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Streak breakdown instability in pipe Poiseuille flow
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This work is devoted to the study of the stability of Hagen—Poiseuille flow or pipe flow. The
analysis is focused on thestreak breakdown process by which two-dimensional
streamwise-independent finite amplitude perturbations transiently modulate the basic flow leading to
a profile that contains saddle points and is linearly unstable with respect to very small
streamwise-dependent perturbations. This mechanism is one possible route of transition to
turbulence in subcritical shear flows. The exploration is carried out for initial disturbances of
different finite amplitudes and axial and azimuthal periodicity. This study covers a wide range of
Reynolds numbers and the double threshold curve obtained for transition is consistent with
experimental observations. @003 American Institute of Physic§DOI: 10.1063/1.1564093

I. INTRODUCTION arises when the open flows are modelled numerically by ar-

tificially assuming periodicity in the streamwise direction of
Hydrodynamic instability of pipe flow remains one of the flow.

the oldest and yet unsolved problems of fundamental fluid The numerical simulation of p|pe flows is not a new

dynamics. Pipe or plane Couette problems belong to a pagnatter. This problem has been previously simulated by dif-
ticular family of shear flows which are usually termed ferent numerical schemes in the p4stin recent works>!
subcritical” From a mathematical point of view, these flows the |inear stability and transient growth of perturbations in
are linearly stable, i.e., the spectrum of the linearizedyipe flow were studied by means of the linearization of the
Navier—Stokes operator around the basic flow always lies oRgyier—Stokes equations and it was found that stream-
the stable half of the complex plane. Therefore, any infini-yise-independent vortices were optimally amplified by linear
tesimal perturbation added to the basic flow must eventually,;nnormal mechanisms. It has long been known that stream-

decay. Nevertheless, these flows become turbulent in thgise yortices and nonnormality of the linear operator are two
laboratory. For instance, below a critical Reynolds numbery,qia| requirements for the subcritical transition to turbu-

Re., in the range 1768Re=2300, pipe Poiseuille flow ..o in shear flows!® These two-dimensional structures

goes nlgt eXh'kE)'t a Eysr:amtid trans:ct.m'? to tulr.l;)uclie%*r'g'ﬁ ?r grow transiently and modulate the basic flow, leading to a
eynolds numbers higher than Ra finite amplitude distur- new velocity profile which containstreaks i.e., regions

bance is required to destabilize the flow. Experimental and : : . . .

. : T . Where the flow attains high or low relative axial speeds. This

numerical evidence suggest that transition in pipe flow is . . . )

" . new flow contains saddle points and, in a transient sense,

extremely sensitive to the size and structure of the perturbe}—S linearly unstable with respect to three-dimensional
tions. Pipe flow instability differs from that of other classical y P

o d4
flows such as Taylor—Couette or Rayleigh—Benard where thgerturbaﬂon&. . . -
basic profile becomes unstable by means of a local In a beautiful work, Zikanot analyzed the stability of

bifurcation® In those problems, the instability is character- f[he Hagen—queunle ﬂ_OW by means (_)f adding strear_nwse-
ized by a sharp critical value of the control parameter, théndependent finite amplitude perturbations to the basic flow

Reynolds number or the Rayleigh number, above which th@nd exploring the linear stability of the resulting time-

basic flow becomes linearly unstable. In that case, the agreg_ependent streaks with respect to infinitesimal streamwise-

ment between experimental results and numerical Simu|aerendent disturbances. Zikanov concluded that this time-

tions is very good. Besides, in these problems, the flow idependent flow was linearly unstable with respect to certain
confined to a finite size domain, i.e., they arelosediows. streamwise-dependent perturbations with a preferred axial
Pipe flow is a prototype obpenflow and its study is more Periodicity, depending on the Reynolds number and the ini-
complicated. In open flows, the perturbations are eventuallfi2! @mplitude of the two-dimensional perturbation. This sug-
advected downstream and they leave the domain, making gests that the streaks would eventually be destabilized lead-
impossible sometimes to determine the laminar-turbulentd to the usually termedstreak breakdownscenario.
character of the dynamics for long times. Another difficulty Therefore, the main goal of this work will be to study the
nonlinear time evolution of a particular type of perturbations
dpresent address: Department de Fisica Aplicada, Univ. Bniite de Cata- N pipe rovy and to identify the Strea.lk br?akdO\.Nn mechanism
lunya, C/Jordi Girona 1-3, Mod. B5, 08034 Barcelona, Spain; electronic@S & POSSlbIe route to t'urbUIence in this particular proplgm.
mail: alvar@fa.upc.es We will focus our attention on the early stages of transition
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to turbulence; the study of fully developed turbulent flow is Q={(r,0,2)|0=sr<1, 0=6<2m, 0<z<Q}, (6
beyond our scope.

The paper is structured as follows. In Sec. Il we formu-
late the problem mathematically and the numerical methodf™™
used are outlined. Section Il is dev_oted to _the study of _the Vg=(Ug,vg,Wg)=(0,0,1-r?). (7)
formation streaks, as a result of introducing streamwise- ] )
independent perturbations. In Sec. IV we provide a comprefinally, the parameter which governs the dynamics of the
hensive exploration of the streak nonlinear instability byProblem is theReynolds number
adding a very small streamwise-dependent component in the aUc,
perturbation field. This section leads to the exploration car- Re= o (8
ried out in Sec. V, where we determine the critical amplitude
of transition for a wide range of Reynolds numbers. Finally,For the stability analysis, we suppose that the basic flow is
we have included an Appendix devoted to the spectral forperturbed by a solenoidal velocity field vanishing at the pipe

whereQ=Db/a. In the new variables, the basic flow takes the

mulation of the numerical method. wall

v(r,0,z,t)=vg(r)+u(r,6,z,t), V-u=0, u(r=1)=0,
Il. MATHEMATICAL FORMULATION AND NUMERICAL 9)
METHODS

_ _ _ _ _ and a perturbation pressure field
We consider the motion of an incompressible viscous

fluid of kinematic viscosityr and densityp. The fluid is p(r,0,2,t)=pg(2)+q(r,0,z,1). (10)
driven through a circular pipe of radiesand infinite length  op, introducing the perturbed fields in the Navier—Stokes

by a uniform pressure gradieritly, parallel to the axis of equations, we obtain a nonlinear initial-boundary problem
the pipe. The motion of the fluid is governed by the incom-for the perturbations: and g

pressible Navier—Stokes equations

1
I, . du=—-Vq+ —Au—(vg-V)u—(u-V)vg—(u-V)u,
G+ (V-V)V=— —27—Vp+ vAv, (1) ‘ 9" Re (Vo-V)u=(U-V)ve= (V)
p (12)
V.v=0, ) V-u=0, (12
wherev is the velocity vector field, satisfying the no-slip u(1,6,2,)=0 (13)
boundary condition at the wall, e ’
—+ =
Vpipe wal= 0, 3) u(r,6+2mn,z,t)=u(r,6,zt), (14)
andp is the reduced pressure. We formulate the problem in ~ U(r,6,z+1Q,t)=u(r,6,z1), (15
cylindrical coordinates. The velocity of the fluid is pre- u(r,0,20)=uy, V-Uy=0, (16)

scribed by its radialr), azimuthal(€), and axial(z) compo-
nents for (n,l)eZ?, (r,0,z)e[0,1]X[0,27)x[0,Q) and t>0.
Equation(11) describes the nonlinear space-time evolution
of the perturbation of the velocity field. Equati¢h?) is the
whereu, v, andw depend on the three spatial coordinatessolenoidal condition for the perturbation, and EG)—(15)
(r,0,z) and timet. A basic steady solution of Eg§l), (2), describe the homogeneous boundary condition for the radial
and (3) is the so-calledHagen-Poiseuille flow coordinate and the periodic boundary conditions for the azi-
muthal and axial coordinates respectively. Finally, 8®) is

v=Uf -+ 0+ w2=(u,0,w), (4)

2 2
VB:(UB!UBaWB):(OyOa_ Ioa _(r , the initial solenoidal condition for the perturbation field at
4pv a t=0.
p=1I14z+C (5) We discretize the perturbation fieldin Egs.(11)—(16)

_ _ _ . . by a spectral approximations of orderL in z orderN in 6,
whereC is an arbitrary constant. This basic flow is a para-gnd ordem in r,

bolic axial velocity profile which only depends on the radial

coordinate”® The velocity of the fluid attains a maximum us(r,6,z,t)=(us,vs,Ws)

value Uc = —11ya%/4pv at the center-line or axis of the L N M

cylinder. =2 2 2 AV Pin(r,6,2), (17)
Henceforth, all variables will be rendered dimensionless ==L n=-Nm=0

usinga and U, as space and velocity units, respectively.  hereq, aretrial bases of solenoidal vector fields of the
The axial coordinate is unbounded since the length of the form

pipe is infinite. In what follows, we assume that the flow is _
axially periodic with periodb. This assumption, though Dy y(1,0,2) =€ CTZHRENy (), (18

physically artificial, enables us to study many phenomena fogatisfying
an infinite pipe providedb is not too small. In the dimension-
less system, the spatial domdihof the problem is V-®,,=0, (19
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_ _ _ 11 :
for I=—L,....L, n—.—N,....,N 'an.dm—O,...'M. The.tnal ad, = anm(t=0)= (¥ m,ud). (30)
bases(18) are analytic, periodic in the axial and azimuthal

directions, and satisfy homogeneous boundary conditions, FOF the time integration of Eq26) we have used a fourth-

order implicit backwards differentiation method for the lin-
Dyn(1,0,2)=0, (200 ear terms in combination with a fourth order explicit
at the wall. Therefore, Eqé12)—(15) are identically satisfied Adams—Bashforth methotifor the nonlinear ones. The time
by our spectral approximation. The spectral Petrov—Galerkifnarching process was started with a fully explicit fourth-
scheme is accomplished by substituting expansion in  order Runge—Kutta algorithf.
Eq. (11) and projecting over a set oéstvector fields

lIIlnm(rr012):ei<27TIZ/Q+ne)’\vllnm(r): (21)

satisfying

Ill. STREAMWISE STREAKS

In this section, we study the nonlinear evolution of
V¥,n=0. (22 streamwise independent perturbations, henceforth referred as

Explicit expressions for the trial and test fields,, and 2D-perturbations, recently studied by ZikartvFrom the

Vinm, can be found in the Appendix. Overall, the projection equation of the perturbatiofll) it is straightforward to see
scheme is summarized by that an initial streamwise-independent field remains indepen-

dent ofz for all time t>0, i.e., the nonlinear terms preserve

_ 1 their streamwise symmetry provided that the basic flow has
(Winm,9is) =| Winm, goAls— (VerV)Us~ (Us'V)Ve axial component only. Zikanov exploited this property to
split the perturbation as a sum of finite amplitude 2D-
_(US‘V)US)a (23)  Pperturbations and infinitesimal streamwise-dependent 3D-
perturbations.
forI=—L,...L, n=—N,....N andm=0,...M, where the We define theenergyof an arbitrary vector field as the
inner product-,-) is the volume integral over the domain of inner product
the pipe: 1(Q 27 1
0 r2w 1 E(u)=§f dzf db’f rdru*-u. (32
(a,b)=J f f a*-brdrdedz. (24) o e e
0 Jo 0

With the previous definition, a straightforward calculation

We have not included the pressure téfim of Eq. (11) inthe  leads to the energy of the Hagen—Poiseuille flow,
projection schem&3). One of the advantages this method is o
that the pressure term is cancelled in the projection, i.e., EszgQ. (32

(Winm,Va)=0; 29 Henceforth, we will normalize the energy of the perturba-
see Canutet all” or Leonard and Wra¥f for example. tions with respect to the basic quantiy,s. We define the
Once the projection has been carried out, the spatial deelative energyor more briefly just “energy,” of an arbitrary
pendence has been eliminated from the problem and a noiperturbationu as the ratio
linear dynamical system for the amplitudag,, is obtained.
. ) E(u)
Symbolically, this system reads e(u)= =
HP

(33

AlMMa ar=B"Ma —biym(a,a), 26, . _ . .
par@par= Bpardpar~ Pinm(@,2) 26 For the comparison with the computations carried out by

where we have used the convention of summation with rezikanov we consider a perturbation of energywith initial
spect to repeated indices. The discretized operataaadB  conditionu in Eq. (30), which is prescribed by field
appearing in Eq(26) are the projections

| Upp=Ao®@y15+C.C., (34)
Apt= (W, P 2
par— (Winm  Ppqr) @1 where ®{) is given by Eq.(A4) andA, is a real constant
and such thate(ug)=eo. This is equivalent to considering the
1 simplest analytic nonaxisymmetric streamwise-independent
B'p“q”r"= lIf,nm,R—eAd)pqr—(vE,,-V)cI>pqr—((I)pqr-V)vB). field, with azimuthal wave numbem=1. As a result, the

29) initial perturbation has radial and azimuthal velocity compo-
_ o nents, the axial one being zero. We have computed the evo-
The quadratic fornb,,(a,a) appearing in Eq(26) corre- |ution of the initial condition(34) for different initial ener-
sponds to the projection of the nonlinear convective term gies. For this particular computation, we have usée 6
Binm= (Yinm,(Us'V)usg). (29  radial solenoidal modes ard=9 azimuthal withAt=0.1.

In Fig. 1 we have plotted th&(t) growth factor of the
For computational efficiency, this term has to be calculategherturbation, defined as

via a de-aliased pseudospectral methoBinally, the initial
value problem is prescribed by the coefficieaf#m repre- G(t)= ﬂ (35)
senting the initial vector fieldxg given by €0
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10°— T amplification factor reaches a maximum valueGof 620 for
B HA — t~143. This is in agreement with the former linear
analyses®!! where the maximum amplification factor was
Gax—649 fort~147. In Fig. 2 we have plotted the modu-
lated axial flow, wg+wg, at t=0, t=17, t=75 andt
=150, corresponding to the cureg=1x 102 of Fig. 1 and
Re=3000. In Schmid and Henningsdhfor example, the
maximum transient growth was obtained via the singular
value decomposition of the exponential map of the linearized

G(t)

10t Navier—Stokes operator. This procedure gives the optimal
initial conditions as right singular vectors that optimize the
growth for a prescribed time. In our computations, we have
considered the simplest initial streamwise vortex reproduc-

10° ; ible by our Galerkin approximation, providing 96% of the

0 50 1?0 150 200 optimal growth computed with nonmodal linear methods.
Figure 2d) recovers the computation originally carried out
FIG. 1. Growth factoiG(t) for different initial energies for Re3000. This by Zikanov for the same initial energy. Fo= 150, we can
plot was generated using=9 azimuthal modesM =6 radial modes and  ohsarye the formation of streaks by the lift-up effect, where
At=0.1, but further experiments show that it is converged to plotting accu-, . . . . . .
racy. high speed axial flow is driven to low axial speed regions
near the walf! The first important feature of this transient
flow is the presence of saddle points in its profile. This would
originally considered by other auth8r€ in the transient lead to an inviscid instability when perturbing the flow with
growth analysis of pipe flow. 3D-disturbances. The second is that this transient regime is
In all cases studied, the agreement with Zikanov's com-almost steady, as we observe more clearly from the bottom
putations is very good. As long as the initial energy goes tecurve in Fig. 1, where the amplitude of the perturbation is
zero, the nonlinear effects become negligible and the dynanmaimost constant for a long period of time. This feature pro-
ics is governed by the linear nonnormal mechanism. This isides the flow the property of being potentially unstable
clearly seen in the top curvor e,=1x10"°), where the when 3D-infinitesimal perturbations are present, provided

(a) (b)

FIG. 2. Formation of streaks for the R8000 ande,
=1x10"2. Modulated axial flowwg+wg at: (a) t
=0; (b) t=17; (c) t=75; and(d) t=150.
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that the formation of streaks occurs before the viscous effects 10° . . .
become significant. This stability analysis can be carried out
by linearizing the Navier—Stokes equations in a neighbor-
hood of the quasi-steady modulated 2D-flow. This is Zi-
kanov's approach; he studied the linear evolution of three-
dimensional perturbations once the streaks were already
developed. Zikanov observed transient exponential growth of ”
3D-perturbations for some range of axial wave numbers as ¢
clear indication that the 2D-streaks, even quasi-steady, aré
linearly unstable.

Re =1000

IV. STREAK BREAKDOWN _ENM

In this section we study the nonlinear evolution of very ,
small 3D-perturbations superimposed to the 2D-initial distur-  ° 150 3%
bances considered in the previous section. According to the
explorations provided by Zikanov, there are three factors that '
determine the efficiency of the streak instability. The first b
factor is the initial amplitude of the 2D-perturbation. The
second one is the fundamental axial wave number, 107
=2m/Q, of the 3D-perturbation. The efficiency of the expo-
nential instability of the streaks strongly depends on the
combination of the last two factors. For a given amplitude of 10™f
the initial 2D-perturbation, there is always an optimal axial ¢
wave number which exhibits a maximum growth. This axial
wave number goes to zero as long as the initial amplitude !
decreases, as expected from the nonmodal analysis carrie
out by Schmid and Henningsdf Finally, the efficiency of
the instability mechanism is strengthened when increasing _ .
the Reynolds number, the third factor. Another aspect that
should be considered would probably be the time at which o 00 250 500
the 3D-perturbations are added to the modulated 2D-flow. t
For example, Zikanov fixed this time to=30 for all his FIG. 3. Time evolution of the energy of 2Qhick curve$ and 3D (thin
computations, provided that the streaks were already deveturves perturbations for different values of Re. For these computations, the
oped at that time in the particular cases he studied. aspect ratio waf)= = (i.e., the lowest nonzero axial wave numberkis

Our exploration differs from Zikanov’s analysis in three =2)- We usedV =14 modes i, N=7 in ¢ andL =1 in z. The time step

. . . . is At=5X10"2. In each one of the cases, we have not found any qualitative
different aspects. First, we solve the full nonlinear NaVIer_difference when increasing the spectral order. For legends, see text.

Stokes problem so the 3D-perturbations evolve dictated not
only by the linear advective coupling with the basic flow and
the 2D-streaks but also by the three-dimensional nonlineari- 0 _ (1)
ties. Second, we include the 3D-perturbations from the be- Uzp=AoPosot C.C St
ginning rather than including them once the streaks are deand u3, is the streamwise-dependent contribution,
veloped. The reason for doing this is that we do not krsow 0 _ 1 1
priori what time will the streaks require to appear since the U3p=A( Pl Pigy + C.C. (38)
initial amplitude of the perturbation and the Reynolds num-where®{}), ®}) and®{}) are given in the Appendix and
ber will be different for each one of our explorations. Third, the factorsAy and A, are suitable constants so that the en-
we fix a particular axial wave number of the 3D- ergy of the 2D and 3D modes is distributed as follows:
perturbations based on Zikanov’s explorations; a comprehen- 0 +_ 2D 0 _ 3D
sive study for different axial periodicities is computationally up)=e’, e(Uzp)=e (39)
very expensive. More specifically, we have considered thoséor prescribed valuega® and €3°, satisfyinges°<e3".
axial modes that provided an optimal growth in the time- In Figs. 3 and 4, we have plotted the time evolution of
dependent linear analysis. the energieg??(t) and€°(t), corresponding to the 2D and

In what follows, we split the initial perturbation in two 3D perturbations, respectively. The computations have been
parts made for Reynolds numbers increasing from=R€00 to
Re=3000 and foilQ= 7, i.e., the lowest nonzero axial wave
number isk=2. We have selected this axial periodicity ac-
where ugD is the streamwise-independent component givercording to the computations carried out by Zikanov, where
by the optimal wave number was arouker1.5. In each plot,

450 600

Re = 2000

0 0 0
US: U2D+ U3D, (36)

Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1208 Phys. Fluids, Vol. 15, No. 5, May 2003 Alvaro Meseguer

10°La . ‘Re = 2500

107 F Re = 4000

10" Re = 3000 1 10-10 H H L
0 150 300 450 600
t
) 150 300 450 600 ] ) ) )
t FIG. 5. Time evolution of the energy of 2hick curve$ and 3D (thin

curves perturbations for Re4000. At the top, the three-dimensional per-
turbations are too weak to destabilize the streak. At the bottom, a three-
dimensional perturbation of energy 10triggers instability. The spectral

and time resolution in these computations was the same as in Figs. 3 and 4.
three independent integrations have been carried out, always

starting with 2P=1x10"2 and €°=1x10"%, €3°=1

X108 or eSDzlx 108, In this exploration, the spectral Re=3000 (Fig. 4, bottom, all the three-dimensional distur-
resolution was fixed tt = 14 radial moded\ =7 azimuthal bances suffer an exponential instability, leading always to the
modes andL=1 axial modes, with a time stedt=5  streak breakdown phenomenon. In all the cases studied, the
X 10" 2. Many features should be pointed out. For-R®00 average lifetime of these turbulent or chaotic regimes de-
(Fig. 3, top, the streaks do not appear, and the two and threpends drastically on the Reynolds number. Therefore, any
dimensional energies decay almost monotonically for longsmall perturbation might eventually decay tdong enough,
times. We observe that the three-dimensional perturbationss observed for Re2500 (Fig. 4, top, for e3°=1x10°.
evolve almost identically in the three independent integra-This would be in agreement with former numerical experi-
tions. This is because the nonlinearities are still negligible aments where it was suggested that, even some perturbations
that stage and the evolution mechanism is basically lineamay survive for long times, turbulence in this particular
For Re=2000 (Fig. 3, bottom, the streaks already appear problem is only a transient phenomerfdn.

and we can identify for the first time the growth of the 3D- In Fig. 5, we have carried out another computation for
perturbation for the three cases, where we have labeled tHggher Reynolds number, Rel000, and lower amplitude of
three different evolutions in order to identify the energiesthe initial perturbatione3®=1x 102, This computation has
corresponding to each one of the integrations. Neverthelesbeen done in order to point out that the amplitude of the
this growth is only transient and the perturbations eventual8D-perturbation becomes crucial as long as the initial ampli-
decay. For Re2500 (Fig. 4, top, only the smallest 3D- tude of the 2D-perturbation decreases. In the first ¢ege
perturbation, foregDzlx 108, is not strong enough to sus- Fig. 5), we see that three independent 3D-perturbations of
tain the streak instability fot>450 (curve 8, whereas the energieses’=1x10 1%"°"8 are not strong enough to de-
other two initial conditions clearly trigger transitiqourves  stabilize the streak. We observe again the remarkable simi-
b and ¢, leading to a sustained chaotic evolution. Finally, forlarities of the evolution of the 3D-perturbations until they

FIG. 4. Same as Fig. 3, for R&500, 3000.
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reach their maximum amplification, where the linear mecha- 1¢°
nisms are much stronger than the nonlinear ones. In this
case, the threshold three-dimensional energy for this instabil-
ity mechanism is of order 10; see Fig. 5, bottom. As men- s
tioned before, the initial amplitude of the 2D-perturbation ¢'° |
remarkably modifies the instability mechanism. This is re-
flected in the relative delay of the growth of the 3D- : :
perturbations observed in Fig. 5 with respect to those seenin 107 : : g
Figs. 3 and 4. For lower initial energie§”, the streaks need , , ;
longer times to appear and trigger growth of the 3D-modes. 0 50 -+ 100 150 200 250
For example, foes°=1x 102, the 3D-modes start growing !
almost exponentially fot=10 approximately(Fig. 4). For
€2P=1x10"2 this growth does not start untit- 70 (Fig. 5).
The Reynolds number affects the slope of the exponential
growth. When Re is increased from 2000 to 3000, the growth ¢~
rate is increased as welFig. 3, bottom, and Fig. 4 This &
growth rate is also affected when the amplitudeegf is v :
decreased. Figure 5 shows that when the Reynolds numberis _, o . : L=3
increased to Re4000, the growth rate of the 3D-modes is o o ' N
remarkably reduced. 0 50 100 150 200 250
In all previous computations, we only included one t
streamwise dependent mode, iles 1. At a first glance, this 10°
may sound a bit drastic truncation and requires a numerical
exploration to justify its validity. We have carried out com-
putations including higher harmonics in the axial variable,
that is increasing the spectral order The motivation for g
doing this is to check whether these higher frequencies sub-
stantially affect the streak breakdown mechanism or not. In
Fig. 6, we have represented the time evolution of a same 4197 s
initial perturbation for increasing values offor Re=4000 : ‘ ;
andQ= . In these computations, we consideige 7 azi- 0 50 100 150 200 250
muthal modesM =14 radial modesAt=5x10"2 and L t
=1, 3, 5and 7. For all cases represented in Fig. 6, the initial
condition is of the form given by Eq36), which originally
assigns energy to the fundamental 3D-modes?, with k
=2. The energies are distributed as befoeg,=1x 10"’
andezP=1x10"°. The higher harmonice™?*? e*1%k7 |
might be activated afterward via nonlinear mechanisms and
consequently affect the efficiency of the mechanism. Never- L=7
theless, we can see that the four integrations lead to a streak '° | v ' ]
breakdown and that the differences are not remarkable at all. 0 50 700 150 200 250
Of course, the evolution is not identicéds expected but 36t
the growth rate of the energy corresponding to the funda-
mental mode and the time at which the streak breakdowﬁ!G. 6. Time evolutio_n of a same initial perturbation for -R&00 and
occurs is essentially the same in the four cases. We hayifferent number of axial modets
proceeded knowing priori that 3D-modes with axial wave

numbers arouné~1.5 were the most effective in this sce- yted once the breakdown has occurred. This phenomenon
nario[Zikanov, Ref. 15, Fig. 1@]. The nonlinear coupling can be observed in Fig. 7, where we have plotted four evo-
would trigger higher frequencies which are away from thatjutions of the same initial condition as before, initially feed-
optimal value and it seems that they do not play a verying a fundamental streamwise-dependent mode and for in-
relevant role in this transition. creasing values df. In this comparison we have considered
So far, we have considered initial conditions Whegg the same values foM, N, L, and At as before, but with
<P, and this is key point of our study, i.e., providing more similar energies for the 2D and 3D perturbatioreéP:S
energy to the streamwise vortices in order trigger an inflex-x 10~* and e2°=2€3P. In Fig. 7, we observe that the initial
ional instability potentially unstable with respect to very stages of the evolution of the 3D-mode is almost identical,
small 3D-modes. Wheg3°~ e3P, increasing the number of with a very small transient growth at the beginning and a
axial modes does not remarkably affect the main features alecreasing energy until the 2D-streaks are developed. After
the transition, but it may change the way energy is distribthat, the 3D-modes start growing, eventually breaking the

0

10

107°

10°
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cycle. This second instability is also known ablique
transition®

V. THRESHOLD BOUNDARY OF TRANSITION

One of the main objectives in the study of subcritical
transition in shear flows is to determine the topological fea-

107k e e - tures of the basin of attraction of the basic soluftdGince
i ; ; the minimum amplitude required to destabilize the flow de-
0 50 100 150 200 250 creases when increasing the Reynolds number, it is clear that

the size of this manifold must necessarily shrink as well. In a
recent asymptotic analysis provided by Chapffidor plane
channel flows, it has been proved that the threshold ampli-
tude required for transition decreases with the Reynolds
number like A.~Re”, where y=—5/4 for plane Poiseuille
flow and y=—1 for plane Couette. Of course, the previous
threshold exponents are only meaningful in the context of
asymptotic ranges of the Reynolds number. For intermediate
1070 RN R 1 and even moderately high Reynolds numbers, the critical
; ; amplitude has to be computed either numerically or experi-
0 50 100 150 200 250 mentally. A first attempt at reconciliation regarding the value
of y obtained in laboratory experiments and numerical simu-
lations has been recently provided by Trefetle¢ral ° Two
main problems arise when trying to compare theoretical as-
ymptotics with numerical and experimental results. First,
asymptotic results are impossible to produce in the labora-
tory due to the fact that the pipe has a finite length. Since the
streaks appear after a period of time of or@Re)?* this
- : 5 C L=5 would require very long pipes in order to observe the even-
10 7y . N tual transition. Second, from a numerical point of view, it is
i s i very difficult to provide comparable simulations reproducing
0 50 100 t 150 200 250 the real initial conditions for the experimental perturbations.
In the experiments, fluid is injected from the pipe wall, vio-
lating the assumption of homogeneous boundary condition
for the perturbation field13). Our main purpose has been to
include a coarse three-dimensionality in the nonlinear initial
value problem in order to explore the streak breakdown
mechanism based on different initial amplitudes of the per-
. . turbation field and values of the Reynolds number.
10 ' L=7 In order to make a consistent computation based on the

0 ‘ . P ) experimental time specifications, we considered time integra-
0 50 100 150 200 250 thﬂS. in thg interval (%t<T=25p, e, the time required by

t a fluid particle located at the pipe axis to be advected down-

stream by the basic Hagen—Poiseuille flow a distance of 125

FIG. 7. Same as Fig. 6, but this time with similar initial energies for the 2D . . ; . .
and 3D modes. ’ ? pipe diameters. According to the experiments of Darbyshire

and Mullin, henceforth referred as D&M, the perturbation

was injected 70 pipe diameters downstream of the pipe inlet
streaks fort [100,15Q in the four cases. After the streak and 120 upstream from the outlet. Even the mechanisms of
breakdown has taken place, we observe a difference in thigansition presented here may slightly differ from the ones
nonlinear evolution of the 3D and 2D modes. In particular,triggered in the experiments, each one of our numerical runs
for L=5 andL=7, we observe what seems to be a re-should cover the transition dynamics observed in the labora-
feeding of the 2D-streaks far~200, which appear again tory. We considered the same perturbations as the ones used
although weakener than before. This phenomenon seems o the previous sections, always starting wiﬂ*gD=1
be similar to themother and daughtescenario, originally X107 and €3° ranging from 910 ° to 2xX 1072, We in-
suggested Boberg and BrdSayhere the 2D-modeémoth-  cluded only one streamwise-dependent mode in the integra-
er9 initially feed the 3D-modegdaughters making them tion of axial wave numbek=27/Q=1.5 which is a good
grow and instabilize the streaks. Once the mothers vanisitandidate to trigger transition according to Zikanov’s linear
the daughters reconstruct them again, via nonlinear cowomputations. Our criteria of identification of sustained cha-
plings, making the mothers reappear in order to repeat thetic evolution was based on the energy of the 3D-
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Fig. 8a) represents not the original plot from D&M° but a
reprocessing of that data to make a compar(¢be numbers

on the vertical scale of Fig.(8 are subject to an arbitrary
constant; thus the discrepancy of the vertical axes labels on
the figure is not significamtIn Fig. 8a), black dots represent
experimental transition to turbulence and white dots repre-
sent relaminarization of the flow within the pipe domain. In
Fig. 8b), we have represented the numerical results of our
integrations. The amplitud& on the ordinate axis represents
the square root of the total initial energy of the perturbation
given by

A= + &P (40)

White dots represent those situations where the flow relami-
narized by the time the run was ended. Black dots represent
successful transition. Despite the coarse numerical approxi-
mation of the problem, we observe a significant agreement
with the experimental observations. First, according to our

: - - ——— T computationgFig. 8b)], there is no transition for Re2000.
""""""""""" S S A Second, the threshold amplitude decreases in both cases
: quite similarly. We have included a straight line in both plots
representing the asymptotic curve R&in order to compare

the experimental and numerical behavior. As we see, the
agreement is very good. Nevertheless, it is probably too early
) to associate this apparent agreement with a common mecha-
Qooccee nism of transition. In both explorations, the Reynolds num-
20000000 ber is far from being within an asymptotic range. In fact, the
B "g ] analyses have been done still very close to the vertical
""""" threshold(Re~2000), thus strongly affecting the slope of the
threshold boundary. To put it mildly, experiments and numer-
ics are both providing the samecal slope, none of them
being asymptotic. Besides, in our computations, the pertur-
bations were global, and periodic, whereas in the experi-

(@) Re

000000

G0000GIOO

£
X
T

(b)ma Re L ments the flow was perturbed locally thus triggering very
high axial and azimuthal modes from the beginning. At a first

FIG. 8. Experimental analysis provided by Darbyshire and MulRef. 3 glance, we could argue that the nonlinear selection rules, in

(top, 8 and numerical resultottom, . In both plots, black dots represent 4 mpination with the nonnormal linear operator acting on
those situations were the flow became turbulent, whereas white dots repr:

sent relaminarization. fhe experimental perturbation could lead to a specific selec-
tion of streamwise-independent structures which eventually
are responsible for the transition. We have not explored other
perturbation at the end of each run. In particular, we classimore complicated scenarios such @slique transitiont*?*
fied the run as successfuléfP(t=T)>1x10 %, i.e., atthe which has been proved to be slightly more efficient in plane
end of the run, the energy associated with the 3D-channel flows. In any case, the autlimes notlaim that the
perturbation was still three orders of magnitude bigger tharstreak breakdown is the only responsible for that transition
its initial value. For the exploration, the spectral resolutionby itself. Certainly, the mechanism explored here provides a
was fixed toN=5 azimuthal modedyl =14 radial solenoi- consistent explanation if we compare with the experiments,
dal modes and. =1 axial modes, and the time step was  but the real dynamics occurring in the laboratory are far from
=5x%10"2. No qualitative differences were found when in- being understood.
creasing the number of spectral modes or reducing the time
step. Overall, the number of degrees of freedom in the inte;
grated systen(26) was 1350. VI CONCLUSIONS
We carried out 740 runs whose final results have been A comprehensive exploration of the streak breakdown
outlined an compared with the experimental results in Fig. 8instability mechanism for pipe flow has been provided. The
According to a recent comparative analysis between experanalysis has been based on the numerical integration of the
ments and numerics, the critical amplitudes reported by nonlinear Navier—Stokes equations for the perturbation
D&M were measured in different units from the theoreticalfields. We have considered specific initial perturbations
and numerical results. To make a consistent comparison it iBased on linear stability analyses of time-dependent modu-
necessary to divide the D&M results by one power of Re lated flows provided by other authors. In particular, we used
giving y~—3/2, and this has been done in FigaB Thus very small streamwise-dependent disturbances that, added to
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the finite amplitude streamwise-independent perturbationiEgs. (27) and (28) would be dense, whereas they can be
undergone an optimal growth in the time-dependent lineamade to be banded if one chooses the projection bases as
stability analysis carried out in previous works. In all casesfollows:

studied, the agreement with the experimental results is very  ~55en=0.

good, shedding some light on the internal mechanisms re-

sponsible for transition in these type of flows. The oblique _ _ 0 1
transition of spiral modes may also be at work in the experi- W) =elTIFD ()=l 27z} h(r) ,
ments. This will be explained in a future study. 0 Vi=r
. AB)
P2 —gl(27/Q)IZH(2) (¢ (
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APPENDIX: SOLENOIDAL BASES except that the third component of the vectorllrfcz),)n is
In what follows, we define replaced byrh(r) if 1=0.
2 2 Casen#0.
A1) =(1=r)Tom(r),  gm(r)=(1=r)hy(r), T
d (Al) \I’Inm:e i Vlnm(r)
D=a, D,=D+ L — gl (n0+(27/Q)1z)
whereT,,, is the Chebyshev polynomial of degreen2and inrfgn(r) 1
re(0,1). The 1-r? factors are included in order to inforce x| D[rB*igm(r)]+rf*2h(r) | —,
homogeneous boundary conditions at the pipe wall. We be- 0 Vi-r
gin with thetrial functions®,,,(r,#6,z), distinguishing two ) . . (A7)
cases depending on whethefs zero or nonzero. Wi =N+ TG (1)
Casen=0. The basis is spanned by the elements — i(no+(27/Q)12)
0 0
(I)I(g).lzn:ei(ZﬂT/QﬂZVI(ér)n:ei(277/Q)|Z rhm(r) , (Az) o 1
0 x| ——ilrB*2h(r) ,
X Q ot Vyi-r?
™ inr?hy(r
— —ilrg u(r) I m(")
®(2) =gi(2mQl2y(2) — gl (2mIQ)z Q 0 , except that the third component of the vector'lrfrfr)n is

replaced byr!~Ph.(r) if I=0, whereg=0 for n even and
D.[rgm(r)] B=1 for n odd. These vector fields include the Chebyshev
(A3)  factor (1-r?)~Y2 50 that the products between the test and

except that ifl =0, the third component ob{2) is replaced trial functions can be exactly calculated via Gauss—Lobatto

by hn(r). guadrature, leading to banded matrices. We note that the ra-

Casen#0. In this case, the basis is spanned by thedlal variable runs from 0 to 1, and not from1 to 1, as

elements would expected by using Chebyshev polynomials. This in-
‘ forces the appropiate symmetry and regularity conditions on
®f1) =l Q)L the axis.
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