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Streak breakdown instability in pipe Poiseuille flow
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This work is devoted to the study of the stability of Hagen–Poiseuille flow or pipe flow. The
analysis is focused on thestreak breakdown process by which two-dimensional
streamwise-independent finite amplitude perturbations transiently modulate the basic flow leading to
a profile that contains saddle points and is linearly unstable with respect to very small
streamwise-dependent perturbations. This mechanism is one possible route of transition to
turbulence in subcritical shear flows. The exploration is carried out for initial disturbances of
different finite amplitudes and axial and azimuthal periodicity. This study covers a wide range of
Reynolds numbers and the double threshold curve obtained for transition is consistent with
experimental observations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1564093#
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I. INTRODUCTION

Hydrodynamic instability of pipe flow remains one o
the oldest and yet unsolved problems of fundamental fl
dynamics. Pipe or plane Couette problems belong to a
ticular family of shear flows which are usually terme
subcritical.1 From a mathematical point of view, these flow
are linearly stable, i.e., the spectrum of the lineariz
Navier–Stokes operator around the basic flow always lies
the stable half of the complex plane. Therefore, any infi
tesimal perturbation added to the basic flow must eventu
decay. Nevertheless, these flows become turbulent in
laboratory. For instance, below a critical Reynolds numb
Rec , in the range 1760&Rec&2300, pipe Poiseuille flow
does not exhibit a sustained transition to turbulence.2,3 For
Reynolds numbers higher than Rec , a finite amplitude distur-
bance is required to destabilize the flow. Experimental a
numerical evidence suggest that transition in pipe flow
extremely sensitive to the size and structure of the pertu
tions. Pipe flow instability differs from that of other classic
flows such as Taylor–Couette or Rayleigh–Benard where
basic profile becomes unstable by means of a lo
bifurcation.1 In those problems, the instability is characte
ized by a sharp critical value of the control parameter,
Reynolds number or the Rayleigh number, above which
basic flow becomes linearly unstable. In that case, the ag
ment between experimental results and numerical sim
tions is very good. Besides, in these problems, the flow
confined to a finite size domain, i.e., they areenclosedflows.
Pipe flow is a prototype ofopenflow and its study is more
complicated. In open flows, the perturbations are eventu
advected downstream and they leave the domain, makin
impossible sometimes to determine the laminar-turbu
character of the dynamics for long times. Another difficu

a!Present address: Department de Fisica Aplicada, Univ. Polite`cnica de Cata-
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arises when the open flows are modelled numerically by
tificially assuming periodicity in the streamwise direction
the flow.

The numerical simulation of pipe flows is not a ne
matter. This problem has been previously simulated by
ferent numerical schemes in the past.4–9 In recent works,10,11

the linear stability and transient growth of perturbations
pipe flow were studied by means of the linearization of t
Navier–Stokes equations and it was found that strea
wise-independent vortices were optimally amplified by line
nonnormal mechanisms. It has long been known that stre
wise vortices and nonnormality of the linear operator are t
crucial requirements for the subcritical transition to turb
lence in shear flows.12,13 These two-dimensional structure
grow transiently and modulate the basic flow, leading to
new velocity profile which containsstreaks, i.e., regions
where the flow attains high or low relative axial speeds. T
new flow contains saddle points and, in a transient se
is linearly unstable with respect to three-dimension
perturbations.14

In a beautiful work, Zikanov15 analyzed the stability of
the Hagen–Poiseuille flow by means of adding streamw
independent finite amplitude perturbations to the basic fl
and exploring the linear stability of the resulting tim
dependent streaks with respect to infinitesimal streamw
dependent disturbances. Zikanov concluded that this ti
dependent flow was linearly unstable with respect to cer
streamwise-dependent perturbations with a preferred a
periodicity, depending on the Reynolds number and the
tial amplitude of the two-dimensional perturbation. This su
gests that the streaks would eventually be destabilized le
ing to the usually termedstreak breakdownscenario.
Therefore, the main goal of this work will be to study th
nonlinear time evolution of a particular type of perturbatio
in pipe flow and to identify the streak breakdown mechani
as a possible route to turbulence in this particular proble
We will focus our attention on the early stages of transiti

c

3 © 2003 American Institute of Physics
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to turbulence; the study of fully developed turbulent flow
beyond our scope.

The paper is structured as follows. In Sec. II we form
late the problem mathematically and the numerical meth
used are outlined. Section III is devoted to the study of
formation streaks, as a result of introducing streamwi
independent perturbations. In Sec. IV we provide a comp
hensive exploration of the streak nonlinear instability
adding a very small streamwise-dependent component in
perturbation field. This section leads to the exploration c
ried out in Sec. V, where we determine the critical amplitu
of transition for a wide range of Reynolds numbers. Fina
we have included an Appendix devoted to the spectral
mulation of the numerical method.

II. MATHEMATICAL FORMULATION AND NUMERICAL
METHODS

We consider the motion of an incompressible visco
fluid of kinematic viscosityn and densityr. The fluid is
driven through a circular pipe of radiusa and infinite length
by a uniform pressure gradient,P0 , parallel to the axis of
the pipe. The motion of the fluid is governed by the inco
pressible Navier–Stokes equations

] tv1~v"“ !v52
P0

r
ẑ2¹p1nDv, ~1!

“"v50, ~2!

where v is the velocity vector field, satisfying the no-sli
boundary condition at the wall,

vpipe wall50, ~3!

andp is the reduced pressure. We formulate the problem
cylindrical coordinates. The velocity of the fluid is pre
scribed by its radial~r̂ !, azimuthal~û!, and axial~ẑ! compo-
nents

v5ur̂1vû1wẑ5~u,v,w!, ~4!

whereu, v, and w depend on the three spatial coordina
(r ,u,z) and timet. A basic steady solution of Eqs.~1!, ~2!,
and ~3! is the so-calledHagen–Poiseuille flow

vB5~uB ,vB ,wB!5S 0,0,2
P0a2

4rn F12S r

aD 2G D ,

pB5P0z1C, ~5!

whereC is an arbitrary constant. This basic flow is a pa
bolic axial velocity profile which only depends on the rad
coordinate.16 The velocity of the fluid attains a maximum
value UCL52P0a2/4rn at the center-line or axis of th
cylinder.

Henceforth, all variables will be rendered dimensionle
using a and UCL as space and velocity units, respective
The axial coordinatez is unbounded since the length of th
pipe is infinite. In what follows, we assume that the flow
axially periodic with periodb. This assumption, though
physically artificial, enables us to study many phenomena
an infinite pipe providedb is not too small. In the dimension
less system, the spatial domainV of the problem is
Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to A
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V5$~r ,u,z!u0<r<1, 0<u,2p, 0<z,Q%, ~6!

whereQ5b/a. In the new variables, the basic flow takes t
form

vB5~uB ,vB ,wB!5~0,0,12r 2!. ~7!

Finally, the parameter which governs the dynamics of
problem is theReynolds number

Re5
aUCL

n
. ~8!

For the stability analysis, we suppose that the basic flow
perturbed by a solenoidal velocity field vanishing at the p
wall

v~r ,u,z,t !5vB~r !1u~r ,u,z,t !, “"u50, u~r 51!50,
~9!

and a perturbation pressure field

p~r ,u,z,t !5pB~z!1q~r ,u,z,t !. ~10!

On introducing the perturbed fields in the Navier–Stok
equations, we obtain a nonlinear initial-boundary proble
for the perturbationsu andq:

] tu52¹q1
1

Re
Du2~vB"“ !u2~u"“ !vB2~u"“ !u,

~11!

“"u50, ~12!

u~1,u,z,t !50, ~13!

u~r ,u12pn,z,t !5u~r ,u,z,t !, ~14!

u~r ,u,z1 lQ,t !5u~r ,u,z,t !, ~15!

u~r ,u,z,0!5u0 , “"u050, ~16!

for (n,l )PZ2, (r ,u,z)P@0,1#3@0,2p)3@0,Q) and t.0.
Equation~11! describes the nonlinear space-time evoluti
of the perturbation of the velocity field. Equation~12! is the
solenoidal condition for the perturbation, and Eqs.~13!–~15!
describe the homogeneous boundary condition for the ra
coordinate and the periodic boundary conditions for the a
muthal and axial coordinates respectively. Finally, Eq.~16! is
the initial solenoidal condition for the perturbation field
t50.

We discretize the perturbation fieldu in Eqs. ~11!–~16!
by a spectral approximationuS of orderL in z, orderN in u,
and orderM in r,

uS~r ,u,z,t !5~uS ,vS ,wS!

5 (
l 52L

L

(
n52N

N

(
m50

M

alnm~ t !Flnm~r ,u,z!, ~17!

whereFlnm are trial bases of solenoidal vector fields of th
form

Flnm~r ,u,z!5ei ~2p lz/Q1nu!vlnm~r !, ~18!

satisfying

“"Flnm50, ~19!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1205Phys. Fluids, Vol. 15, No. 5, May 2003 Streak breakdown instability in pipe Poiseuille flow
for l 52L,...,L, n52N,...,N and m50,...,M .11 The trial
bases~18! are analytic, periodic in the axial and azimuth
directions, and satisfy homogeneous boundary condition

Flnm~1,u,z!50, ~20!

at the wall. Therefore, Eqs.~12!–~15! are identically satisfied
by our spectral approximation. The spectral Petrov–Gale
scheme is accomplished by substituting expansion~17! in
Eq. ~11! and projecting over a set oftestvector fields

Clnm~r ,u,z!5ei ~2p lz/Q1nu!ṽlnm~r !, ~21!

satisfying

“"Clnm50. ~22!

Explicit expressions for the trial and test fields,vlnm and
ṽlnm , can be found in the Appendix. Overall, the projecti
scheme is summarized by

~Clnm ,] tuS!5S Clnm ,
1

Re
DuS2~vB"“ !uS2~uS"“ !vB

2~uS"“ !uSD , ~23!

for l 52L,...,L, n52N,...,N and m50,...,M , where the
inner product~•,•! is the volume integral over the domain o
the pipe:

~a,b!5E
0

QE
0

2pE
0

1

a* "br dr du dz. ~24!

We have not included the pressure term¹q of Eq. ~11! in the
projection scheme~23!. One of the advantages this method
that the pressure term is cancelled in the projection, i.e.,

~Clnm ,¹q!50; ~25!

see Canutoet al.17 or Leonard and Wray,18 for example.
Once the projection has been carried out, the spatial

pendence has been eliminated from the problem and a
linear dynamical system for the amplitudesalnm is obtained.
Symbolically, this system reads

Apqr
lnmȧpqr5Bpqr

lnmapqr2blnm~a,a!, ~26!

where we have used the convention of summation with
spect to repeated indices. The discretized operatorsA andB
appearing in Eq.~26! are the projections

Apqr
lnm5~Clnm ,Fpqr! ~27!

and

Bpqr
lnm5S Clnm ,

1

Re
DFpqr2~vB"“ !Fpqr2~Fpqr"“ !vBD .

~28!

The quadratic formblnm(a,a) appearing in Eq.~26! corre-
sponds to the projection of the nonlinear convective term

blnm5~Clnm ,~uS"“ !uS!. ~29!

For computational efficiency, this term has to be calcula
via a de-aliased pseudospectral method.17 Finally, the initial
value problem is prescribed by the coefficientsalnm

0 repre-
senting the initial vector fielduS

0 given by
Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to A
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alnm
0 5alnm~ t50!5~Clnm ,uS

0!. ~30!

For the time integration of Eq.~26! we have used a fourth
order implicit backwards differentiation method for the lin
ear terms in combination with a fourth order explic
Adams–Bashforth method19 for the nonlinear ones. The tim
marching process was started with a fully explicit fourt
order Runge–Kutta algorithm.20

III. STREAMWISE STREAKS

In this section, we study the nonlinear evolution
streamwise independent perturbations, henceforth referre
2D-perturbations, recently studied by Zikanov.15 From the
equation of the perturbation~11! it is straightforward to see
that an initial streamwise-independent field remains indep
dent ofz for all time t.0, i.e., the nonlinear terms preserv
their streamwise symmetry provided that the basic flow
axial component only. Zikanov exploited this property
split the perturbation as a sum of finite amplitude 2
perturbations and infinitesimal streamwise-dependent
perturbations.

We define theenergyof an arbitrary vector fieldu as the
inner product

E~u!5
1

2 E0

Q

dzE
0

2p

duE
0

1

r dru* "u. ~31!

With the previous definition, a straightforward calculatio
leads to the energy of the Hagen–Poiseuille flow,

EHP5
p

6
Q. ~32!

Henceforth, we will normalize the energy of the perturb
tions with respect to the basic quantityEHP . We define the
relative energy, or more briefly just ‘‘energy,’’ of an arbitrary
perturbationu as the ratio

e~u!5
E~u!

EHP
. ~33!

For the comparison with the computations carried out
Zikanov we consider a perturbation of energye0 with initial
conditionuS

0 in Eq. ~30!, which is prescribed by field

u2D
0 5A0F010

~1!1c.c., ~34!

whereF010
(1) is given by Eq.~A4! and A0 is a real constant

such thate(uS
0)5e0 . This is equivalent to considering th

simplest analytic nonaxisymmetric streamwise-independ
field, with azimuthal wave numbern51. As a result, the
initial perturbation has radial and azimuthal velocity comp
nents, the axial one being zero. We have computed the
lution of the initial condition~34! for different initial ener-
gies. For this particular computation, we have usedM56
radial solenoidal modes andN59 azimuthal withDt50.1.
In Fig. 1 we have plotted theG(t) growth factor of the
perturbation, defined as

G~ t !5
e~ t !

e0
, ~35!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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originally considered by other authors4,10 in the transient
growth analysis of pipe flow.

In all cases studied, the agreement with Zikanov’s co
putations is very good. As long as the initial energy goes
zero, the nonlinear effects become negligible and the dyn
ics is governed by the linear nonnormal mechanism. Thi
clearly seen in the top curve~for e05131025), where the

FIG. 1. Growth factorG(t) for different initial energies for Re53000. This
plot was generated usingN59 azimuthal modes,M56 radial modes and
Dt50.1, but further experiments show that it is converged to plotting ac
racy.
Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to A
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amplification factor reaches a maximum value ofG;620 for
t;143. This is in agreement with the former line
analyses,10,11 where the maximum amplification factor wa
Gmax;649 for t;147. In Fig. 2 we have plotted the modu
lated axial flow, wB1wS , at t50, t517, t575 and t
5150, corresponding to the curvee05131022 of Fig. 1 and
Re53000. In Schmid and Henningson,10 for example, the
maximum transient growth was obtained via the singu
value decomposition of the exponential map of the lineariz
Navier–Stokes operator. This procedure gives the opti
initial conditions as right singular vectors that optimize t
growth for a prescribed time. In our computations, we ha
considered the simplest initial streamwise vortex reprod
ible by our Galerkin approximation, providing 96% of th
optimal growth computed with nonmodal linear method
Figure 2~d! recovers the computation originally carried o
by Zikanov for the same initial energy. Fort5150, we can
observe the formation of streaks by the lift-up effect, whe
high speed axial flow is driven to low axial speed regio
near the wall.21 The first important feature of this transien
flow is the presence of saddle points in its profile. This wou
lead to an inviscid instability when perturbing the flow wi
3D-disturbances. The second is that this transient regim
almost steady, as we observe more clearly from the bot
curve in Fig. 1, where the amplitude of the perturbation
almost constant for a long period of time. This feature p
vides the flow the property of being potentially unstab
when 3D-infinitesimal perturbations are present, provid

-

FIG. 2. Formation of streaks for the Re53000 ande0

5131022. Modulated axial flowwB1wS at: ~a! t
50; ~b! t517; ~c! t575; and~d! t5150.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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that the formation of streaks occurs before the viscous eff
become significant. This stability analysis can be carried
by linearizing the Navier–Stokes equations in a neighb
hood of the quasi-steady modulated 2D-flow. This is
kanov’s approach; he studied the linear evolution of thr
dimensional perturbations once the streaks were alre
developed. Zikanov observed transient exponential growt
3D-perturbations for some range of axial wave numbers
clear indication that the 2D-streaks, even quasi-steady,
linearly unstable.

IV. STREAK BREAKDOWN

In this section we study the nonlinear evolution of ve
small 3D-perturbations superimposed to the 2D-initial dist
bances considered in the previous section. According to
explorations provided by Zikanov, there are three factors
determine the efficiency of the streak instability. The fi
factor is the initial amplitude of the 2D-perturbation. Th
second one is the fundamental axial wave numberk
52p/Q, of the 3D-perturbation. The efficiency of the exp
nential instability of the streaks strongly depends on
combination of the last two factors. For a given amplitude
the initial 2D-perturbation, there is always an optimal ax
wave number which exhibits a maximum growth. This ax
wave number goes to zero as long as the initial amplit
decreases, as expected from the nonmodal analysis ca
out by Schmid and Henningson.10 Finally, the efficiency of
the instability mechanism is strengthened when increas
the Reynolds number, the third factor. Another aspect
should be considered would probably be the time at wh
the 3D-perturbations are added to the modulated 2D-fl
For example, Zikanov fixed this time tot530 for all his
computations, provided that the streaks were already de
oped at that time in the particular cases he studied.

Our exploration differs from Zikanov’s analysis in thre
different aspects. First, we solve the full nonlinear Navie
Stokes problem so the 3D-perturbations evolve dictated
only by the linear advective coupling with the basic flow a
the 2D-streaks but also by the three-dimensional nonline
ties. Second, we include the 3D-perturbations from the
ginning rather than including them once the streaks are
veloped. The reason for doing this is that we do not knowa
priori what time will the streaks require to appear since
initial amplitude of the perturbation and the Reynolds nu
ber will be different for each one of our explorations. Thir
we fix a particular axial wave number of the 3D
perturbations based on Zikanov’s explorations; a compreh
sive study for different axial periodicities is computationa
very expensive. More specifically, we have considered th
axial modes that provided an optimal growth in the tim
dependent linear analysis.

In what follows, we split the initial perturbation in two
parts

uS
05u2D

0 1u3D
0 , ~36!

whereu2D
0 is the streamwise-independent component giv

by
Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to A
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u2D
0 5A0F010

~1!1c.c., ~37!

andu3D
0 is the streamwise-dependent contribution,

u3D
0 5A1~F110

~1!1F100
~1! !1c.c., ~38!

whereF010
(1) , F110

(1) , andF100
(1) are given in the Appendix and

the factorsA0 and A1 are suitable constants so that the e
ergy of the 2D and 3D modes is distributed as follows:

e~u2D
0 !5e0

2D , e~u3D
0 !5e0

3D , ~39!

for prescribed valuese0
2D ande0

3D , satisfyinge0
3D!e0

2D .
In Figs. 3 and 4, we have plotted the time evolution

the energiese2D(t) ande3D(t), corresponding to the 2D an
3D perturbations, respectively. The computations have b
made for Reynolds numbers increasing from Re51000 to
Re53000 and forQ5p; i.e., the lowest nonzero axial wav
number isk52. We have selected this axial periodicity a
cording to the computations carried out by Zikanov, whe
the optimal wave number was aroundk51.5. In each plot,

FIG. 3. Time evolution of the energy of 2D~thick curves! and 3D ~thin
curves! perturbations for different values of Re. For these computations,
aspect ratio wasQ5p ~i.e., the lowest nonzero axial wave number isk
52). We usedM514 modes inr, N57 in u andL51 in z. The time step
is Dt5531022. In each one of the cases, we have not found any qualita
difference when increasing the spectral order. For legends, see text.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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three independent integrations have been carried out, alw
starting with e0

2D5131022 and e0
3D5131024, e0

3D51
31026 or e0

3D5131028. In this exploration, the spectra
resolution was fixed toM514 radial modes,N57 azimuthal
modes andL51 axial modes, with a time stepDt55
31022. Many features should be pointed out. For Re51000
~Fig. 3, top!, the streaks do not appear, and the two and th
dimensional energies decay almost monotonically for lo
times. We observe that the three-dimensional perturbat
evolve almost identically in the three independent integ
tions. This is because the nonlinearities are still negligible
that stage and the evolution mechanism is basically lin
For Re52000 ~Fig. 3, bottom!, the streaks already appe
and we can identify for the first time the growth of the 3D
perturbation for the three cases, where we have labeled
three different evolutions in order to identify the energ
corresponding to each one of the integrations. Neverthe
this growth is only transient and the perturbations eventu
decay. For Re52500 ~Fig. 4, top!, only the smallest 3D-
perturbation, fore0

3D5131028, is not strong enough to sus
tain the streak instability fort.450 ~curve a!, whereas the
other two initial conditions clearly trigger transition~curves
b and c!, leading to a sustained chaotic evolution. Finally, f

FIG. 4. Same as Fig. 3, for Re52500, 3000.
Downloaded 03 Apr 2003 to 147.83.27.121. Redistribution subject to A
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Re53000 ~Fig. 4, bottom!, all the three-dimensional distur
bances suffer an exponential instability, leading always to
streak breakdown phenomenon. In all the cases studied
average lifetime of these turbulent or chaotic regimes
pends drastically on the Reynolds number. Therefore,
small perturbation might eventually decay fort long enough,
as observed for Re52500 ~Fig. 4, top!, for e0

3D5131028.
This would be in agreement with former numerical expe
ments where it was suggested that, even some perturba
may survive for long times, turbulence in this particul
problem is only a transient phenomenon.22

In Fig. 5, we have carried out another computation
higher Reynolds number, Re54000, and lower amplitude o
the initial perturbatione0

2D5131023. This computation has
been done in order to point out that the amplitude of
3D-perturbation becomes crucial as long as the initial am
tude of the 2D-perturbation decreases. In the first case~top,
Fig. 5!, we see that three independent 3D-perturbations
energiese0

3D51310210,29,28, are not strong enough to de
stabilize the streak. We observe again the remarkable s
larities of the evolution of the 3D-perturbations until the

FIG. 5. Time evolution of the energy of 2D~thick curves! and 3D ~thin
curves! perturbations for Re54000. At the top, the three-dimensional pe
turbations are too weak to destabilize the streak. At the bottom, a th
dimensional perturbation of energy 1027 triggers instability. The spectra
and time resolution in these computations was the same as in Figs. 3 a
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ha
th
b

-
on
re
-

n

e

ti
wt

e
is

e

ic
-

le

u
. I
m

iti

an
e
re
t a

da
w
a

-

a
er

re
ex
ry
f
s
ib

non
vo-
d-

in-
d

l
al,
a

fter
the

1209Phys. Fluids, Vol. 15, No. 5, May 2003 Streak breakdown instability in pipe Poiseuille flow
reach their maximum amplification, where the linear mec
nisms are much stronger than the nonlinear ones. In
case, the threshold three-dimensional energy for this insta
ity mechanism is of order 1027; see Fig. 5, bottom. As men
tioned before, the initial amplitude of the 2D-perturbati
remarkably modifies the instability mechanism. This is
flected in the relative delay of the growth of the 3D
perturbations observed in Fig. 5 with respect to those see
Figs. 3 and 4. For lower initial energiese0

2D , the streaks need
longer times to appear and trigger growth of the 3D-mod
For example, fore0

2D5131022, the 3D-modes start growing
almost exponentially fort*10 approximately~Fig. 4!. For
e0

2D5131023 this growth does not start untilt;70 ~Fig. 5!.
The Reynolds number affects the slope of the exponen
growth. When Re is increased from 2000 to 3000, the gro
rate is increased as well~Fig. 3, bottom, and Fig. 4!. This
growth rate is also affected when the amplitude ofe0

2D is
decreased. Figure 5 shows that when the Reynolds numb
increased to Re54000, the growth rate of the 3D-modes
remarkably reduced.

In all previous computations, we only included on
streamwise dependent mode, i.e.,L51. At a first glance, this
may sound a bit drastic truncation and requires a numer
exploration to justify its validity. We have carried out com
putations including higher harmonics in the axial variab
that is increasing the spectral orderL. The motivation for
doing this is to check whether these higher frequencies s
stantially affect the streak breakdown mechanism or not
Fig. 6, we have represented the time evolution of a sa
initial perturbation for increasing values ofL for Re54000
andQ5p. In these computations, we consideredN57 azi-
muthal modes,M514 radial modes,Dt5531022 and L
51, 3, 5 and 7. For all cases represented in Fig. 6, the in
condition is of the form given by Eq.~36!, which originally
assigns energy to the fundamental 3D-modes:e6 ikz, with k
52. The energies are distributed as before;e0

3D5131027

ande0
2D5131023. The higher harmonicse6 i2kz, e6 i3kz,...,

might be activated afterward via nonlinear mechanisms
consequently affect the efficiency of the mechanism. Nev
theless, we can see that the four integrations lead to a st
breakdown and that the differences are not remarkable a
Of course, the evolution is not identical~as expected!, but
the growth rate of the energy corresponding to the fun
mental mode and the time at which the streak breakdo
occurs is essentially the same in the four cases. We h
proceeded knowinga priori that 3D-modes with axial wave
numbers aroundk;1.5 were the most effective in this sce
nario @Zikanov, Ref. 15, Fig. 10~a!#. The nonlinear coupling
would trigger higher frequencies which are away from th
optimal value and it seems that they do not play a v
relevant role in this transition.

So far, we have considered initial conditions wheree0
3D

!e0
2D , and this is key point of our study, i.e., providing mo

energy to the streamwise vortices in order trigger an infl
ional instability potentially unstable with respect to ve
small 3D-modes. Whene0

3D;e0
2D , increasing the number o

axial modes does not remarkably affect the main feature
the transition, but it may change the way energy is distr
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uted once the breakdown has occurred. This phenome
can be observed in Fig. 7, where we have plotted four e
lutions of the same initial condition as before, initially fee
ing a fundamental streamwise-dependent mode and for
creasing values ofL. In this comparison we have considere
the same values forM, N, L, and Dt as before, but with
similar energies for the 2D and 3D perturbations;e0

3D55
31024 ande0

2D52e0
3D . In Fig. 7, we observe that the initia

stages of the evolution of the 3D-mode is almost identic
with a very small transient growth at the beginning and
decreasing energy until the 2D-streaks are developed. A
that, the 3D-modes start growing, eventually breaking

FIG. 6. Time evolution of a same initial perturbation for Re54000 and
different number of axial modesL.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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streaks fortP@100,150# in the four cases. After the strea
breakdown has taken place, we observe a difference in
nonlinear evolution of the 3D and 2D modes. In particul
for L55 and L57, we observe what seems to be a
feeding of the 2D-streaks fort;200, which appear again
although weakener than before. This phenomenon seem
be similar to themother and daughterscenario, originally
suggested Boberg and Brosa,4 where the 2D-modes~moth-
ers! initially feed the 3D-modes~daughters!, making them
grow and instabilize the streaks. Once the mothers van
the daughters reconstruct them again, via nonlinear c
plings, making the mothers reappear in order to repeat

FIG. 7. Same as Fig. 6, but this time with similar initial energies for the
and 3D modes.
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cycle. This second instability is also known asoblique
transition.13

V. THRESHOLD BOUNDARY OF TRANSITION

One of the main objectives in the study of subcritic
transition in shear flows is to determine the topological fe
tures of the basin of attraction of the basic solution.23 Since
the minimum amplitude required to destabilize the flow d
creases when increasing the Reynolds number, it is clear
the size of this manifold must necessarily shrink as well. I
recent asymptotic analysis provided by Chapman24 for plane
channel flows, it has been proved that the threshold am
tude required for transition decreases with the Reyno
number likeAc;Reg, whereg525/4 for plane Poiseuille
flow and g521 for plane Couette. Of course, the previo
threshold exponents are only meaningful in the context
asymptotic ranges of the Reynolds number. For intermed
and even moderately high Reynolds numbers, the crit
amplitude has to be computed either numerically or exp
mentally. A first attempt at reconciliation regarding the val
of g obtained in laboratory experiments and numerical sim
lations has been recently provided by Trefethenet al.25 Two
main problems arise when trying to compare theoretical
ymptotics with numerical and experimental results. Fir
asymptotic results are impossible to produce in the labo
tory due to the fact that the pipe has a finite length. Since
streaks appear after a period of time of orderO(Re),24 this
would require very long pipes in order to observe the ev
tual transition. Second, from a numerical point of view, it
very difficult to provide comparable simulations reproduci
the real initial conditions for the experimental perturbation
In the experiments, fluid is injected from the pipe wall, vi
lating the assumption of homogeneous boundary condi
for the perturbation field~13!. Our main purpose has been
include a coarse three-dimensionality in the nonlinear ini
value problem in order to explore the streak breakdo
mechanism based on different initial amplitudes of the p
turbation field and values of the Reynolds number.

In order to make a consistent computation based on
experimental time specifications, we considered time integ
tions in the interval 0<t<T5250, i.e., the time required by
a fluid particle located at the pipe axis to be advected do
stream by the basic Hagen–Poiseuille flow a distance of
pipe diameters. According to the experiments of Darbysh
and Mullin, henceforth referred as D&M, the perturbatio
was injected 70 pipe diameters downstream of the pipe i
and 120 upstream from the outlet. Even the mechanism
transition presented here may slightly differ from the on
triggered in the experiments, each one of our numerical r
should cover the transition dynamics observed in the labo
tory. We considered the same perturbations as the ones
in the previous sections, always starting withe0

3D51
31027 ande0

2D ranging from 931026 to 231022. We in-
cluded only one streamwise-dependent mode in the inte
tion of axial wave numberk52p/Q51.5 which is a good
candidate to trigger transition according to Zikanov’s line
computations. Our criteria of identification of sustained ch
otic evolution was based on the energy of the 3
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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perturbation at the end of each run. In particular, we cla
fied the run as successful ife3D(t5T).131024, i.e., at the
end of the run, the energy associated with the 3
perturbation was still three orders of magnitude bigger th
its initial value. For the exploration, the spectral resoluti
was fixed toN55 azimuthal modes,M514 radial solenoi-
dal modes andL51 axial modes, and the time step wasDt
5531022. No qualitative differences were found when i
creasing the number of spectral modes or reducing the
step. Overall, the number of degrees of freedom in the in
grated system~26! was 1350.

We carried out 740 runs whose final results have b
outlined an compared with the experimental results in Fig
According to a recent comparative analysis between exp
ments and numerics,25 the critical amplitudes reported b
D&M 3 were measured in different units from the theoreti
and numerical results. To make a consistent comparison
necessary to divide the D&M results by one power of R
giving g;23/2, and this has been done in Fig. 8~a!. Thus

FIG. 8. Experimental analysis provided by Darbyshire and Mullin~Ref. 3!
~top, a! and numerical results~bottom, b!. In both plots, black dots represen
those situations were the flow became turbulent, whereas white dots r
sent relaminarization.
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Fig. 8~a! represents not the original plot from D&M3,25 but a
reprocessing of that data to make a comparison@the numbers
on the vertical scale of Fig. 8~a! are subject to an arbitrary
constant; thus the discrepancy of the vertical axes labels
the figure is not significant#. In Fig. 8~a!, black dots represen
experimental transition to turbulence and white dots rep
sent relaminarization of the flow within the pipe domain.
Fig. 8~b!, we have represented the numerical results of
integrations. The amplitudeA on the ordinate axis represen
the square root of the total initial energy of the perturbat
given by

A5Ae0
3D1e0

2D. ~40!

White dots represent those situations where the flow rela
narized by the time the run was ended. Black dots repre
successful transition. Despite the coarse numerical appr
mation of the problem, we observe a significant agreem
with the experimental observations. First, according to
computations@Fig. 8~b!#, there is no transition for Re&2000.
Second, the threshold amplitude decreases in both c
quite similarly. We have included a straight line in both plo
representing the asymptotic curve Re23/2 in order to compare
the experimental and numerical behavior. As we see,
agreement is very good. Nevertheless, it is probably too e
to associate this apparent agreement with a common me
nism of transition. In both explorations, the Reynolds nu
ber is far from being within an asymptotic range. In fact, t
analyses have been done still very close to the vert
threshold~Re;2000!, thus strongly affecting the slope of th
threshold boundary. To put it mildly, experiments and num
ics are both providing the samelocal slope, none of them
being asymptotic. Besides, in our computations, the per
bations were global, and periodic, whereas in the exp
ments the flow was perturbed locally thus triggering ve
high axial and azimuthal modes from the beginning. At a fi
glance, we could argue that the nonlinear selection rules
combination with the nonnormal linear operator acting
the experimental perturbation could lead to a specific se
tion of streamwise-independent structures which eventu
are responsible for the transition. We have not explored o
more complicated scenarios such asoblique transition,14,24

which has been proved to be slightly more efficient in pla
channel flows. In any case, the authordoes notclaim that the
streak breakdown is the only responsible for that transit
by itself. Certainly, the mechanism explored here provide
consistent explanation if we compare with the experimen
but the real dynamics occurring in the laboratory are far fr
being understood.

VI. CONCLUSIONS

A comprehensive exploration of the streak breakdo
instability mechanism for pipe flow has been provided. T
analysis has been based on the numerical integration of
nonlinear Navier–Stokes equations for the perturbat
fields. We have considered specific initial perturbatio
based on linear stability analyses of time-dependent mo
lated flows provided by other authors. In particular, we us
very small streamwise-dependent disturbances that, adde

re-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the finite amplitude streamwise-independent perturbat
undergone an optimal growth in the time-dependent lin
stability analysis carried out in previous works. In all cas
studied, the agreement with the experimental results is v
good, shedding some light on the internal mechanisms
sponsible for transition in these type of flows. The obliq
transition of spiral modes may also be at work in the exp
ments. This will be explained in a future study.

ACKNOWLEDGMENTS

This work was supported by the UK EPSRC under Gr
No. GR/M30890. The author thanks Nick Trefethen for fru
ful discussions.

APPENDIX: SOLENOIDAL BASES

In what follows, we define

hm~r !5~12r 2!T2m~r !, gm~r !5~12r 2!hm~r !,
~A1!

D5
d

dr
, D15D1

1

r
,

whereT2m is the Chebyshev polynomial of degree 2m and
r P(0,1). The 12r 2 factors are included in order to inforc
homogeneous boundary conditions at the pipe wall. We
gin with the trial functionsFlnm(r ,u,z), distinguishing two
cases depending on whethern is zero or nonzero.

Casen50. The basis is spanned by the elements

Fl0m
~1! 5ei ~2p/Q!lzvl0m

~1! 5ei ~2p/Q!lzS 0
rhm~r !

0
D , ~A2!

Fl0m
~2! 5ei ~2p/Q!lzvl0m

~2! 5ei ~2p/Q!lzS 2
2p

Q
ilrg m~r !

0
D1@rgm~r !#

D ,

~A3!

except that ifl 50, the third component ofFlnm
(2) is replaced

by hm(r ).

Case nÞ0. In this case, the basis is spanned by
elements

Flnm
~1! 5ei ~nu1~2p/Q!lz!vlnm

~1!

5ei ~nu1~2p/Q!lz!S 2 inr s21gm~r !

D@r sgm~r !#
0

D , ~A4!

Flnm
~2! 5ei ~nu1~2p/Q!lz!vlnm

~2!

5ei ~nu1~2p/Q!lz!S 0

2 i
2p

Q
lr s11hm~r !

inr shm~r !

D , ~A5!

where, following the regularization rules proposed in Ref.
s52 for n even ands51 for n odd.

For the test functions Clnm(r ,u,z), we could take the
same basis. However, the resulting matrices appearin
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Eqs. ~27! and ~28! would be dense, whereas they can
made to be banded if one chooses the projection base
follows:

Casen50.

Cl0m
~1! 5ei ~2p/Q!lzṽl0m

~1! ~r !5ei ~2p/Q!lzS 0
hm~r !

0
D 1

A12r 2
,

~A6!
Cl0m

~2! 5ei ~2p/Q!lzṽl0m
~2! ~r !

5ei ~2p/Q!lzS 2
2p

Q
ilr 2gm~r !

0
D1@r 2gm~r !#1r 3hm~r !

D 1

A12r 2
,

except that the third component of the vector inCl0m
(2) is

replaced byrhm(r ) if l 50.

CasenÞ0.

Clnm
~1! 5ei ~nu1~2p/Q!lz!ṽlnm

~1! ~r !

5ei ~nu1~2p/Q!lz!

3S inr bgm~r !

D@r b11gm~r !#1r b12hm~r !

0
D 1

A12r 2
,

~A7!
Clnm

~2! 5ei ~nu1~2p/Q!lz!ṽlnm
~2! ~r !

5ei ~nu1~2p/Q!lz!

3S 0

2
2p

Q
ilr b12hm~r !

inr b11hm~r !

D 1

A12r 2
,

except that the third component of the vector inClnm
(2) is

replaced byr 12bhm(r ) if l 50, whereb50 for n even and
b51 for n odd. These vector fields include the Chebysh
factor (12r 2)21/2 so that the products between the test a
trial functions can be exactly calculated via Gauss–Loba
quadrature, leading to banded matrices. We note that the
dial variable runs from 0 to 1, and not from21 to 1, as
would expected by using Chebyshev polynomials. This
forces the appropiate symmetry and regularity conditions
the axis.
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