the criteria detailed above, are
shown in figure 6. White triangles (
) represent laminar runs, black circles (• ) denote turbulent
runs and empty circles (◦ ) correspond to relaminarised runs (i.e., runs for which transition is
observed, but followed by relaminarisation). The critical amplitudes, obtained from the refined
exploration, have been marked with crosses (×). It is remarkable how relaminarisation is very
common at low Re, where the HP flow preserves sound stability properties and considerably
big perturbations are required to trigger transition. As expected, Acr is a decreasing function
of Re. In fact, the double threshold Recr − Acr(Re) is evidenced by the behaviour of the slope,
very pronounced at low Re (allegedly converging to a vertical asymptote at Recr), and getting
milder as Re increases. The region marked in figure 6 with a square has been zoomed on in
figure 7.

It is believed that the minimum destabilising amplitude decreases as a power of Re for Re
tending to infinity (Acr ∼ Reγ). This has been formally proved to be the case in plane channel
flows such as plane Poiseuille and plane Couette, for which the asymptotic exponent has been
shown to be γ = −3/2 and γ = −1, respectively [17]. This behaviour would appear in a log-log
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Figure 6. A vs Re, containing the results
from the coarse exploration. Laminar (
),
turbulent (• ) and relaminarised (◦ ) simula-
tions are represented. The critical amplitudes
resulting from the refined exploration are also
marked (×).

Re

A

104

10−2

Figure 7. Zoom on the square box in figure
6. All simulations (coarse and fine) are
represented. The symbols retain the same
meaning as in figure 6.

plot as a straight line of slope γ, and this is exactly what the critical threshold line seems to
converge to towards the right side of the plot. These numerical experiments suggest that pipe
Poiseuille flow follows the same behaviour as other shear flows with a slope γ = −3/2, at least
within the studied range.

6. Discussion
In contrast with this result, some numerical studies [5, 4, 20], seem to be consistent with the
experimental value of −1 recently obtained in a constant mass flux long pipe [7]. We claim that
the origin of the discrepancy can be ascribed to differences in the problem formulation. The
present study concentrates on an initial condition problem, leaving a global perturbation on the
basic flow free to evolve and either develop into turbulence or eventually decay. The focus is,
then, on the amplitude of the minimal initial global perturbation capable of sparking transition.
Instead, the experimental setup deals with local perturbations violating the boundary conditions
(fluid is injected) and which are extended in time. Furthermore, the perturbation is structuraly
rigid in the sense that its shape cannot be modified at will. The 6-jets oblique injection used by
Hof, Juel & Mullin in their experiments mainly excites azimuthal modes with n = 3 and high
axial modes, that have been proved to be not optimal, according to the present computations.

Another point of concern is the definition of perturbation amplitude, which is very naturally
based on energy considerations in our numerical runs, while somewhat confusing in experiments,
where it is merely based on the injection to total pipe mass flow ratio, regardless of the overall
duration of the injection. Some attempts have been made [18] to relate the amplitude definition
used in several experimental [19, 8] and theoretical [17] studies. In any case, it is remarkably
astonishing that the experiments find the asymptotic behaviour from Re as low as 2000.

With regard to the recent numerical study [4], from which a γ = −1 can be deduced, although
not explicitly computed, significant differences make it difficult to compare with our own results.
The main differences concern the initial perturbation shape, which Faisst and Eckardt generate
randomly. This sets the stage for an oblique transition rather than the streak breakdown scenario
we have adopted. Although their results are very valuable for a statistical analysis of transition,
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the fact that energy may be wasted on irrelevant modes, together with the low Re to which
their simulation runs correspond, make their results not readily comparable to ours. Another
computational study [20] explores the linear stability of the perturbed pipe basic flow. The
amplitude of the optimal perturbation on the basic flow rendering it linearly unstable is found
to scale as Acr ∼ Re−1. This is completely different from searching for the minimal finite
perturbation destabilising a solution that, nevertheless, remains linearly stable, as is the case in
our analysis.

7. Conclusion
The streak breakdown scenario has been shown to be a powerful mechanism of inducing transition
to turbulence. It is, therefore, a good candidate to help to characterise the basin of attraction
of the Hagen-Poiseuille flow. The critical amplitude threshold has been found to tend towards
an exponential law of the Reynolds number with exponent −3/2, within the studied range.

The authors do not claim that the present computations prove an asymptotic behaviour
of Acr, as Re tends to infinity, of the form Acr ∼ Re−3/2. Besides, the optimality of the
chosen initial perturbation cannot be guaranteed from such a restricted exploration as we
have performed. We envisage a computational study solving a problem closer to that of the
experimental setup, with perturbations induced by a forcing extended in time, and compatible
with the effects of the injection inflicted upon the experimental basic flow. We expect this will
cast light on the reasons for the different behaviour observed. This study is under progress.
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