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Extensional self-similar flows in a channel are
explored numerically for arbitrary stretching–
shrinking rates of the confining parallel walls. The
present analysis embraces time integrations, and
continuations of steady and periodic solutions
unfolded in the parameter space. Previous studies
focused on the analysis of branches of steady solutions
for particular stretching–shrinking rates, although
recent studies focused also on the dynamical aspects
of the problems. We have adopted a dynamical
systems perspective, analysing the instabilities and
bifurcations the base state undergoes when increasing
the Reynolds number. It has been found that the
base state becomes unstable for small Reynolds
numbers, and a transitional region including complex
dynamics takes place at intermediate Reynolds
numbers, depending on the wall acceleration values.
The base flow instabilities are constitutive parts of
different codimension-two bifurcations that control
the dynamics in parameter space. For large Reynolds
numbers, the restriction to self-similarity results in
simple flows with no realistic behaviour, but the flows
obtained in the transition region can be a valuable
tool for the understanding of the dynamics of realistic
Navier–Stokes solutions.

1. Introduction
We study the behaviour of a viscous fluid confined
within a two-dimensional infinitely long channel whose
parallel walls are stretching or shrinking independently,

2017 The Author(s) Published by the Royal Society. All rights reserved.
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i.e. the walls spatially accelerate or decelerate linearly and independently along their length.
This problem has been frequently used as a paradigm for self-similar flows, i.e. exact
solutions of the Navier–Stokes equations that satisfy spatial scale invariance properties in
unbounded domains. Historically, self-similar solutions have been introduced to simplify the
functional dependence of the flow on its unbounded coordinate. Multiple examples of self-
similar flows can be found in the literature, ranging from the classical stagnation point flows
by Hiemenz or modelizations of channel flows with porous walls with either suction or
injection [1]. For a comprehensive review, we refer the reader to the monograph by Drazin
& Riley [2]. Besides its inherent mathematical interest, self-similar solutions of extensional
channels are being used to model a wide variety of multidisciplinary phenomena such as
physiological blood flows and oxygen transport in cardiac systems [3]. Special cases of self-
similar extensional flows in channels and pipes have been studied by many authors in the
past addressing particular geometries and boundary conditions. For example, steady flows
generated between parallel plates with the same stretching rates were studied by Brady
& Acrivos [4]. Steady and time-periodic symmetry-breaking flow generalizations of similar
solutions within the context of suction through porous walls were studied by Cox [5],
Watson et al. [6] and King & Cox [7], who identified their primary instabilities as a result of
pitchfork and Hopf bifurcations that eventually lead to period doubling cascades and chaos.
On similar grounds, Cox [8] also concluded that the chaotic dynamics was extremely sensitive
to symmetry breaking. Wang & Wu [9] addressed the existence of steady extensional flows
with one of the channel walls stretching and the other stationary, thus breaking the symmetry
beforehand.

Quite recently, Espín & Papageorgiou [10] have studied the range of validity of the
aforementioned self-similar solutions by direct numerical simulation of the Navier–Stokes
equations on a long bidimensional domain and with symmetric boundary conditions, i.e. with
the plates shrinking or stretching simultaneously at the same rate. Espín & Papageorgiou [10]
concluded that whereas the self-similar solution for symmetric stretching of the plates is valid
for moderately large Reynolds numbers, its validity is extremely limited when the plates are
shrinking due to strong instabilities exhibited by the flow.

In order to shed light on the underlying mechanisms responsible for the sensitivity of chaotic
dynamics reported by Cox [8] or the lack of validity of the self-similar solution structure
confirmed by Espín & Papageorgiou [10] we need to explore the space of steady or time-periodic
solutions (stable or unstable) admissible by arbitrary shrinking–stretching boundary conditions.
In other words, we need to unfold the state space by parametrizing the admissible solutions on
the upper and lower wall acceleration or deceleration rates. Understanding qualitative changes in
the dynamics and predicting flows arising from instabilities must be carried out using bifurcation
theory. Bifurcation phenomena (i.e. the unexpected change in the qualitative dynamical behaviour
of physical systems when external conditions are slightly varied) are ubiquitous in nature. An
example of these changes are hydrodynamic instabilities in fluid flows such as the sudden
oscillatory or turbulent motion exhibited by the wake left by a ship or an airplane when their
speed exceeds some threshold value. Dynamical systems theory provides the mathematical
building blocks to understand and predict in advance these bifurcations, therefore playing
a very important role in many areas of physics and engineering. These building blocks are
the generic bifurcations (fold, Hopf, etc.) that physical systems experience under parameter
variation, regardless of the mechanisms underlying the dynamics. If the system is controlled by a
single parameter, codimension-one bifurcations are expected but higher codimension bifurcations
appear if the system depends on two or more parameters.

The paper is structured as follows. The mathematical formulation of the problem as well as
the details of the spatio-temporal discretization of the Proudman–Johnson equation are given in
§2. Section 3 describes the base state and primary instabilities it undergoes and localizes three
cusp bifurcations that organize the subsequent bifurcations. Sections 4–6 describe the complex
dynamics arising into the three cusp regions, and §7 presents a discussion and concluding
remarks.
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2. Governing equations
Let us consider an infinitely long two-dimensional channel with parallel extensional walls
separated by distance 2�, filled with an incompressible fluid of kinematic viscosity ν. All variables
are rendered non-dimensional using � as unit of length and the viscous time �2/ν as unit of
time. Figure 1 shows a schematic representation of the channel geometry, using non-dimensional
variables. The extensional channel walls have velocities proportional to the coordinate x along the
channel. The two-dimensional Navier–Stokes equations for this problem are

∂tv + (v · V)v = −Vp +�v, V · v = 0, (2.1)

where v(x, y, t) = (u, v) is the two-dimensional velocity field in Cartesian coordinates. The channel
domain is (x, y) ∈ (−∞, ∞) × [−1, 1], and the channel walls are located at y = ±1. The no-slip
boundary conditions for the velocity field are

u(x, ±1, t) = σ±x, v(x, ±1, t) = 0, (2.2)

where σ± are the non-dimensional stretching rates of the walls. These are the two non-
dimensional parameters of the problem. They can be positive or negative, depending on the
extensional or compressional character of the wall motion. It is convenient to introduce two
alternative parameters,

σ+ = R cosα, σ− = R sinα, (2.3)

where the angle α ∈ [0, 2π ] measures the ratio between the stretching rates of the walls, tanα =
σ−/σ+. R =

√
σ 2+ + σ 2− ≥ 0, called the Reynolds number of the problem, measures the total

stretching intensity. We can express the Reynolds number and α in terms of dimensional variables,
indicated using an asterisk

E± =
(

du∗

dx∗

)
±

= σ±ν
�2 , R = �2

ν

√
E2+ + E2−, tanα = E−

E+
. (2.4)

In order to eliminate the pressure and the incompressibility condition, it is usual to introduce the
streamfunction ψ(x, y, t) as v = (ψy, −ψx), where subindices x, y indicate partial derivatives. The
equation for the streamfunction is

∂t�ψ + J (�ψ ,ψ) =�2ψ , (2.5)

where J (F, G) = FxGy − FyGx is the Jacobian of two functions. From (2.2) we obtain the boundary
conditions for ψ : ψy(x, ±1, t) = σ±x, and ψx(x, ±1, t) = 0. The streamfunction equation is of fourth
order, and we have four boundary conditions, but they are Neumann boundary conditions, so ψ
is defined up to an additive function of time. In order to fix this constant, let us compute the mass
flux φ in the streamwise direction x:

φ =
∫ 1

−1
u dy =

∫ 1

−1
ψy dy =ψ(x, 1, t) − ψ(x, −1, t). (2.6)

The incompressibility condition makes φ independent of x, depending only on time. The mass
flux φ(t) may be imposed externally or even appear as a result of the channel flow dynamics. The
difference between ψ at the channel walls is fixed by the imposed mass flux. We can use the gauge
freedom in the election of ψ to impose the condition ψ(1) + ψ(−1) = 0, that fixes the gauge. The
final boundary conditions for ψ (that replace ψx(x, ±1, t) = 0) are

ψ(x, ±1, t) = ±φ
2

, ψy(x, ±1, t) = σ±x. (2.7)

Previous works [8,10,11] on extensional channel flow have not considered the possibility of a mass
flux, so only the case φ = 0 will be considered in this study.
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Figure 1. Schematics and notation of the extensional channel, in non-dimensional variables.

The form of the boundary condition (2.7) suggests the self-similar ansatz (for φ = 0)

ψ(x, y, t) = xf (y, t) ⇒ u = xf ′, v = −f , (2.8)

where a prime denotes y-derivative. The equation for the self-similar function f is

∂tf ′′ = ff ′′′ − f ′f ′′ + f iv , f (±1) = 0, f ′(±1) = σ±. (2.9)

Once the self-similar function has been obtained, we can get the pressure from the Navier–Stokes
equations (2.1)

p(x, y, t) = 1
2
βx2 − f ′ − 1

2
f 2 +

∫
∂tf dy, β = f ′′′ − ∂tf ′ + ff ′′ − f ′2. (2.10)

The pressure is determined except for an additive constant, the integration constant in (2.10). The
pressure grows quadratically along the channel. The by-product parameter β(t) resulting from
the governing equation (2.9) measures the growth rate and has been extensively used in earlier
papers on the subject. The last equation in (2.10) including β is known as the Proudman–Johnson
equation [12].

The channel geometry is invariant under reflections on the coordinate axes, Kx and Ky.
Translations along the streamwise direction also leave the channel invariant, but the stretching
completely destroys the translational symmetry. The self-similar formulation (2.8) is equivariant
under the reflection symmetry Kx, i.e. we are working in the Kx-invariant subspace, therefore only
the Ky symmetry plays a role. The action of this symmetry on the function f , the parameters of
the problem and the physical variables u, v, p and ψ is

A(Ky)f (y) = −f (−y), A(Ky)(σ±, R,α,β) =
(
σ∓, R,

π

2
− α,β

)
, (2.11)

and

A(Ky)(u, v,ψ , p)(x, y) = (u, −v, −ψ , p)(x, −y). (2.12)

The symmetry of the governing equations depends on the boundary conditions. The problem is
Ky-equivariant only when σ+ = σ−, i.e. for two values of α, π/4 and 5π/4.

Even when the governing equations have the Ky symmetry, the solutions may not have it. The
base state (unique for sufficiently small R) is Ky-symmetric, but this symmetry can be broken at
bifurcations, resulting in states with no symmetry at all. In the classical paper, Brady & Acrivos [4],
the analysis was limited to solutions having all the symmetries of the problem (α= π/4), and
as we will see, there are additional solutions breaking the symmetry. Moreover, the presence
of symmetry changes the kind of bifurcations a dynamical system may undergo, as we have
observed in this problem.

(a) Numerical methods
For a uniform and simple treatment, it is convenient to separate f into two parts, one satisfying
the non-homogeneous boundary conditions, and another satisfying homogeneous boundary
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conditions. So we introduce the split

f = f0 + f1, f0(±1) = 0, f ′
0(±1) = σ±, f1(±1) = f ′

1(±1) = 0. (2.13)

An elementary solution for f0 is the third-order polynomial

f0(y) = −1
4

(1 − y2)((σ+ + σ−)y + σ+ − σ−)

= −R
4

(1 − y2)((cosα + sinα)y + cosα − sinα) (2.14)

that also satisfies f (iv)
0 = 0. The governing equation for f1 is

∂tf ′′
1 = (f0 + f1)(f ′′′

0 + f ′′′
1 ) − (f ′

0 + f ′
1)(f ′′

0 + f ′′
1 ) + f iv

1 = Lf1 + N(f1), (2.15)

where L and N are the linear and nonlinear parts of the equation, respectively. For the time
evolution, f1 is approximated via a spectral expansion in modulated Legendre polynomials of
the form

f1,M(y, t) =
M−1∑
m=0

am(t)Φm(y), Φm(y) = (1 − y2)2Pm(y), (2.16)

satisfyingΦm(±1) =Φ ′
m(±1) = 0, where Pm(y) are the Legendre polynomials. Then equation (2.15)

is projected on the same basis via the standard Hermitian inner product in [−1, 1]

(ϕ,ψ) =
∫ 1

−1
ϕ(y)ψ(y) dy, (Pm, Pn) = 2

2n + 1
δmn. (2.17)

This projection provides a system of M nonlinear ordinary differential equations (ODEs),

M−1∑
m=0

A�mȧm =
M−1∑
m=0

L�m(R,α)am + N�(a, R,α), �= 0, 1, . . . , M − 1, (2.18)

where ȧm denotes time derivative, and A�m, L�m and N� are the linear and nonlinear operators

A�m = (Φ�,Φm), L�m(R,β) = (Φ�, LΦm), N�(a, R,β) = (Φ�, N(f1)). (2.19)

The ODE system (2.18) has been solved by using an IMEX2 method (implicit second-order
backward differences scheme for the linear part, and an explicit second-order formulation for
the nonlinear terms):

1
2h

(3Aan+1 − 4Aan + Aan−1) = Lan+1 + 2N(an) − N(an−1), (2.20)

where h is the time step and the superindex refers to the discrete times where the solution is
obtained, tn = nh.

For the computation and continuation in parameter space of the steady solutions, the fourth-
order equation

Lf1 + N(f1) = 0, f1(±1) = f ′
1(±1) = 0, (2.21)

is been transformed into a second-order system. Introducing f2 = f ′′
1 , we obtain(

D2 −1
f ′′′
0 − f ′′

0 D D2 − f ′
0 + f0D

)(
f1
f2

)
+
(

0
f1f ′

2 − f ′
1f2 + f0f ′′′

0 − f ′
0f ′′

0

)
= 0, (2.22)

where D denotes y-derivative. We expand f1 and f2 in basis functions satisfying the boundary
conditions (two for f1 and none for f2):

f1,M(y) =
M−1∑
m=0

am(1 − y2)2Pm(y), f2,M(y) =
M−1∑
m=0

bmPm(y). (2.23)
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Equations (2.22) for f1 and f2 are projected onto the Legendre basis (a Petrov–Galerkin method).
The resulting nonlinear equations can be solved using the Newton method, and a pseudo-
arclength continuation scheme has been implemented along any straight line in parameter
space (R,α).

A pseudo-arclength Newton–Krylov–Poincaré continuation method for computing periodic
solutions has been implemented [13,14]. Stable and unstable periodic orbits are obtained using
this method. Finally, linear stability analyses of the fixed points and periodic solutions are carried
out, focusing on the most unstable eigenvalues using Krylov–Arnoldi methods [15].

3. Base state and primary instabilities
For R small, and specified stretching–shrinking rates σ±, the self-similar equations have a unique
solution, that we call the base state. Figure 2 shows the base state at R = 20, for 16 equispaced
values of α in [0, 2π ], illustrating the different stretching–shrinking possibilities. Figure 3a shows
the variation of the wall-normal velocity at the channel centre V = −f (0) versus α at R = 20. The
circles in figure 3b correspond to the 16 cases shown in figure 2. The symmetry about the line α =
π/4, 5π/4 is easily recognisable from the diagrams shown in figure 2; for example, the diagram
for α = 0 is the horizontal reflection about y = 0 of the α = π/2 diagram. The exchange between
extensional and shrinking walls, corresponding to the rotation α→ π + α, is not a symmetry of
the problem, and the corresponding flows are quite different, as illustrated with the cases α= π/2
and α= 3π/2.

When increasing the Reynolds number above R ≈ 25, more than one steady state is obtained
for certain α-values. Four cusp bifurcations appear at parameter values given in table 1. Two of
them, C1 and C3, take place on the symmetry line α= π/4 and 5π/4; the other two, C2 and Cs

2,
are symmetrical about this line, and close to α = π/2 and 2π . Figure 4a shows the variation of
the wall-normal velocity at the channel centre V versus α at R = 300. Figure 4b–d are close-ups of
the three cusps C1, C2 and C3, respectively. The cusp Cs

3, being symmetrical to C3, is not shown.
These curves have been obtained by continuation of steady solutions of the governing self-similar
equation (2.9). At each of the saddle-node bifurcations in figure 4b–d, a real eigenvalue crosses the
imaginary axis. Figure 5 shows the structure of the flow using streamlines, for the three solutions
coexisting inside the cusp bifurcation; the middle branch solution is always unstable, while the
upper and lower branches are stable close enough to the corresponding cusp point. For the cusps
C1 and C3, the upper and lower branches are symmetrical, and the corresponding flows are Ky

symmetric, as shown in the figure.
When increasing the Reynolds number R, the basic state undergoes a variety of bifurcations

depending on the α value. A comprehensive exploration of the parameter space (R,α) ∈ [0, 500] ×
[0, 2π ) has been carried out, and a variety of Hopf bifurcations and codimension-two bifurcations,
in addition to the four cusps, also appear. They are summarized in figure 6 and will be discussed
in detail in the next sections. Some of the bifurcations and instabilities in figure 6 have already
been reported in previous studies. For example, the α= 5π/4 line of figure 6 corresponds to the
particular case of symmetric shrinking (i.e. the case with the two walls decelerating at the same
spatial rate) studied by many authors in the past. The cusp C1 is a parametric unfolding of the
pitchfork bifurcation reported, for example, in Watson et al. [6] or in Espín & Papageorgiou [10].
Similarly, the line α = π/2 (or its symmetric counterpart α= 0) corresponds to the particular case
of one stretching wall and the other stationary, reported by Wang & Wu [9], that also leads to
a pitchfork bifurcation at cusp C2. Finally, line α= π/4 corresponds to the case of symmetric
stretching addressed by Brady & Acrivos [11] and is associated with the pitchfork bifurcation
cusp C3.

(a) Limit cycle solutions
In the α ranges between the cusp bifurcations, the base state becomes unstable for moderate
R-values by means of Hopf bifurcations, where a periodic orbit solution is born. Between the
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a = 0

a = 3p/4 a = 7p/8 a = p

a = 3p/8 a = 5p/8a = p/2

a = p/8 a = p/4

a = 3p/2 a = 13p/8

a = 15p/8 a = 2p

a = 7p/4

a = 9p/8 a = 5p/4 a = 11p/8

Figure 2. Streamlines at R= 20 for different values ofα as indicated.

0
−12

−6

0

6

12(a) (b)

V

s–

s+a

a
p/4 p/2 3p/4 5p/4 3p/2 7p/2 2pp

Figure 3. (a) Variation of V with α for the base states at R= 20. (b) Position of the 16 (◦) cases in (a), on the σ± plane. The
dotted line corresponds to the symmetry lineα= π/4.

Table 1. Parameter values (R,α) corresponding to the four cusps; C2 and Cs2 are symmetric.

C1 C2 Cs2 C3
R 24.4760 98.9949 98.9949 187.749

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 5π/4 1.568 2.900 × 10−3 π/4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 4. (a) Variation of V withα for the steady states at R= 300, showingmultiplicity of states. (b), (c) and (d) showdetails
of (a) nearby the three regions indicated by the dotted lines C1, C2 and C3.

C1 C2 C3

U

M

L

Figure 5. Streamlines of the three coexisting solutions for R= 300 associated with the three cusp bifurcations. U, M and L
refers to the upper, middle and lower branches, as indicated using a circle (◦) in figure 4b–d, respectively.

cusps C1 and C2, the Hopf bifurcation H1 takes place at small values of R. We describe in detail
the bifurcated solutions for α = π , corresponding to a shrinking upper wall, while the other wall
is at rest. To our knowledge, this case has not been explored before in the context of extensional
flows. However, similar results in the case of flows driven by suction through porous walls were
found by King & Cox [7].

Figure 7a displays the bifurcated stable periodic orbit for α= π and various Reynolds numbers;
the figure shows phase portraits of the limit cycles projected on the plane (U, V) = (f ′(0), −f (0)),
the streamwise and wall-normal velocities at the channel centre, for x = 1. The base state becomes
unstable at R = 46.34. When increasing R the limit cycle grows substantially in size: the maximum
value of |U| increases from |U| = 263.8 at R = 200 to |U| = 8111 at R = 500, i.e. a factor of 30 for
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Figure 6. Bifurcation diagram up to R= 500 showing six fold bifurcation curves (F), two Hopf curves (H) and five (◦)
codimension-two bifurcation points: cusp bifurcations C1, C2 and Cs2 , and fold-Hopf bifurcations FH and FH

s. (Online version
in colour.)

an increase in R of a factor 2.5. The time series develops a sharp slow/fast behaviour when
increasing R, as shown in figure 7b for R = 200; the slowing down takes place near the upper right
corner of the limit cycle. This dynamical behaviour is typical of homoclinic or saddle-node in
cycle (SNIC) bifurcations of limit cycles, where either the periodic orbit approaches a homoclinic
connection of a saddle equilibrium, or where the saddle is born within the cycle, respectively.
However, the two aforementioned scenarios have been discarded by monitoring the dependence
of the period of the limit cycles as a function of R. Figure 7c reveals that the period of the limit
cycles grows moderately when increasing R and apparently remains bounded and without any
indication of divergence, contrary to what would be expected in SNIC or homoclinic scenarios.
When increasing R, the slow–fast dynamics of the limit cycles become more pronounced and
distinguishable along the periodic orbits with fast transient flow stages developing narrow
boundary layers. As shown in figure 7c, this increase in R also leads to an exponential growth of
the β factor that modulates f ′′′ in equation (2.10) and that is responsible for the quadratic growth of
the pressure in the streamwise x coordinate of the channel. The high values of β and the associated
very thin boundary layers for high R are a clear indication that in real flows other phenomena
will appear, destroying the self-similar character of the solutions, as already reported by Espín
& Papageorgiou [10] for the case of decelerating wall flows (α= 5π/4). Decelerating or shrinking
walls occur in the interval α ∈ (π/2, 2π ), where the mentioned limit cycles originate along the
Hopf curves H1 and Hs

1 of figure 6. Apart from the cusp region C1 around α = 5π/4, the limit
cycles developing very narrow boundary layers are the only stable solutions of the self-similar
equations. Away from the C1 cusp region, no additional fixed points (apart from the unstable
base state) have been identified. These facts, and the difficulties in the numerical solution of the
governing equations due to the narrow boundary layers, are the most likely explanation of why
the two generic shrinking cases for α = 3π/4 (shrinking–stretching walls) and α= π (shrinking–
stationary walls) have not been studied previously. For high values of R, the exponential growth
of β along with the presence of very thin boundary layers makes the numerical computations
really challenging. All spectral computations reported in this study have used a minimum value
of M to ensure a decay of at least 10 orders of magnitude in the spectral Legendre coefficients am

of the expansion (2.16) and a suitable decrease of the time-step h to avoid numerical instabilities
or noticeable changes of the dynamics when it is reduced. For most of the computations, M = 70
Legendre polynomials and h = 2 × 10−3R−1 were sufficient to satisfy the numerical accuracy and
stability requirements. However, the spatial and temporal resolutions needed to be increased in
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order to properly solve the aforementioned narrow boundary layers associated with the slow–fast
dynamics of the limit cycles generated above curves H1 and Hs

1.
Figure 7d–i show the structure of the limit cycle for α = π and R = 200. The solution along the

cycle presents two very different behaviours. For nearly half of the period, the flow exhibits four
recirculating cells, as illustrated with the streamlines in figure 7d. The profiles of the streamwise
u in black (blue online) and wall-normal v in grey (orange online) velocities in figure 7f are
almost symmetrical, and the Ky symmetry is only broken inside the thin boundary layers near
the walls (the boundary conditions are not Ky-symmetric, except for α= π/4 and 5π/4). We call
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this solution symmetric (Sym in the figure). There is also a small fraction of the period when
the solution has only two recirculating cells, as illustrated with the streamlines in figure 7e. The
profiles of u and v in figure 7g are clearly not Ky-symmetric. We call this solution asymmetric
(asym in the figure). There are also two intervals of transition between the sym and asym phases
of the limit cycle, indicated in figure 7h for the phase-portrait, and in figure 7i for the pressure
factor β. The transition and asymmetric phases become a smaller fraction of the limit cycle period
when increasing the Reynolds number R. The sudden and large increase in β takes place in the
asymmetric phase.

The other regions where the primary instability is due to a Hopf bifurcation are within the
intervals α ∈ (0,π/4) between cusps Cs

2 and C3, and α ∈ (π/4,π/2), between C3 and C2; see figure 6.
In these two ranges, the Hopf bifurcations take place at much higher Reynolds numbers (typically
ranging between 300 and 500) along curves H2 and its symmetric counterpart Hs

2. For example,
for α = π/8 the Hopf bifurcation takes place at R = 465.5, leading to time periodic regimes whose
main features are outlined in figure 8. These periodic orbits also exhibit slow–fast dynamics when
increasing R, as can be easily seen in figure 8b. However, the pressure factor β attains moderate
values when compared with the decelerating walls case previously analysed. The orbital period
exhibits an almost linear growth as a function of R, without any trace or signal of potential blow
up, thus discarding SNIC or homoclinic secondary bifurcations of the period orbits. Within the
range of explored values we have not identified secondary instabilities of these limit cycles.

Figure 8d shows how the Hopf frequency (the frequency of the limit cycle at the Hopf
bifurcation point) varies along the two Hopf branches H1 and Hs

2. The frequency is very small
at the C2 end of the H1 branch, and at both ends of the Hs

2 branch, and as we will show later, these
points are Takens–Bogdanov bifurcations, where the Hopf frequency is zero.

4. Secondary bifurcations inside cusp C1
The interaction of the Hopf bifurcation curves and the cusp C1 is shown in figure 9a. The H1 Hopf
curve and the fold curve FS

1 emerging from the cusp point C1 become tangent at the codimension-
two fold-Hopf bifurcation point FHS, with parameter values (α, R)FHS ≈ (4.0207, 113.14). The fold-
Hopf bifurcation admits different scenarios, depending on the specifics of the dynamical system
considered. In order to ascertain which scenario corresponds to our problem, we have computed
phase portraits of the solutions at R = 125, for different α values, as indicated by square symbols
in figure 9b. The phase portraits corresponding to points a–c shown in the first row of figure 10
exhibit the two steady points emerging from the saddle-node bifurcation curve Fs

1 in figure 10a.
At figure 10b, we can see the limit cycle emerging from the saddle point (middle fixed point in
the figure), at the Hopf curve H1. It is an unstable limit cycle; for R<RFHS , the limit cycle is
stable, as has been discussed in the previous section. The unstable limit cycle becomes stable in
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a Neimark–Sacker bifurcation curve NS−, as shown in figure 10c. These dynamics correspond
to the third scenario of the fold-Hopf bifurcation, as described in Kuznetsov [16]. The two-torus
that is born at NS− is unstable, and it is in fact the boundary between the basins of attraction of
the stable lower and upper limit cycles shown in figure 10c. This boundary set is an invariant
set that is inherently unstable and may have a very complex structure. It has been studied in
some detail in other fluid problems, as in pipe flow [17,18], where it has been shown to have a
fractal structure, and there are unstable states in the boundary set, called edge states, that play a
significant dynamical role. In our case, the boundary set is an unstable two-torus close to the NS−
bifurcation curve, and we have not explored in detail its subsequent evolution, although some
considerations will be made about it when exploring the codimension-two PN− point.

When decreasing the parameter α at R = 125, the stable limit cycle in figure 10c, born at the
NS− bifurcation curve (the lower limit cycle in the figures), undergoes a period doubling cascade
(figure 10d) starting at the bifurcation curve PD−. The cascade results in the strange attractor
shown in figure 10e. A further decrease in α results in the disappearance of the strange attractor;
the only stable solution that remains is the upper limit cycle, as shown in figure 10f. Some of
the unstable periodic orbits associated with the strange attractor survive, as the unstable limit
cycle depicted in figure 10f. The disappearance of the strange attractor happens along the curve
Cr−. This is a global bifurcation called a boundary crisis: the strange attractor collides with the
boundary of its basin of attraction, becoming unstable [19]. At the collision the boundary set (that
was a two-torus near the NS− bifurcation curve) is destroyed; the basin of attraction of the strange
attractor is absorbed by the basin of attraction of the upper stable limit cycle.

The period doubling cascade ending at the boundary crisis happens in a very narrow
parameter range. Continuation of the bifurcation curves NS−, PD− and Cr− at larger Reynolds
numbers R> 125 results in their merging in a codimension-two bifurcation point PN− at
(α, R)PN− ≈ (3.990, 136.95). This is a codimension-two bifurcation of the lower limit cycle,
undergoing simultaneously a period-doubling and a Neimark–Sacker bifurcation. It can be
understood as a codimension-two bifurcation of the Poincaré map associated with the lower limit
cycle, where three eigenvalues cross the unit cycle: an eigenvalue −1, corresponding to the period-
doubling, and a couple of complex-conjugate eigenvalues of modulus one, corresponding to the
Neimark–Sacker bifurcation [16]. This complicated bifurcation has not been studied in full detail
yet, although some particular scenarios in another system have been recently analysed [20].

The bifurcation curves NS−, PD− and Cr− have also been continued at lower R and α

parameter values. The period doubling cascade interval widens when approaching the symmetry
line at α= 5π/4. Around this line, we have two period doubling cascades, associated with the
upper and lower limit cycles, starting at the curves PD+ and PD− respectively, as shown in
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figure 9. Around the symmetry line at α= 5π/4 both period-doubling cascades overlap partially,
as shown in figure 9b. Phase portraits illustrating the period-doubling cascade PD+ at R = 125 are
shown in figure 10g–l. On the symmetry line α = 5π/4 both strange attractors coexist, as shown
in figure 10k; in fact the two strange attractors are Ky symmetric. When we move slightly away
from the α = 5π/4 line, one of the attractors undergoes a boundary crisis and disappears (see
figures 10j and l). The boundary crisis bifurcation curves Cr+ and Cr− are asymptotic to the
α = 5π/4 line. Therefore, although the strange attractors exist for large R values on the symmetry
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Table 2. Period doubling cascades at R= 125 andα= 5π/4.

R= 125 α= 5π/4 α= 5π/4a

n orbit αn δn Rn δn Rn δn

0 LC 3.94815747 105.441059 104.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 P2 3.93554692 13.266 110.211529 4.6959 110.0 5.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 P4 3.93459632 9.5502 111.227405 4.6481 111.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 P8 3.93449678 5.3661 111.445963 4.6846
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 P16 3.93447823 4.7407 111.492617 4.6571
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 P32 3.93447432 111.502635
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Also shown are values afromWatson et al. [6]. The Feigenbaum constant (the limiting ratio of each bifurcation interval to the next, see (4.1))
is δ = 4.6692016 . . .. The Reynolds number R∗ from a has been converted to the R used in the present work: R∗ = R/

√
2.

line (corresponding to both walls shrinking at the same rate), a very small Ky-symmetry breaking
results in dramatic changes in the flow. The period-doubling curves PD+ and PD− also approach
the α= 5π/4 line when increasing R. Therefore all the complex dynamics becomes confined in
a very narrow α interval when increasing R and can only be observed in detail at moderate R
values (between about R = 105 and R = 125). It is also worth mentioning that the strange attractors
depicted in figure 10k exhibit the slow down characteristic of the limit cycles analysed in §3 (see
also figure 7a). The slow down in this case corresponds to the strange attractors approaching the
saddle fixed point along the line V = 0 in figure 10k. In this figure, we can see that the strange
attractor, moving away from the saddle, closely follows the unstable manifold of the saddle.

The precise values of the succession of period doublings have been computed for R = 125
(varying α) and on the symmetry line α = 5π/4 (varying R). The Newton–Krylov–Poincare
method combined with Arnoldi stability analysis allows one to monitor the Floquet exponents
of the limit cycles, and a precise determination of the critical parameters of the period doubling
cascade. The results are shown in table 2. P2, P4, P8. . . refer to the succession of period doubled
orbits; δn measures the ratio of each bifurcation interval to the next

δn = μn − μn−1

μn+1 − μn
, (4.1)

where μ refers to R or α, the parameter varied along the period doubling cascade. The first period
doubling n = 1 results in P2, n = 2 results in P4 and so on. We have been able to compute up to five
period doublings using continuation. We observe that in both cases analysed, the parameter δn for
large n tends to the Feigenbaum constant δ = 4.6692016 . . ., a universal constant in many period
doubling processes [21,22]. The period doubling cascade has been observed previously in the
particular case α= 5π/4 (the symmetric case) by Watson et al. [6]. In this work, two successive
period doublings were observed, and we have included the corresponding values in the last
column of the table; the critical parameters Rn were computed with an accuracy of at least three
figures. The remaining values shown in table 2 have been computed with five figure accuracy;
the first three period doublings are illustrated in figure 10g–i. We have also been able to find
limit cycles of period three (P3) and five (P5), and their windows of stability; the presence of an
unstable cycle of period three is a clear indication of the presence of a strange attractor [23,24],
with unstable limit cycles of all periods multiple of the basic limit cycle LC. These P3 and
P5 cycles are born in cyclic-fold bifurcations (a saddle-node bifurcation of cycles), at Reynolds
numbers RP3 = 114.10093 and RP5 = 113.26726. In these bifurcations two limit cycles, one stable
and the other unstable, are born, as shown in figure 11. Although the cycles exist for R>RP3
and R>RP5, respectively, the interval of stability δR of the initially stable branch is very narrow:
δRP3 = 0.27775, and δRP5 = 0.03787.
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Figure 11. Phase portraits inside the cusp C1 at α = 5π/4 and R as indicated, near the cyclic-fold bifurcation where P3 (a)
and P5 (b) are born. The solid curve is the limit cycle on the initially stable branch, and the dashed curve the limit cycle on the
unstable branch. The grey curve is the limit cycle at the cyclic-fold bifurcation.

The results obtained in the present study can be quantitatively compared with those obtained
by Watson et al. [6] for the self-similar flow at α= 5π/4, i.e. for the case of parallel plates with the
same shrinking rates. In this work, the critical Reynolds numbers for the cusp bifurcation C1 and
the Hopf bifurcation H1 are given as R∗

C1
= 17.30715 and R∗

H1
= 55.77. The Reynolds number R∗

used in Watson et al. [6] is related with R used in our computations according to R = R∗√2. The
critical Reynolds numbers obtained in the present study are RC1 = 24.4760 and RH1 = 78.8380 and
converted to R∗ result in 17.3071 and 55.7469, respectively. The agreement is very good.

5. Secondary bifurcations inside cusp C2
Figure 12a shows the secondary bifurcations and codimension-two points associated with the
asymmetric cusp C2. The Hopf curve Hs

2 ends in the fold curve F∗
2 in a Takens–Bogdanov

bifurcation TB1, as was suggested by figure 8d. The parameter values of TB1 are (α, R)TB1 ≈
(1.7181, 150.52). In contrast, the Hopf curve H1 does not interact with the bifurcation curves
associated with C2, and figure 12a suggests that it approaches F2 for large values or R, outside
the scope of the present study.

There is another Takens–Bogdanov point TB2 on the fold curve F2, at parameter values
(α, R)TB2 ≈ (1.5823, 367.70). The numerical exploration shows that it is a standard Takens–
Bogdanov bifurcations that does not interact with the other branches inside the cusp C2 and
takes place in a very narrow region in parameter space, as shown in the inset in figure 12b.
Figure 13 shows three phase portraits of the solutions crossing the bifurcations associated with
TB2, corresponding to the points a, b and c in figure 12b. Figure 13a shows the two unstable fixed
points born at the fold bifurcation F2. In figure 13b, one of the new fixed points becomes stable in a
Hopf bifurcation H3, and an unstable limit cycle is born. This unstable limit cycle disappears in an
homoclinic collision Hom2 with the other fixed point born at F2, in an infinite period bifurcation.
After the homoclinic connection, typical of the Takens–Bogdanov bifurcation [16], only the two
fixed points remain, as illustrated in figure 13c. The three bifurcation curves F2, H3 and Hom2 are
tangent at TB2.

The bifurcation curves emerging from TB1, in contrast with TB2, cover a wide region inside the
cusp and exhibit complex dynamics. The Hopf bifurcation curve Hs

2 and homoclinic curve Hom1
emerging from TB1 interact via two new codimension-two bifurcations, joined by the curve of
cyclic-folds CF1. These new bifurcations are shown in figure 12c.
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Figure 14 illustrates the phase portraits corresponding to the points a, b, c and d for R = 200
in figure 12c, close to the Takens–Bogdanov bifurcation TB1. Figure 14a for α = 1.7 shows the
upper and lower stable fixed points along with the middle saddle unstable one. Orbits emerging
from the saddle that surround the upper fixed point grow in size when α is increased, eventually
leading to the homoclinic connection shown in figure 14b. The homoclinic connection for larger
α values results in an unstable periodic orbit, as shown in figure 14c. This unstable periodic orbit
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Figure 15. Phase portraits inside cusp C2 at R= 250 and α as indicated, showing the dynamics crossing the Hom1 and H22
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collapses into the upper fixed point, in the Hopf bifurcation Hs
2. As a result the upper fixed point

becomes unstable, as shown in figure 14d.
For R = 200 near the Takens–Bogdanov point TB1, the Hopf bifurcation curve is subcritical, in

the sense that the stable point is surrounded by an unstable limit cycle that bounds its basin of
attraction. In §2 it was shown that the Hopf bifurcations along the curve Hs

2 within the interval
α ∈ (π/4,π/2) are supercritical, in the sense that the limit cycle is stable and does not coexist with
the stable fixed point. The simplest mechanism responsible for the subcritical to supercritical
change of the Hopf bifurcation along Hs

2 is that of a Bautin codimension-2 bifurcation [16]. From
the Bautin bifurcation Ba1, located at (α, R)TB1 ≈ (1.7114, 230.75), a bifurcation curve CF1 emerges.
Along this curve, the stable and unstable limit cycles, born at the subcritical and supercritical
Hopfs, merge in a fold bifurcation of cycles (a cyclic-fold) and disappear.

Figure 15 shows phase portraits at the different regions delimited by the bifurcation curves
above the Bautin bifurcation, corresponding to the points a–f in figure 12c at R = 250. The first
two phase portraits, figure 15a and b, show the crossing of the Hopf curve H1, where the stable
limit cycle around the lower fixed point is born; as we mentioned before, the Hopf curve H1 does
not interact with the dynamics associated with the Takens–Bogdanov point TB1 and the Bautin
point Ba1, and indeed the dynamics on the remaining phase portraits in figure 15 take place
in the upper part of the phase space, around the middle and upper fixed points. By increasing
α the supercritical Hopf curve H2 is crossed and a stable limit cycle around the upper fixed
point appears (see figure 15c). Figure 15d shows the formation of the homoclinic connection with
the middle saddle point, on the curve Hom1; a further increase in α results in the break-up of
the homoclinic loop, giving rise to an unstable limit cycle, as shown in figure 15e. These two
limit cycles approach each other when α is increased, merging on the bifurcation curve CF1 and
disappearing, as shown in figure 15f .
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Increasing the Reynolds number above R = 250, the bifurcation curves CF1 and Hom1
approach each other, and they meet at a codimension-two bifurcation CFH1 located at
(α, R)CFH1 ≈ (1.7053, 300.0). This is a codimension-two global bifurcation of limit cycles: the cyclic-
fold where the stable and unstable limit cycles are born happens when both cycles collide
homoclinically with the middle saddle point. For R above the CFH1 point, the cyclic-fold CF1
curve no longer exists, and the dynamics simplifies: only the homoclinic collision of the stable
upper limit cycle with the middle saddle remains. Figure 16 shows the crossing of the Hom1 curve
at R = 320, and the three phase portraits correspond to the points a, b, c at R = 320 in figure 12c.

6. Secondary bifurcations inside cusp C3
The third and last cusp C3 shown in figure 6 unfolds the flow dynamics generated between
parallel plates with the same stretching rates (α = π/4) originally studied by Brady & Acrivos [4].
The bifurcation diagram in a neighbourhood of the cusp is shown in figure 17a, where
the dynamics is governed by a Takens–Bogdanov bifurcation TB3 located at (α, R)TB3 =
(0.67910, 401.45). Similarly to what has been just described in cusp C2, the TB3 point is located
at the confluence of the Hopf (Hs

2) and the fold F3 bifurcation curves, and an homoclinic (Hom3)
bifurcation curve characteristic of the Takens–Bogdanov bifurcation emerges from the same point.
Also in this case, close to TB3 the Hopf bifurcation Hs

2 is subcritical, and away from it (e.g.
for α > π/4 as was shown in §2) is supercritical, and the change in behaviour takes place at a
Bautin codimension-2 point Ba3 located at (α, R)Ba3 = (0.72289, 494.97). From the Bautin point Ba3
emerges a cyclic-fold transition curve CF3 that presumably should merge with Hom3 for larger
values of R. The aforementioned bifurcation scenarios and corresponding phase portraits are
qualitatively identical to the ones described in previous section for the cusp C2, in particular
those addressed in figure 12c along path a–d for R = 200 (depicted in figure 14), path a–f for
R = 250 (depicted in figure 15) and path a–c for R = 320 (depicted in figure 16). The bifurcation
curves Hom3 and CF3 and their symmetric counterparts approach the symmetry line at α= π/4
for large R values. Outside this narrow region of complex dynamics, there only remains one stable
solution, a limit cycle around the upper or lower unstable fixed point, depending on the side of
the symmetry line considered. The complex dynamics becomes confined at intermediate R values
(between about R = 400 and R = 550) and for larger R it exists only in a very narrow α interval
around the symmetry line α = π/4.

A quantitative comparison of the results obtained in the present study with those obtained by
Espín & Papageorgiou [10] is shown in table 3, for the self-similar flow at α= π/4, i.e. for the case
of parallel plates with the same stretching rates. The critical Reynolds numbers agree with five
figures, and the period of the stable limit cycle solution at R = 523.26 differs in less than 0.5%,
so the agreement is fully satisfactory. The Reynolds number and the time scale used in [10] are
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Table 3. Comparison with previous work for α = π/4. R∗ = R/
√
2 is the Reynolds number as defined in Espín &

Papageorgiou [10]; T∗ = TR/
√
2 is the time used in the same reference.

Espín & Papageorgiou [10] present work

R∗C3 132.76 132.759
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R∗H2 355.58 355.573
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T∗ of LC for R= 370 199.041 199.368
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

different from those used in the present study, and in table 3 we have converted our values to
theirs.

In the classic work of Brady & Acrivos [4] on extensional channel flow, for the case α= π/4,
Ky-symmetric steady solutions were computed up to R ≈ 127 600, and three different branches
of solutions were computed. Branch I in the mentioned paper corresponds to the base state in
the present study and to the mid-branch after the cusp C3 bifurcation. Branches II and III were
disconnected from branch I and appeared at a fold bifurcation at about R ≈ 438. A disconnected
branch of solutions cannot be computed by continuation methods, neither by time evolution if
they are unstable, so finding disconnected branches is a difficult problem, and one never knows
if there are additional branches not yet found. In this case, we used the fact that branches I and
II become very close at high R to compute them; this is how branches II and III were obtained
in the mentioned reference. The result is shown in figure 17b, fold curve F4; on the symmetry
line α = π/4, the fold takes place at R = 434.13, very close to the value reported in Brady &
Acrivos [4]. Apart from the Ky-symmetric steady solutions, there are other asymmetric fixed
points. In Watson et al. [6], the two asymmetric branches born at the cusp C3 were found, and
also the Hopf bifurcation H2 (for α = π/4). We have performed a detailed exploration of the fixed
points up to R = 850 and α ∈ [0,π/2], and the result is shown in figure 17b. A new cusp bifurcation
of one of the branches born at the fold F4 has been found at R = 744.4, with the corresponding fold
bifurcation curves F5 and FS

5 . There are no additional bifurcations associated with the fixed points
in this range.

Figure 18a,c shows the variation of V with α for R = 480 and 800, for the branches of fixed
points. The new branch born at the fold F4 is the closed curve, limited by two fold bifurcations.
The open curve shows the solutions associated with the cusp C3. At R = 800 it can observed that
the closed branch has undergone a cusp bifurcation, and the closed curve exhibits a couple of new
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fold points very close to the α= π/4 line. The new fixed points are shown in figure 18b,d which
are the corresponding phase portraits for R = 480 and 800 at α= π/4. All the new fixed points
are unstable and are away from the region where the complex dynamics associated with C3 takes
place. The phase portraits in figure 18 also show the unstable manifolds associated with the new
fixed points that evolve towards the stable solutions (fixed points and limit cycles associated with
C3). Therefore, the presence of these new fixed points does not modify the dynamics already
discussed.

Figure 19(1–7) shows the streamlines corresponding to the seven fixed points in figure 18d.
The first and third rows are the three solutions associated with the cusps C3 and C4. The central
column shows the three Ky-symmetric solutions, being 5 and 7 the solutions born at the fold
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bifurcation F4 (branches II and III in Brady & Acrivos [4]). Solutions 2 and 4 in the central
column are very similar, corresponding to the mentioned approach of branches I and II in
Brady & Acrivos [4] (also shown in figure 18d), at high Reynolds numbers. Figure 19a,b outlines
the variation of the pressure parameter β/R and the wall-normal velocity V as a function of
the Reynolds number R for two fixed values of α. These figures clearly show the successive
bifurcations that the base state undergoes when increasing R, and also the unfolding of the
pitchfork bifurcations resulting from the Ky-symmetry breaking for a slightly increased value
α = 0.82. In particular, figure 19a allows a direct comparison with figure 2a of Brady & Acrivos [4].

7. Discussion and conclusion
A comprehensive exploration of the dynamics of the self-similar extensional channel flow has
been carried out. Historically, the self-similar studies of this flow focused on the computation of
steady solutions and their asymptotic properties at large Reynolds numbers [4,9,12]; however,
these large R solutions are usually unstable, and more recent works have focused on dynamical
aspects [6,10]. All these previous studies focused on specific values on the stretching ratio of the
walls α; only the cases α= π/4, 5π/4 and π/2 have been previously studied, corresponding to
both walls stretching or shrinking at the same rate, and one wall stretching and the other at rest.
What we have found is that the interesting dynamics takes place in α intervals centred around the
α = π/4 and 5π/4 cases, and also close to but not including the α= π/2 case. For α values outside
these three regions, corresponding to the three cusps C1, C2 and C3, the base state undergoes a
Hopf bifurcation resulting in a periodic solution, and there are no additional bifurcations when
increasing R.

It has also been found that the base state becomes unstable (in the self-similar subspace) for
small Reynolds numbers, and a transitional region including complex dynamics takes place at
intermediate R values, depending on the value of α. For α ∈ (0.57π , 1.93π ), where at least one
of the walls is shrinking, the transition takes place in the approximate range R ∈ (25, 140). For
α ∈ (0,π/2), where both walls are stretching, the transition takes place in the range R ∈ (200, 600).
In the remaining region, associated with cusp C2, the transition takes place in the range R ∈
(100, 450). For Reynolds numbers above the transition region, the only stable solution is a limit
cycle, whose structure has been discussed in detail in §3a. This periodic solution develops slow–
fast dynamics when increasing R, and the boundary layers become very thin with a large pressure
parameter β. The limit cycle is not unique but appears in pairs in a narrow region around the
symmetry lines α= π/4 and 5π/4, where a pair of symmetrically related limit cycles are present,
and in the case α= 5π/4 a strange attractor persists at high R. When the symmetry is broken, one
of the limit cycles (and the strange attractor) disappears, leaving only a single periodic solution;
the flow is very sensitive to symmetry-breaking.

The transition region is very rich in a variety of codimension one and two bifurcations and is an
excellent arena for applying dynamical systems theory. In particular, the complex time-dependent
flows emerge from, and are locally governed by, the explored codimension-two bifurcation points.

A natural question arises, about the feasibility of these flows in real problems. The flows
obtained in this study are exact solutions of the Navier–Stokes equations, but restricted to the self-
similar subspace. Do these solutions persist, are they observable and do they play a dynamical
role when solving the full Navier–Stokes equations without restrictions? The answer is already
partially known. Espín & Papageorgiou [10] compared the self similar solutions with DNS of the
Navier–Stokes equations in large but finite domains, in the case where both walls have the same
stretching rates (the cases α = π/4 and 5π/4). In this study, it was established that all branches of
the self-similar solutions, including time-periodic ones, can occur in finite channels provided the Reynolds
numbers are not too high: approximately R = 500 for accelerating and R = 33 for decelerating wall flows,
respectively. At sufficiently high Reynolds numbers, the self-similar inflow conditions are incapable of
producing the exact solution in the interior, but instead new steady or time-periodic states emerge. Other
authors have also pointed out that the self-similar solutions at high R are not feasible. Brady
& Acrivos [11] explicitly say that the results suggest that similarity solutions should be viewed with
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caution because they may not represent a real flow once a critical Reynolds number is exceeded. These
results and considerations strongly suggest that the solutions found below and into the transition
region could be observed in real flows, while the solutions above the transition region do not
represent any real flow. In fact, the general behaviour of the solutions of the Navier–Stokes
equations is laminar flow at low R, a transition region where complex spatio-temporal flows
emerge at intermediate R, and turbulent flow at high R. Restricting the computations to a self-
similar subspace suppresses the turbulent phase, and in fact above the transition region only
simple flows with no realistic behaviour are found (periodic solutions with narrow boundary
layers and very large pressure parameters). However, the analysis of the basic flow and part
of the transition region (for moderate Reynolds numbers) in the self-similar subspace can be a
valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions.
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